
Chapter 8

Continuous Random Variables

So far, we have studied discrete random variables and we have explored their

properties. Discrete random variables are quite useful in many contexts, yet

they form only a small subset of the collection of random variables pertinent

to applied probability and engineering. In this chapter, we consider random

variables that range over a continuum of possible values; that is, random

variables that can take on an uncountable set of values.

Continuous random variables are powerful mathematical abstractions that

allow engineers to pose and solve important problems. Many of these problems

are difficult to address using discrete models. While this extra flexibility is

useful and desirable, it comes at a certain cost. A continuous random variable

cannot be characterized by a probability mass function. This predicament

emerges from the limitations of the third axiom of probability laws, which

only applies to countable collections of disjoint events.

Below, we provide a definition for continuous random variables. Further-

more, we extend and apply the concepts and methods initially developed for

discrete random variables to the class of continuous random variables. In par-

ticular, we develop a continuous counterpart to the probability mass function.

8.1 Cumulative Distribution Functions

We begin our exposition of continuous random variables by introducing a gen-

eral concept which can be employed to bridge our understanding of discrete
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98 CHAPTER 8. CONTINUOUS RANDOM VARIABLES

and continuous random variables. Recall that a random variable is a real-

valued function acting on the outcomes of an experiment. In particular, given

a sample space, random variable X is a function from Ω to R. The cumulative

distribution function (CDF) of X is defined point-wise as the probability of

the event {X ≤ x},

FX(x) = Pr({X ≤ x}) = Pr(X ≤ x).

In terms of the underlying sample space, FX(x) denotes the probability of the

set of all outcomes in Ω for which the value of X is less than or equal to x,

FX(x) = Pr
(

X−1((−∞, x])
)

= Pr({ω ∈ Ω|X(ω) ≤ x}).

In essence, the CDF is a convenient way to specify the probability of all events

of the form {X ∈ (−∞, x]}.
The CDF of random variable X exists for any well-behaved function X :

Ω 7→ R. Moreover, since the realization of X is a real number, we have

lim
x↓−∞

FX(x) = 0

lim
x↑∞

FX(x) = 1.

Suppose x1 < x2, then we can write {X ≤ x2} as the union of the two disjoint

sets {X ≤ x1} and {x1 < X ≤ x2}. It follows that

FX(x2) = Pr(X ≤ x2)

= Pr(X ≤ x1) + Pr(x1 < X ≤ x2)

≥ Pr(X ≤ x1) = FX(x1).

(8.1)

In other words, a CDF is always a non-decreasing function. Finally, we note

from (8.1) that the probability of X falling in the interval (x1, x2] is

Pr(x1 < X ≤ x2) = FX(x2)− FX(x1). (8.2)

8.1.1 Discrete Random Variables

If X is a discrete random variable, then the CDF of X is given by

FX(x) =
∑

u∈X(Ω)∩(−∞,x]

pX(u),
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and its PMF can be computed using the formula

pX(x) = Pr(X ≤ x)− Pr(X < x) = FX(x)− lim
u↑x

FX(u).

Fortunately, this formula is simpler when the random variable X only takes

integer values, as seen in the example below.
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Figure 8.1: This figure shows the PMF of a discrete random variable, along

with the corresponding CDF. The values of the PMF are depicted by the

height of the rectangles; their cumulative sums lead to the values of the CDF.

Example 70. Let X be a geometric random variable with parameter p,

pX(k) = (1− p)k−1p k = 1, 2, . . .

For x > 0, the CDF of X is given by

FX(x) =

⌊x⌋
∑

k=1

(1− p)k−1p = 1− (1− p)⌊x⌋,

where ⌊·⌋ denotes the standard floor function. For integer k ≥ 1, the PMF of

geometric random variable X can be recovered from the CDF as follows,

pX(k) = FX(x)− lim
u↑x

FX(u) = FX(k)− FX(k − 1)

=
(

1− (1− p)k
)

−
(

1− (1− p)k−1
)

= (1− p)k−1p.
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8.1.2 Continuous Random Variables

Having introduced the general notion of a CDF, we can safely provide a more

precise definition for continuous random variables. LetX be a random variable

with CDF FX(·), then X is said to be a continuous random variable if FX(·)
is continuous and differentiable.

Example 71. Suppose that X is a random variable with CDF given by

FX(x) =







1− e−x, x ≥ 0

0, x < 0.

This cumulative distribution function is differentiable with

dFX

dx
(x) =







e−x, x > 0

0, x < 0

and therefore X is a continuous random variable.
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Figure 8.2: The CDF of a continuous random variable is differentiable. This

figure provides one example of a continuous random variable. Both, the CDF

FX(·) and its derivative fX(·) (PDF) are displayed.
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8.1.3 Mixed Random Variables*

Generally speaking, the CDF of a discrete random variable is a discontinuous

staircase-like function, whereas the CDF of a continuous random variable is

continuous and differentiable almost everywhere. There exist random variables

for which neither situation applies. Such random variables are sometimes

called mixed random variables. Our exposition of mixed random variables in

this document is very limited. Still, we emphasize that a good understanding

of discrete and continuous random variables is instrumental in understanding

and solving problems including mixed random variables.
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Figure 8.3: This figure shows the CDF of a mixed random variable. In general,

mixed random variables do not have a PMF nor a PDF. Their CDF may be

composed of a mixture of differentiable intervals and discontinuous jumps.

8.2 Probability Density Functions

As mentioned above, the CDF of continuous random variable X is a differ-

entiable function. The derivative of FX(·) is called the probability density

function (PDF) of X , and it is denoted by fX(·). If X is a random variable

with PDF fX(·) then, by the fundamental theorem of calculus, we have

FX(x) =

∫ x

−∞
fX(ξ)dξ.
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Equivalently, we can write

fX(x) =
dFX

dx
(x).

Note that PDFs are only defined for continuous random variables. This is

somewhat restrictive. Nevertheless, the PDF can be a very powerful tool to

derive properties of continuous random variables, which may otherwise be

difficult to compute.

For x1 < x2, we can combine the definition of fX(·) and (8.2) to obtain

Pr(x1 < X ≤ x2) =

∫ x2

x1

fX(ξ)dξ.

Furthermore, it is easily seen that for any continuous random variable

Pr(X = x2) = lim
x1↑x2

Pr(x1 < X ≤ x2) = lim
x1↑x2

∫ x2

x1

fX(ξ)dξ

=

∫ x2

x2

fX(ξ)dξ = 0.

In other words, if X is a continuous random variable, then Pr(X = x) = 0 for

any real number x. An immediate corollary of this fact is

Pr(x1 < X < x2) = Pr(x1 ≤ X < x2)

= Pr(x1 < X ≤ x2) = Pr(x1 ≤ X ≤ x2);

the inclusion or exclusion of endpoints in an interval does not affect the prob-

ability of the corresponding interval when X is a continuous random variable.

We can derive properties for the PDF of continuous random variable X

based on the axioms of probability laws. First, the probability that X is a real

number is given by

Pr(−∞ < X < ∞) =

∫ ∞

−∞
fX(ξ)dξ = 1.

Thus, fX(x) must integrate to one. Also, because the probabilities of events are

nonnegative, we must have fX(x) ≥ 0 everywhere. Finally, given an admissible

set S, the probability that X ∈ S can be expressed through an integral,

Pr(X ∈ S) =

∫

S

fX(ξ)dξ.

Admissible events of the form {X ∈ S} are sets for which we know how to

carry this integral.



8.3. IMPORTANT DISTRIBUTIONS 103

8.3 Important Distributions

Good intuition about continuous random variables can be developed by looking

at examples. In this section, we introduce important random variables and

their distributions. These random variables find widespread application in

various fields of engineering.

8.3.1 The Uniform Distribution

A (continuous) uniform random variable is such that all intervals of a same

length contained within its support are equally probable. The PDF of a uni-

form random variable is defined by two parameters, a and b, which represent

the minimum and maximum values of its support, respectively. The PDF

fX(·) is given by

fX(x) =







1
b−a

, x ∈ [a, b]

0, otherwise.

The associated cumulative distribution function becomes

FX(x) =



















0, x < a

x−a
b−a

, a ≤ x ≤ b

1, x ≥ b.

Example 72. David comes to campus every morning riding the Aggie Spirit

Transit. On his route, a bus comes every thirty minutes, from sunrise until

dusk. David, who does not believe in alarm clocks or watches, wakes up with

daylight. After cooking a hefty breakfast, he walks to the bus stop. If his arrival

time at the bus stop is uniformly distributed between 9:00 a.m. and 9:30 a.m.,

what is the probability that he waits less than five minutes for the bus?

Let t0 be the time at which David arrives at the bus stop, and denote by T

the time he spends waiting. The time at which the next bus arrives at David’s

stop is uniformly distributed between t0 and t0 + 30. The amount of time that

he spends at the bus stop is therefore uniformly distributed between 0 and 30

minutes. Accordingly, we have

fT (t) =







1
30
, t ∈ [0, 30]

0, otherwise.
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Figure 8.4: This figure shows the PDFs of uniform random variables with

support intervals [0, 1], [0, 2] and [0, 4].

The probability that David waits less than five minutes is

Pr(T < 5) =

∫ 5

0

1

30
dt =

1

6
.

8.3.2 The Gaussian (Normal) Random Variable

The Gaussian random variable is of fundamental importance in probability and

statistics. It is often used to model distributions of quantities influenced by

large numbers of small random components. The PDF of a Gaussian random

variable is given by

fX(x) =
1√
2πσ

e−
(x−m)2

2σ2 −∞ < x < ∞,

where m and σ > 0 are real parameters.

A Gaussian variable whose distribution has parameters m = 0 and σ = 1

is called a normal random variable or a standard Gaussian random variable,

names that hint at its popularity. The CDF of a Gaussian random variable

does not admit a closed-form expression; it can be expressed as

FX(x) = Pr(X ≤ x) =
1√
2πσ

∫ x

−∞
e−

(ξ−m)2

2σ2 dξ

=
1√
2π

∫ (x−m)/σ

−∞
e−

ζ2

2 dζ = Φ

(

x−m

σ

)

,
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Figure 8.5: The distributions of Gaussian random variables appear above for

parameters m = 0 and σ2 ∈ {1, 2, 4}.

where Φ(·) is termed the standard normal cumulative distribution function and

is defined by

Φ(x) =
1√
2π

∫ x

−∞
e−

ζ2

2 dζ.

We emphasize that the function Φ(·) is nothing more than a convenient nota-

tion for the CDF of a normal random variable.

Example 73. A binary signal is transmitted through a noisy communication

channel. The sent signal takes on either a value of 1 or −1. The message

received at the output of the communication channel is corrupted by additive

thermal noise. This noise can be accurately modeled as a Gaussian random

variable. The receiver declares that a 1 (−1) was transmitted if the sent signal

is positive (negative). What is the probability of making an erroneous decision?

Let S ∈ {−1, 1} denote the transmitted signal, N be the value of the thermal

noise, and Y represent the value of the received signal. An error can occur in

one of two possible ways: S = 1 was transmitted and Y is less than zero, or

S = −1 was transmitted and Y is greater than zero. Using the total probability

theorem, we can compute the probability of error as

Pr(Y ≥ 0|S = −1) Pr(S = −1) + Pr(Y ≤ 0|S = 1)Pr(S = 1).
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By symmetry, it is easily argued that

Pr(Y ≤ 0|S = 1) = Pr(Y ≥ 0|S = −1) = Pr(N > 1)

=

∫ ∞

1

1√
2πσ

e−
ξ2

2σ2 dξ = 1− Φ

(

1

σ

)

.

The probability that the receiver makes an erroneous decision is 1 − Φ(1/σ).

The reliability of this transmission scheme depends on the amount of noise

present at the receiver.

The normal random variable is so frequent in applied mathematics and

engineering that many variations of its CDF possess their own names. The

error function is a function which is primarily encountered in the fields of

statistics and partial differential equations. It is defined by

erf(x) =
2√
π

∫ x

0

e−ξ2dξ.

The error function is related to the standard normal cumulative distribution

function by scaling and translation,

Φ(x) =
1 + erf

(

x/
√
2
)

2
.

If X is a standard normal random variable, then erf
(

x/
√
2
)

denotes the prob-

ability that X lies in the interval (−x, x). In engineering, it is customary to

employ the Q-function, which is given by

Q(x) =
1√
2π

∫ ∞

x

e−
ξ2

2 dξ = 1− Φ(x)

=
1− erf

(

x/
√
2
)

2
.

(8.3)

Equation (8.3) may prove useful when using software packages that provide a

built-in implementation for erf(·), but not for the Q-function. The probability

of an erroneous decision in Example 73 can be expressed concisely using the

Q-function as Q(1/σ).

Next, we prove that the standard normal PDF integrates to one. The

solution is easy to follow, but hard to discover. It is therefore useful to include

it in this document. Consider a standard normal PDF,

fX(x) =
1√
2π

e−
x2

2 .
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We can show that fX(x) integrates to one using a subtle argument and a

change of variables. We start with the square of the integrated PDF and

proceed from there,

(
∫ ∞

−∞
fX(ξ)dξ

)2

=

∫ ∞

−∞

1√
2π

e−
ξ2

2 dξ

∫ ∞

−∞

1√
2π

e−
ζ2

2 dζ

=

∫ ∞

−∞

∫ ∞

−∞

1

2π
e−

ξ2+ζ2

2 dξdζ =

∫ 2π

0

1

2π
dθ

∫ ∞

0

e−
r2

2 rdr

=
(

−e−
r2

2

)∣

∣

∣

∞

0
= 1.

Since the square of the desired integral is nonnegative and equal to one, we

can conclude that the normal PDF integrates to one.

8.3.3 The Exponential Distribution

The exponential random variable is also frequently encountered in engineering.

It can be used to model the lifetime of devices and systems, and the time

elapsed between specific occurrences. An exponential random variable X with

parameter λ > 0 has PDF

fX(x) = λe−λx x ≥ 0.

For x ≥ 0, its CDF is equal to

FX(x) = 1− e−λx.

The parameter λ characterizes the rate at which events occur.

Example 74. Connection requests at an Internet server are characterized

by an exponential inter-arrival time with parameter λ = 1/2. If a request

arrives at time t0, what is the probability that the next packet arrives within

two minutes?

The probability that the inter-arrival time T is less than two minutes can

be computed as

Pr(T < 2) =

∫ 2

0

1

2
e−

ξ

2dξ = −e−
ξ

2

∣

∣

∣

2

0

= 1− e−1 ≈ 0.632.
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Figure 8.6: The distributions of exponential random variables are shown above

for parameters λ ∈ {0.5, 1, 2}.

The exponential random variable can be obtained as the limit of a sequence

of geometric random variables. Let λ be fixed and defined pn = λ/n. We define

the PMF of random variable Yn as

pYn
(k) = (1− pn)

k−1pn =

(

1− λ

n

)k−1
λ

n
k = 1, 2, . . .

That is, random variable Yn is a standard geometric random variable with

parameter pn = λ/n. For every n, we create a new variable Xn,

Xn =
Yn

n
.

By construction, the random variable Xn has PMF

pXn
(y) =

{

(1− pn)
k−1pn, if y = k/n

0, otherwise.

For any x ≥ 0, the CDF of random variable Xn can be computed as

Pr(Xn ≤ x) = Pr(Yn ≤ nx) =

⌊nx⌋
∑

k=1

pYn
(k)

=

⌊nx⌋
∑

k=1

(1− pn)
k−1pn = 1− (1− pn)

⌊nx⌋.
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In the limit, as n grows unbounded, we get

lim
n→∞

Pr(Xn ≤ x) = lim
n→∞

[

1− (1− pn)
⌊nx⌋]

= 1− lim
n→∞

(

1− λ

n

)⌊nx⌋

= 1− e−λx.

Thus, the sequence of scaled geometric random variables {Xn} converges in

distribution to an exponential random variable X with parameter λ.

Memoryless Property: In view of this asymptotic characterization and

the fact that geometric random variables are memoryless, it is not surprising

that the exponential random variable also satisfies the memoryless property,

Pr(X > t + u|X > t) = Pr(X > u).

This fact can be shown by a straightforward application of conditional prob-

ability. Suppose that X is an exponential random variable with parameter λ.

Also, let t and u be two positive numbers. The memoryless property can be

verified by expanding the conditional probability of X using definition (4.2),

Pr(X > t+ u|X > t) =
Pr({X > t+ u} ∩ {X > t})

Pr(X > t)

=
Pr(X > t+ u)

Pr(X > t)
=

e−λ(t+u)

e−λt

= e−λu = Pr(X > u).

In reality, the exponential random variable is the only continuous random

variable that satisfies the memoryless property.

Example 75. A prominent company, Century Oak Networks, maintains a

bank of servers for its operation. Hard drives on the servers have a half-life of

two years. We wish to compute the probability that a specific disk needs repair

within its first year of usage.

Half-lives are typically used to describe quantities that undergo exponential

decay. Let T denote the time elapsed until failure of the disk. We know that T

is an exponential random variable and, although we are not given λ explicitly,

we know that

Pr(T > 2) =
1

2
.
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We use the memoryless property to solve this problem,

Pr(T > 2) = Pr(T > 1) Pr(T > 1 + 1|T > 1)

= Pr(T > 1) Pr(T > 1) = (Pr(T > 1))2 .

It follows that Pr(T > 1) =
√

Pr(T > 2) = 1/
√
2. We can then write Pr(T <

1) = 1 − Pr(T > 1) ≈ 0.293. An alternative way to solve this problem would

be to first find the value of λ associated with T , and then compute Pr(T < 1)

from the corresponding integral.

8.4 Additional Distributions

Probability distributions arise in many different contexts and they assume var-

ious forms. We conclude this first chapter on continuous random variables by

mentioning a few additional distributions that find application in engineering.

It is interesting to note the interconnection between various random variables

and their corresponding probability distributions.

8.4.1 The Gamma Distribution

The gamma PDF defines a versatile collection of distributions. The PDF of a

gamma random variable is given by

fX(x) =
λ(λx)α−1e−λx

Γ(α)
x > 0,

where Γ(·) denotes the gamma function defined by

Γ(z) =

∫ ∞

0

ξz−1e−ξdξ z > 0.

The two parameters α > 0 and λ > 0 affect the shape of the ensuing distri-

bution significantly. By varying these two parameters, it is possible for the

gamma PDF to accurately model a wide array of empirical data.

The gamma function can be evaluated recursively using integration by

parts; this yields the relation Γ(z + 1) = zΓ(z) for z > 0. For nonnegative in-

tegers, it can easily be shown that Γ(k+1) = k!. Perhaps, the most well-known
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value for the gamma function at a non-integer argument is Γ(1/2) =
√
π. In-

terestingly, this specific value for the gamma function can be evaluated by a

procedure similar to the one we used to integrate the Gaussian distribution,

(

Γ

(

1

2

))2

=

∫ ∞

0

ξ−
1
2 e−ξdξ

∫ ∞

0

ζ−
1
2 e−ζdζ

=

∫ ∞

0

∫ ∞

0

ξ−
1
2 ζ−

1
2 e−(ξ+ζ)dξdζ

=

∫ π/2

0

∫ ∞

0

1

r2 sin θ cos θ
e−r24r3 sin θ cos θdrdθ

=

∫ π/2

0

∫ ∞

0

e−r24rdrdθ = π.

Many common distributions are special cases of the gamma distribution, as

seen in Figure 8.7.
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Figure 8.7: Gamma distributions form a two-parameter family of PDFs and,

depending on (α, λ), they can be employed to model various situations. The

parameters used above are (1, 0.5) for the exponential distribution, (2, 0.5) for

the chi-square distribution and (4, 2) for the Erlang distribution; they are all

instances of gamma distributions.

The Exponential Distribution: When α = 1, the gamma distribution

simply reduces to the exponential distribution discussed in Section 8.3.3.
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The Chi-Square Distribution: When λ = 1/2 and α = k/2 for some

positive integer k, the gamma distribution becomes a chi-square distribution,

fX(x) =
x

k
2
−1e−

x
2

2
k
2Γ(k/2)

x > 0.

The chi-square distribution is one of the probability distributions most widely

used in statistical inference problems. Interestingly, the sum of the squares of

k independent standard normal random variables leads to a chi-square variable

with k degrees of freedom.

The Erlang Distribution: When α = m, a positive integer, the gamma

distribution is called an Erlang distribution. This distribution finds application

in queueing theory. Its PDF is given by

fX(x) =
λ(λx)m−1e−λx

(m− 1)!
x > 0.

An m-Erlang random variable can be obtained by summing m independent

exponential random variables. Specifically, let X1, X2, . . . , Xm be indepen-

dent exponential random variables, each with parameter λ > 0. The random

variable Sm given by

Sm =

m
∑

k=1

Xk

is an Erlang random variable with parameter m and λ.

Example 76. Suppose that the requests arriving at a computer server on the

Internet are characterized by independent, memoryless inter-arrival periods.

Let Sm be a random variable that denotes the time instant of the mth arrival,

then Sm is an Erlang random variable.

8.4.2 The Rayleigh Distribution

The Rayleigh PDF is given by

fR(r) =
r

σ2
e−

r2

2σ2 r ≥ 0.

The Rayleigh distribution arises in the context of wireless communications.

Suppose that X and Y are two independent normal random variables, then
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Figure 8.8: This figure plots the distributions of Rayleigh random variables

for parameters σ2 ∈ {1, 2, 4}.

the magnitude of this random vector possesses a Rayleigh distribution. Also,

if R is a Rayleigh random variable then R2 has an exponential distribution.

Example 77. Radio signals propagating through wireless media get reflected,

refracted and diffracted. This creates variations in signal strength at the desti-

nations, a phenomenon known as fading. Rayleigh random variables are often

employed to model amplitude fluctuations of radio signals in urban environ-

ments.

8.4.3 The Laplace Distribution

The Laplace distribution is sometimes called a double exponential distribution

because it can be thought of as an exponential function and its reflection

spliced together. The PDF of a Laplacian random variable can then be written

as

fX(x) =
1

2b
e−

|x|
b x ∈ R,

where b is a positive constant. The difference between two independent and

identically distributed exponential random variables is governed by a Laplace

distribution.
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Figure 8.9: The PDF of a Laplace random variable can be constructed using

an exponential function and its reflection spliced together. This figures shows

Laplace PDFs for parameters b ∈ {0.5, 1, 2}.

8.4.4 The Cauchy Distribution

The Cauchy distribution is considered a heavy-tail distribution because its tail

is not exponentially bounded. The PDF of a Cauchy random variable is given

by

fX(x) =
γ

π (γ2 + x2)
x ∈ R.

An interesting fact about this distribution is that its mean, variance and all

higher moments are undefined. Moreover, if X1, X2, . . . , Xn are independent

random variables, each with a standard Cauchy distribution, then the sample

mean (X1+X2+ · · ·+Xn)/n possesses the same Cauchy distribution. Cauchy

random variables appear in detection theory to model communication systems

subject to extreme noise conditions; they also finds applications in physics.

Physicists sometimes refer to this distribution as the Lorentz distribution.
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Figure 8.10: Cauchy distributions are categorized as heavy-tail distributions

because of their very slow decay. The PDFs of Cauchy random variables are

plotted above for parameters γ ∈ {0.5, 1, 2}.

2. Bertsekas, D. P., and Tsitsiklis, J. N., Introduction to Probability, Athena

Scientific, 2002: Sections 3.1–3.3.

3. Gubner, J. A., Probability and Random Processes for Electrical and Computer

Engineers, Cambridge, 2006: Sections 4.1, 5.1.

4. Miller, S. L., and Childers, D. G., Probability and Random Processes with

Applications to Signal Processing and Communications, 2004: Sections 3.1–
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