
ECEN 314: Signals and Systems

Lecture Notes 8: CT Fourier Series

Reading:

• Current: SSOW 3.3-3.4

• Next: SSOW 3.5

1 Inner Products

Recall that the inner product (or dot product) between two m-dimensional real column
vectors u = (u1, . . . , um) and v = (v1, . . . , vm) is given by

u · v = vTu =
m∑
k=1

ukvk.

For complex vectors, one uses the Hermitian transpose vH , (vT )∗ instead and this gives

〈u, v〉 , vHu =
m∑
k=1

ukv
∗
k,

where ∗ denotes complex conjugation. Two vectors u, v are orthogonal if 〈u, v〉 = 0 and u is
normalized if 〈u, u〉 = 1. A set of vectors, u1, . . . , uM is called orthogonal if they are pairwise
orthogonal and have the same length (i.e., 〈uk, un〉 = δ[k − n]〈un, un〉).

The main benefit of an orthogonal set of vectors is that one can easily identify coefficients
in a linear combination. For example, let u1, . . . , uM be an orthogonal set and consider the
linear combination

v =
M∑
k=1

akuk.

Then, we can compute

〈v, un〉 = uHn

M∑
k=1

akuk =
M∑
k=1

ak
(
uHn uk

)
=

M∑
k=1

akδ[k − n]〈un, un〉 = an〈un, un〉.

So, taking the inner product with the the n-th vector in the set recovers the coefficient of
the n-th vector in the sum multiplied by a constant.
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2 Signal Decomposition

For LTI systems, our introduction of the impulse response was based on the observation
that the input signal x[n] could be decomposed into linear combinations of basic signals:
ψk[n] = δ[n − k] for all integer k. This is an orthonormal basis for signals is known as the
time domain and we can write and signal x[n] as

x[n] =
∞∑

k=−∞

x[k]ψk[n].

Given the simple input-output relationship we now have for complex exponentials, a
decomposition of arbitrary signals into linear combinations of complex exponentials would
be useful. In this lecture, we will see that this is indeed possible using Fourier analysis. In
particular, there is another orthonormal basis for signals known as the frequency domain.
We start by focusing on periodic CT signals with period T .

3 Periodic CT signals

A CT signal x(t) is said to be periodic if there exists T > 0 such that

x(t+ T ) = x(t), ∀t ∈ R.

The smallest such T is called the fundamental period and is usually denoted as T0. The
fundamental frequency is defined as

ω0 ,
2π

T0

Recall that, if x(t) is periodic with period T , then x(t+ kT ) = x(t) for any positive integer
k.

Examples:

• The real sinusoid x(t) = cos(ω0t + θ) is periodic with the fundamental frequency |ω0|
and the fundamental period T = 2π/|ω0|.

• The complex sinusoid x(t) = ejω0t is periodic with the fundamental frequency |ω0| and
the fundamental period T = 2π/|ω0|.

Combining Periodic CT Signals:

• Combining periodic CT signals may not always result in periodic signals. In particular,
if any of the ratios of the fundamental periods of the individual signals is irrational,
then the overall signal may not be periodic. If those ratios are all rational, then a
period is given by the lowest common multiple (LCM) of the periods of the individual
signals.

• It is possible that the fundamental period of the overall signal is smaller than the LCM
of the fundamental periods of the individual signals.
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Examples:

• x(t) = cos
(
3π
2
t
)

+ 3 sin
(
π
3
t
)

• x(t) = cos
(
3π
2
t
)

+ 3 sin (t)

• x(t) = cos(2πt) · cos(2πt)

4 CT Fourier series

In the 18th century, Jean Baptiste Joseph Fourier discovered that a wide class of periodic
signals x(t) can be written as linear combinations of the basic signals φk(t) = ejkω0t where
ω0 is the fundamental frequency of x(t), i.e.,

x(t) =
∞∑

k=−∞

ake
jkω0t. (1)

Frequency terminology:

• {ak}: Fourier series coefficients

• a0: DC component

• a±1: fundamental component (first harmonic)

• a±2: second harmonic

• a±k: kth harmonic.

This important observation led to two natural questions:

1. (Existence of Fourier series representation) Which periodic signals can indeed be rep-
resented as linear combinations of a complex exponential function and its harmonics?

2. If the Fourier series representation indeed exists, how can we determine the Fourier
series coefficients?

First, we will answer the second question for any signal of the form (1). After that,
we will return to question #1 and identify sets of functions for which the Fourier series
representation equals the original function.
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5 Finding Fourier series coefficients

5.1 Simple example

For simple periodic signals consisting of a few sinusoidal terms, this can be done by consid-
ering the following “inverse” Euler’s identity:

cos θ =
1

2
(ejθ + e−jθ)

sin θ =
1

j2
(ejθ − e−jθ)

Example: Consider the signal

x(t) = 1 + 2 cos(4πt+ π/6)− 5 sin(8πt)

with the fundamental frequency ω0 = 4π. By the inverse Euler’s identity,

x(t) = 1 + 2 cos(4πt+ π/6)− 5 sin(8πt)

= 1 +
[
ej(4πt+π/6) + e−j(4πt+π/6)

]
− 5

j2

[
ej8πt − e−j8πt

]
= 1 +

[
ejπ/6ejω0t + e−jπ/6e−jω0t

]
+ j

5

2

[
ej2ω0t − e−j2ω0t

]
Conclusion:

ak =



1, k = 0
ejπ/6, k = 1
e−jπ/6, k = −1
j 5
2
, k = 2

−j 5
2
, k = −2

0, else

5.2 General case

To answer question #2 in general, we let ω0 = 2π/T and assume

x(t) =
∞∑

k=−∞

ake
jkω0t.

If we multiply both sides of this equation by e−jkω0t and integrate over one period, then∫ T

0

x(t)e−jnω0tdt =

∫ T

0

(
∞∑

k=−∞

ake
jkω0t

)
e−jnω0tdt

=
∞∑

k=−∞

ak

(∫ T

0

ej(k−n)ω0tdt

)

=
∞∑

k=−∞

akδ[n− k]T = anT.
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The above integral was evaluated by observing there are two important cases: k = n and
k 6= n. If k = n, then we have ∫ T

0

ej(k−n)ω0tdt =

∫ T

0

1dt = T.

If k 6= n, then we substitute ω0 = 2π/T and write∫ T

0

ej(k−n)ω0tdt =

∫ T

0

ej(k−n)(2π/T )tdt =
1

j(k − n)(2π/T )

(
ej(k−n)2π − 1

)
= 0.

This is very similar to the case of orthogonal vectors. To make the connection precise,
we define the inner product,

〈x(t), y(t)〉 ,
∫ T

0

x(t)y∗(t)dt,

between functions mapping [0, T ] to the complex numbers. Under this inner product, the
family of functions φk(t) = ejkω0t is an orthogonal set and, from above, we have

〈φk(t), φn(t)〉 =

∫ T

0

ej(k−n)ω0tdt =

{
T, k = n
0, k 6= n

CT Fourier series Analysis and Synthesis:

x(t) =
∞∑

k=−∞

ake
jkω0t (Synthesis equation)

ak =
1

T

∫
T

x(t)e−jkω0tdt (Analysis equation)
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5.3 Example: Periodic square wave

−T−T1 −T −T+T1 −T/2 −T1 0 T1 T/2 T−T1 T T+T1

2

t

x(t)

Consider the Fourier series analysis equation for the periodic square wave (with period
T ) where one period is defined by

x(t) =

{
1, |t| < T1

0, T1 < |t| < T
2
.

Since the function is periodic, we can compute the integral over any full period and the
choice −T/2 to T/2 is quite convenient in this case. For k = 0, we get

a0 =
1

T

∫ T/2

−T/2
x(t)dt =

1

T

∫ T1

−T1
dt =

2T1
T
.

The DC component is just the average and we also call this the duty cycle d , 2T1/T .
For k 6= 0, we get

ak =
1

T

∫ T/2

−T/2
x(t)e−jkω0tdt

=
1

T

∫ T1

−T1
e−jkω0tdt

= − 1

jkω0T
e−jkω0t

∣∣∣∣T1
−T1

=
sin(kω0T1)

kπ

=
sin(k2πT1/T )

kπ

where we used the fact that ω0 = 2π/T . To summarize, the Fourier series coefficients of a
periodic square wave of duty cycle d = 2T1/T are given by

ak =

{
d, k = 0
sin(kπd)
kπ

, k 6= 0.
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From this, it is easy to verify that ak = a−k. Plugging this into the synthesis formula
shows that

x(t) =
∞∑

k=−∞

ake
jkω0t

= a0 +
∞∑
k=1

(
ake

jkω0t + a−ke
−jkω0t

)
= a0 +

∞∑
k=1

ak
(
ejkω0t + e−jkω0t

)
= a0 +

∞∑
k=1

ak (2 cos(kω0t))

= d+ 2
∞∑
k=1

sin(kπd)

kπ
cos(kω0t).

Moreover, the standard square wave with duty cycle d = 1
2

leads to the simplification

sin(kπd) = sin(kπ/2) =

{
0 if k even

(−1)(k−1)/2 if k odd.
.

Substituting this into the above formula gives the sum of odd harmonics given by

x(t) =
1

2
+ 2

∞∑
m=1

(−1)m−1

(2m− 1)π
cos((2m− 1)ω0t).

6 Convergence of CT Fourier series

To understand convergence, we consider the question:

“If we choose ak =
1

T

∫ T

0

x(t)e−jkω0tdt, then when do we have x(t) =
∞∑

k=−∞

ake
jkω0t ?”

For infinite sums of functions, the question of convergence (i.e., what we mean by equality
in the above expression) is somewhat subtle. A useful definition for engineering is that, in
the limit, there is no energy in the difference signal

eN(t) , x(t)−
N∑

k=−N

ake
jkω0t.

In particular, this requires that

lim
N→∞

∫ T

0

|eN(t)|2dt = lim
N→∞

∫ T

0

∣∣∣∣∣x(t)−
N∑

k=−N

ake
jkω0t

∣∣∣∣∣
2

dt = 0.
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It can be shown that this occurs whenever the periodic signal x(t) has finite energy over a
fundamental period, i.e., ∫ T

0

|x(t)|2dt <∞.

However, this does not mean the signal x(t) and its Fourier series representation are equal
at every value of t.

For real-world signals that satisfy the following Dirichlet conditions, the Fourier series
representation will indeed equal x(t) at points where x(t) is continuous. At points of discon-
tinuity, it equals the midpoint

x(t−) + x(t+)

2
.

The Dirichlet conditions are:

1. x(t) is absolutely integrable over a fundamental period, i.e.,∫ T

0

|x(t)|dt <∞

2. x(t) only has a finite number of maxima and minima in each fundamental period

3. x(t) only has a finite number of finite jump discontinuities in each fundamental period

7 Gibbs phenomenon

For signals that satisfy the Dirichlet conditions (i.e., the periodic square wave), the Fourier
series representation converges to the original signal at points where the signal is continuous
and to the midpoint at points of discontinuity. This convergence exhibits the following inter-
esting phenomenon known as the Gibbs phenomenon (named after the American physicist
Josiah Willard Gibbs).

As we can see, as we attempt to reconstruct the signal from its Fourier series coefficients,
the more coefficients we use, the more the signal begins to resemble the original. However,
around the discontinuities, we observe rippling that does not seem to subside. As we consider
even more coefficients, we notice that the ripples narrow, but do not shorten. As we approach
an infinite number of coefficients, this rippling still does not go away (never dropping below
9% of the wave height). On the other hand, the area inside them tends to zero, meaning
that the energy of this ripple goes to zero. This means that their width is approaching zero
and we can assert that the reconstruction is exactly the original except at the points of
discontinuity.
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Fourier series representation of 
periodic square wave using 5 harmonics

Fourier series representation of 
periodic square wave using 25 harmonics

Fourier series representation of 
periodic square wave using 125 harmonics

8 Integrating over one period of a periodic function

Let f(t) be a periodic function with period T that is integrable over one period. In this case,
the integral over any interval of length T gives the same answer and we use the notation∫

T

f(t) dt

to emphasize that the answer does not depend on the interval chosen.
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Proof. For any 0 ≤ t0 ≤ T and integer k, we have∫ (k+1)T+t0

kT+t0

f(t)dt =

∫ t0+T

t0

f(t+ kT )dt

=

∫ t0+T

t0

f(t)dt

=

∫ T

t0

f(t)dt+

∫ T+t0

T

f(t)dt

=

∫ T

t0

f(t)dt+

∫ t0

0

f(t+ T )dt

=

∫ T

t0

f(t)dt+

∫ t0

0

f(t)dt

=

∫ T

0

f(t)dt.
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