
ECEN 314: Signals and Systems

Lecture Notes 9: Properties of CTFS

Reading:

• Current: SSOW 3.5

• Next: SSOW 3.6

Property 1 (Linearity). Let x(t) and y(t) be two periodic CT signals with the same funda-

mental period T . Suppose that x(t)
FS←→ ak and y(t)

FS←→ bk. Then

αx(t) + βy(t)
FS←→ αak + βbk

Proof. Let αx(t) + βy(t)
FS←→ ck. By the analysis equation,

ck =
1

T

∫ T

0

(αx(t) + βy(t))e−jkω0tdt

=
α

T

∫ T

0

x(t)e−jkω0tdt+
β

T

∫ T

0

y(t)e−jkω0tdt

= αak + βbk

Property 2 (Time Reversal). Suppose that x(t)
FS←→ ak. Then

x(−t) FS←→ a−k

Proof. Let x(−t) FS←→ bk. By the analysis equation,

bk =
1

T

∫ T/2

−T/2
x(−t)e−jkω0tdt

= − 1

T

∫ −T/2
T/2

x(t)ejkω0tdt

=
1

T

∫ T/2

−T/2
x(t)e−j(−k)ω0tdt

= a−k
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Property 3 (Even/Odd Symmaetry). Suppose that x(t)
FS←→ ak. If x(t) is even, then ak is

also even, i.e., a−k = ak. If x(t) is odd, then ak is also odd, i.e., a−k = −ak.

Proof. When x(t) is even, we have x(−t) = x(t). By the time-flip property,

a−k = ak

When x(t) is odd, we have x(−t) = −x(t). By the time-flip and linearity properties,

a−k = −ak

Definition 1 (Conjugate Symmetry). A CT signal x(t) has conjugate symmetry if x(−t) =
x∗(t). Likewise, a DT signal x[n] (or sequence ak) has conjugate symmetry if x[−n] = x∗[n]
(or a−k = a∗k).

Property 4 (Conjugation). Suppose that x(t)
FS←→ ak. Then

x∗(t)
FS←→ a∗−k

Proof. Let x∗(t)
FS←→ bk. By the analysis equation,

bk =
1

T

∫ T

0

x∗(t)e−jkω0tdt

=
1

T

∫ T

0

x∗(t)
(
ejkω0t

)∗
dt

=
1

T

∫ T

0

(
x(t)ejkω0t

)∗
dt

=

(
1

T

∫ T

0

x(t)ejkω0tdt

)∗
=

(
1

T

∫ T

0

x(t)e−j(−k)ω0tdt

)∗
= a∗−k

Property 5 (Conjugate Symmetry). Suppose that x(t)
FS←→ ak and x(t) is real. Then

a−k = a∗k

Proof. If x(t) is real, then x∗(t) = x(t). By the conjugate property,

ak = a∗−k

By the simple change of variable k → −k, we have

a−k = a∗k
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Remark 1. Note that

ak = Re{ak}+ jIm{ak}
= |ak|ej∠ak

so we have

a−k = Re{a−k}+ jIm{a−k}
= |a−k|ej∠a−k

and

a∗k = Re{ak} − jIm{ak}
= |ak|e−j∠ak

Thus, if x(t) is real, then Re{ak} is even, Im{ak} is odd, |ak| is even, and ∠ak is odd.

Remark 2. If x(t) is real, by the synthesis equation

x(t) =
∞∑

k=−∞

ake
jkω0t

= a0 +
∞∑
k=1

[
ake

jkω0t + a−ke
−jkω0t

]
= a0 +

∞∑
k=1

[
|ak|ej∠akejkω0t + |a−k|ej∠a−ke−jkω0t

]
= a0 +

∞∑
k=1

[
|ak|ej∠akejkω0t + |ak|e−j∠ake−jkω0t

]
= a0 +

∞∑
k=1

|ak|
[
ej(kω0t+∠ak) + e−j(kω0t+∠ak)

]
= a0 + 2

∞∑
k=1

|ak| cos(kω0t+ ∠ak).

This is the form of CTFS for real signals that is known to many people.

Remark 3. Combining Properties 2 and 4, we see that if x(t) is real and even, then

a−k = a∗k = ak

i.e., ak is real and even; and if x(t) is real and odd, then

a−k = a∗k = −ak

i.e., ak is pure imaginary and odd.
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Property 6 (Time Shift). Suppose that x(t)
FS←→ ak. Then

x(t− t0)
FS←→ ake

−jkω0t0 .

In particular, if t0 = T/2, then

x(t− T/2)
FS←→ (−1)kak

Proof. Let x(t− t0)
FS←→ bk. By the analysis equation,

bk =
1

T

∫ T

0

x(t− t0)e−jkω0tdt

=
1

T

∫ T

0

x(t)e−jkω0(t+t0)dt

= e−jkω0t0
1

T

∫ T

0

x(t)e−jkω0tdt

= e−jkω0t0ak

When t0 = T/2, we have ω0t0 = π. Note that

e−jkπ = (−1)k.

We thus have bk = (−1)kak.

Property 7 (Multiplication). Let x(t) and y(t) be two periodic CT signals with the same

fundamental period T . Suppose that x(t)
FS←→ ak and y(t)

FS←→ bk. Then

x(t)y(t)
FS←→ ak ∗ bk =

∞∑
l=−∞

albk−l.

Proof. By the synthesis equation,

x(t) =
∞∑

l=−∞

ale
jlω0t

and

y(t) =
∞∑

m=−∞

bme
jmω0t.

We thus have

x(t)y(t) =

(
∞∑

l=−∞

ale
jlω0t

)
·

(
∞∑

m=−∞

bme
jmω0t

)

=
∞∑

l=−∞

∞∑
m=−∞

albme
j(l+m)ω0t

=
∞∑

k=−∞

(
∞∑

l=−∞

albk−l

)
ejkω0t
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where the last equality follows from the change of variable (l,m)→ (l, k) where k = l + m.

Let x(t)y(t)
FS←→ ck and we have

x(t)y(t) =
∞∑

k=−∞

cke
jkω0t.

Comparing the previous two equations, we conclude that

ck =
∞∑

l=−∞

albk−l = ak ∗ bk.

Property 8 (Parseval’s Relation). Let x(t) be a periodic CT signal with fundamental period

T . Suppose that x(t)
FS←→ ak. Then

1

T

∫ T

0

|x(t)|2dt =
∞∑

k=−∞

|ak|2.

Remark 4. Note that 1
T

∫ T
0
|x(t)|2dt represents the average power of x(t) measured in the

time domain, and |ak|2 represents the power of the kth harmonic of x(t). So the Parseval’s
relation basically states the power of x(t) is the same whether it is measured in the time or
frequency domain.

Proof. We calculate directly

1

T

∫ T

0

|x(t)|2dt =
1

T

∫ T

0

(
∞∑

k=−∞

ake
jkω0t

)(
∞∑

n=−∞

ane
jnω0t

)∗
dt

=
∞∑

k=−∞

∞∑
n=−∞

aka
∗
n

(
1

T

∫ T

0

ej(k−n)ω0tdt

)

=
∞∑

k=−∞

∞∑
n=−∞

aka
∗
nδ[n− k]

=
∞∑

k=−∞

|ak|2.

Alternate Proof. Let x(t)
FS←→ ak, x

∗(t)
FS←→ bk, and |x(t)|2 = x(t)x∗(t)

FS←→ ck. Consider the
analysis equation with k = 0, and we have

c0 =
1

T

∫ T

0

z(t)dt =
1

T

∫ T

0

|x(t)|2dt.
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By the conjugate and multiplication properties, bk = a∗−k and ck = ak ∗ bk. We thus have

c0 =
∞∑

l=−∞

alb−l =
∞∑

l=−∞

ala
∗
l =

∞∑
l=−∞

|al|2.

We thus conclude that
1

T

∫ T

0

|x(t)|2dt =
∞∑

l=−∞

|al|2.

Let x(t) and y(t) be two periodic CT signals with the same fundamental period T .

Definition 2 (Periodic Convolution). The periodic convolution is defined by

z(t) = x(t) ~ y(t) ,
1

T

∫ T

0

x(τ)y(t− τ)dτ =
1

T

∫ T

0

x(t− τ)y(τ)dτ.

It is easy to verify that z(t) is also periodic with a fundamental period T .

Property 9 (Periodic Convolution). Let x(t) and y(t) be two periodic CT signals with the
same fundamental period T , and let z(t) be the periodic convolution of x(t) and y(t). Suppose

that x(t)
FS←→ ak and y(t)

FS←→ bk. Then

z(t)
FS←→ akbk.

Proof. Let z(t)
FS←→ ck. By the analysis equation,

ck =
1

T

∫ T

0

z(t)e−jkω0tdt

=
1

T 2

∫ T

0

(∫ T

0

x(τ)y(t− τ)dτ

)
e−jkω0tdt.

Consider the simple change of variable t− τ → t, and we have

ck =
1

T 2

∫ T

0

(∫ T

0

x(τ)y(t)dτ

)
e−jkω0(t+τ)dt

=

(
1

T

∫ T

0

x(τ)e−jkω0τdτ

)(
1

T

∫ T

0

y(t)e−jkω0t

)
dt

= akbk.
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Property 10 (Differentiation). Suppose that x(t)
FS←→ ak. Then

d

dt
x(t)

FS←→ jkω0ak

In particular, the DC component of dx(t)/dt is always equal to zero.

Proof. By the synthesis equation,

x(t) =
∞∑

k=−∞

ake
jkω0t.

Taking derivative on both sides, we have

d

dt
x(t) =

∞∑
k=−∞

ak
d

dt
ejkω0t

=
∞∑

k=−∞

(jkω0ak)e
jkω0t.

Let dx(t)/dt
FS←→ bk. Then,

d

dt
x(t) =

∞∑
k=−∞

bke
jkω0t.

Comparing the previous two equations, we conclude that

bk = jkω0ak.

Property 11 (Time Scaling). Suppose that x(t)
FS←→ ak is periodic with period T and let

y(t) = x(mt) for some positive integer m. Then, y(t)
FS←→ bk (assuming T is unchanged)

implies that

bk =

{
ak/m if m divides k

0 otherwise.
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Proof. We proceed directly and calculate

bk =
1

T

∫ T

0

x(mt)e−jkω0tdt

=
1

T

∫ mT

0

x(s)e−jkω0s/m
1

m
ds

=
1

mT

m−1∑
i=0

∫ (i+1)T

iT

x(s)e−jkω0s/mds

=
1

mT

m−1∑
i=0

∫ T

0

x(s+ iT )e−jk(2π/T )(s+iT )/mds

=
1

mT

(∫ T

0

x(s)e−jkω0s/mds

)m−1∑
i=0

e−jk(2πi/m)

=

{
1
T

∫ T
0
x(s)e−jkω0s/mds = ak/m if m divides k

0 otherwise,

because
∑m−1

i=0 e−jk(2πi/m) = 1−e−jk(2π)
1−e−jk(2π/m) = 0 unless m divides k.

Example: Determine the FS coefficients of the periodic CT signal x(t) = cos2(πt).
Answer: Method 1: Using the double-angle formula

cos2(θ) =
1

2
+

1

2
cos(2θ)

we can rewrite x(t) as

x(t) =
1

2
+

1

2
cos(2πt).

Then, it is clear that the fundamental frequency of x(t) is given by Ω0 = 2π (and hence the
fundamental period T0 = 1). Using Euler’s identity, we can further rewrite x(t) as

x(t) =
1

2
+

1

4
ej2πt +

1

4
e−j2πt =

1

2
+

1

4
ejω0t +

1

4
e−jω0t.

We thus conclude that

ak =


1/2, k = 0
1/4, k = ±1
0, else.

Method 2: Note that x(t) = cos(πt) · cos(πt). Let y(t) = cos(πt) and let ak and bk be the
FS coefficients for x(t) and y(t), respectively. Then, by the multiplication property,

ak = bk ∗ bk.
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Note that the fundamental frequency of y(t) is given by Ω0 = π (and hence the funda-
mental period T0 = 2). Rewrite y(t) as

y(t) =
1

2
ejπt +

1

2
e−jπt =

1

2
ejω0t +

1

2
e−jω0t

so the FS coefficients

bk =

{
1/2, k = ±1
0, else.

Using the unit impulse function, we can write bk in a more compact way as

bk =
1

2
δ[k + 1] +

1

2
δ[k − 1].

Thus,

ak = bk ∗ bk

=

(
1

2
δ[k + 1] +

1

2
δ[k − 1]

)
∗
(

1

2
δ[k + 1] +

1

2
δ[k − 1]

)
=

1

4
δ[k + 2] +

1

2
δ[k] +

1

4
δ[k − 2]

or equvalently

ak =


1/2, k = 0
1/4, k = ±2
0, else.

We notice that the results derived from these two methods are slightly different. The
reason is that the “fundamental” periods that we used are different for the different methods.
Note that even though 2 is the fundamental period for y(t), the fundamental period for
x(t) = [y(t)]2 is 1. So, the second method actually computes the FS for a periodic waveform
consisting of 2 periods of x(t).

Previously, when we’ve calculated the FS coefficients using the analysis equation, we’ve
always use the fundamental period T0 and hence the fundamental frequency Ω0 = 2π/T0.
In fact, it is also fine to use any period T (not just necessarily the fundamental one), as
long as the corresponding “fundamental” frequency is chosen as 2π/T in both synthesis and
analysis equations. The time-scaling property of the Fourier series shows that integrating
over N periods simply has the effect of inserting N − 1 zeros between each of the coefficients
defined by the fundamental period.
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