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Preface

These notes provide an introduction to the fundamental concepts of digital

communication systems. The material emphasizes the unifying principles of

communication theory, taking a mathematical approach to system design. The

main topics covered in these notes include sampling, quantization, data com-

pression, channel coding, Shannon capacity and modulation theory. Possess-

ing some programming skills will also help in order to appreciate and use the

computing material and examples contained in this document.

Major Goals

1. Identify the various components of a digital communication system. Dis-

cuss the purpose of source coding, channel coding, modulation, and

equalization. Become familiar with commonly encountered digital com-

munication systems, and discuss how these systems can be decomposed

into the same abstract constituent parts.

2. Review basic notions from Fourier analysis, including Fourier series and

Fourier transforms. Define the power spectrum of stochastic signals, and

explore how it is affected by linear filtering.

3. Explore methods to convert an analog signal into a digital format through

sampling and quantization. Define the mean squared error and explain

its role in assessing the performance of a digital communication system.

4. Discuss the purpose of information theory, and calculate the entropy of

simple information sources. Understand fundamental compression limits

and survey efficient source coding algorithms.

ix
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5. Introduce the notions of channel capacity and error protection. Un-

derstand how simple block codes work and compute the probability of

decoding failure for simples codes.

6. Present simple modulation schemes, signal waveforms, and their vector

space representations. Characterize the structure of optimal receivers,

and compute the probabilities of symbol and bit errors at the output of

the demodulator.

7. Explore the properties of bandlimited channels. Study the causes and

implications of intersymbol interference, and derive the Nyquist criterion

for no interference. Review simple channel equalization schemes and go

over the advantages of orthogonal frequency-division multiplexing.



Chapter 1

Digital Communication

The advent of data transmissions over physical channels has transformed the

modern communication landscape. The term digital communication broadly

refers to the transfer of information using digital messages or bit streams.

There are notable advantages to transmitting data using discrete messages. It

allows for enhanced signal processing and quality control. In particular, errors

caused by noise and interference can be detected and corrected systematically.

Furthermore, digital communication makes the networking of heterogeneous

systems possible, with the Internet being the most obvious such example.

These advantages, and many more, explain the widespread adoption and con-

stantly increasing popularity of digital media.

1.1 System Components

The operation of a typical digital communication system can be represented

by the functional block diagram depicted in Figure 1.1. It is composed of five

basic components. The input block contains the source, which produces data

such as voice, emails, or images; and it also includes all the operations that

are required to convert the original signal waveform into a format suitable for

transmission. The transmitter takes bits from the input block and sends them

over a channel using electromagnetic signals or some alternate means. It may

add a protective layer to the intended message to shield it from noise and

interference. Communication channels come in many flavors. For instance,

1



2 CHAPTER 1. DIGITAL COMMUNICATION

a transmission can take place over an ethernet cable, a coaxial cable, or free

space (wireless communication). There are also more esoteric channels like a

hard drive platter, a compact disc, or a memory stick. The role of the receiver

is to recover the sent message from a collection of measurements. This unit

may need to extract the signal from noise and, possibly, correct errors that

may have occurred during transmission. Finally, the output block takes the

received information and puts it back into a format that is appropriate for the

end-users.

Input

Output

Transmitter

Receiver

Channel

Figure 1.1: A digital communication system contains five basic components.

These building blocks appear in this diagram.

Figure 1.1 also alludes to the natural symmetry present in digital communi-

cation systems. Operations that take place on the transmitter side must often

be undone at the destination. As such, complementary steps are frequently

studied in pairs. Our treatment of digital communication follows this general

approach.

1.1.1 The Input-Output Blocks

The role of the input block is to take information in its original form and to

convert it into a digital format. Depending on the nature of the source, two

operations may be necessary to digitize the information waveform. Sampling

is a signal processing technique that transforms a continuous-time function

to a discrete-time signal. The conversion of a sound wave into a sequence of

samples is a common application of sampling. The second action that may be
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needed is quantization, which maps a continuous-space signal into a discrete

set of possible values. The combination of these two operations will transform

an analog signal into a digital message.

Input

Sampling Quantization Compression

Figure 1.2: The input block can be further divided into three operations:

sampling, quantization and data compression. The first two operations are

necessary to transform an analog waveform into a digital signal; whereas the

last block is optional and provides a means to reduce the size of a digitized

message.

The optional step of data compression, or source coding, is often employed

at the origin to reduce the size of the message to be transmitted. This, in turn,

brings down the consumption of expensive physical resources such as power,

spectral bandwidth and hard disk space. On the downside, data processing

entails additional computations and delay, and the compressed data must be

expanded before being accessed. This involves using extra processing on the

receiver side as well. Some compression schemes reduce the quality of the

data. These schemes usually feature better compression ratios at the expense

of introducing small variations in the data. The MPEG standards, including

the MP3 audio layer, provide examples of lossy compression schemes.

At the output of the system, the data must be put back into a format that

is acceptable to the end-user. The received message must be decompressed.

Note that for the destination to be able to recover the original data, it must

understand the encoding scheme utilized by the sender. In other words, the

decoding method must be known at the receiver. If the original signal is a

continuous-time waveform, then an interpolator can be used to reconstruct the

waveform from its sample values. The quantization block present at the input
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Output

Interpolation Reconstruction Decompression

Figure 1.3: The operations executed at the transmitter must typically be un-

done at the destination. When passed through the output block, the received

data is first decompressed and put in a format that suitable for signal process-

ing. Furthermore, an analog signal must be reconstructed from the sampled

data point. While these two steps can reversed without any loss, the quantiza-

tion step cannot. This is because quantization loses a small part of the original

information. Instead, the reconstruction step reverses quantization step in an

approximate way to minimize the distortion.

does not have an exact counterpart at the output. This deficiency follows from

the fact that quantization cannot be perfectly undone because information

is typically lost when a continuous-valued signal is discretized. The level of

distortion associated with quantization can, however, be controlled by choosing

an appropriate scheme and reconstructing the signal in a sensible way. In most

cases, the impact of quantization is minimal; indeed, quantizers are often

designed to induce negligible distortion.

1.1.2 The Transmitter-Receiver Pair

A channel code is used at the transmitter to shield data sent over the channel

against errors due to noise and interference. This level of protection is achieved

by adding redundancy to the information bits in a structured manner. Audio

compact discs make use of a Reed-Solomon code to protect digital music from

scratches and dust, whereas a low-latency convolutional code is employed in

cellphones to carry voice signals. The second task of the transmission unit is

to modulate the digital bit-stream onto an analog carrier prior to transmission.
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The possible waveforms emitted by the transmitter are chosen from a finite

number of symbols. The transmitter must produce a signal that remains

confined to its assigned spectral bandwidth.

Transmitter

Encoder Modulation

Figure 1.4: At the transmitter, redundancy is added to the digital message to

protect information bits against noise and interference. Once this is completed,

the bit stream is modulated onto an analog carrier and transmitted to the

destination.

The message then propagates through the communication channel. This

is the physical medium that bridges the gap between the transmitter and the

receiver. In most applications, the channel acts as to transfer the data to a

different place. However, in hard disk drives and compact discs, the informa-

tion is stored simply to be accessible at a later time. Most communication

channels cause signal degradation. The message may be subject to attenua-

tion, interference and noise corruption. That is, the communication channel

may be unreliable; and its environment, hard to characterize. Recovering the

original data from a set of measurements available at the receiver is one of the

many challenges of digital communication systems.

The receiver is tasked with extracting the original symbols from noisy mea-

surements. The first step consists of estimating which symbols were sent by

the transmitter over the channel. This procedure is termed demodulation.

These symbol estimates are then translated back into information bits by the

decoder. Redundancy is removed from the data, and the original format of the

information bits is restored. When channel conditions are harsh and the local

measurement noisy, this process may fail and the corresponding data is lost.

Scratching a compact disc repetitively will illustrate this point well; after sub-
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Receiver

DemodulationDecoder

Figure 1.5: On the receiver side, the sent symbols are extracted from the

received signal. Error-correction techniques are then applied to insure the

integrity of the acquired data. Finally, the digital message is restored to its

original format.

stantial disc abuse, a player is no longer able to reconstruct the music. At this

point, the receiver may elect to notify the sender and request a retransmission

of the desired message.

1.2 Common Channels and Applications

Various communication channels can provide a connection between a trans-

mitter and its destination. Common wireline channels include coaxial cables,

ethernet cables, and twisted-pair wires. Optical fiber offers a high-capacity

solution for heavy applications. Compact discs and DVDs are also based on

optics and they can be employed to store information on discs. Finally, wire-

less electromagnetic channels are popular for their convenience and broadcast

capabilities.

Digital communication occupies a central role in almost every aspect of

contemporary life. Most businesses rely directly or indirectly on networked

computers and the Internet for day-to-day operations, and digital technologies

have become a staple of the entertainment industry. Below, we provide a few

examples of digital communication systems that you may be familiar with.

Cable Modem: A cable modem enables point-to-point communication over

the cable television infrastructure. They are primarily employed to deliver
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broadband Internet access, taking advantage of unused bandwidth on a cable

television network. With the emergence of voice over Internet protocol (VoIP)

telephony, cable modems can also be used to provide telephone service.

Wi-Fi Technology: Wi-Fi is a global set of standards that allows wire-

less inter-networking. In particular, it includes the IEEE 802.11 protocol

suite (e.g., 802.11b, 802.11g and 802.11n). Wireless access points, also called

hotspots, often provide users access to the Internet. Wi-Fi products can be

used as an enabling technology for mesh networks, which offer connectivity to

large urban communities.

Bluetooth: Bluetooth is a wireless protocol designed specifically for short-

range communication. It is used primarily to create personal area networks.

Bluetooth provides a means to exchange information between devices such as

mobile phones, personal computers, digital cameras, and a myriad of small

accessories.

Hard Disk Drive: A hard disk drive is a non-volatile storage device that

keeps digitally encoded data on rapidly rotating platters with magnetic sur-

faces. Today, hard drives can be found in computers, digital audio players,

personal digital assistants, game consoles and other embedded computing de-

vices. Data on a hard disk drive is recorded by magnetizing ferromagnetic

material directionally, and is read back by detecting the magnetization of the

material.

Compact Disc: The compact disc (CD) is an optical disc used to store digi-

tal data, and remains one of the popular playback media for commercial audio

recordings. A standard compact disc can store approximately 650 Megabytes

of data. The data is stored on the disc as a sequence of bumps that are

stamped into the polycarbonate during production. A reflective layer is added

so that the data can be read by using a laser to distinguish between pits and

lands.

In a recordable compact disc (CD-R), a photosensitive dye is used instead.

The write laser of a CD recorder changes the color of the dye to allow a
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standard CD player to read the data, just as it would with a standard stamped

disc. A re-recordable disc medium (CD-RW) uses a metallic alloy instead of a

dye. The write laser in this case is used to heat and alter the properties of the

alloy, and hence change its reflectivity. A CD-RW does not possess as great a

difference in reflectivity as a stamped compact disc, and so many earlier audio

players cannot read CD-RW discs, although most later CD audio players and

stand-alone DVD players can.



Chapter 2

Sources of Digital Information

Digital systems use sequences of symbols (e.g., binary systems use 0’s and

1’s) to represent information. A source of digital information is assumed to

produce a succession of symbols, each drawn from a discrete alphabet. The

three goals of this chapter are to understand the nature of digital information,

find an adequate measure of information for digital systems and to describe

compression algorithms that can be employed to represent the said information

in a succinct manner. Data compression, also known as source coding, is

important because it reduces the consumption of expensive resources such as

hard disk space or transmission bandwidth. Alternatively, it can be applied

to lower the cost of communication, reduce latency or improve the quality of

the received messages.

This chapter offers an introductory treatment of lossless compression al-

gorithms, whereby the original message can be recovered perfectly from the

compressed data. This is in contrast to lossy data compression, which provides

improved compression ratios at the expense of introducing some distortion in

the message. In the latter case, part of the information may be lost and the

original data need not be perfectly recoverable, although the reconstructed

message may be quite close to the original one. For instance, the JPEG algo-

rithm can be employed as a lossy compression scheme to reduce the size of a

digital photograph.

In lossless data compression, two strategies are employed to reduce the

expected length of a message. Highly probable symbols are assigned short

descriptions, and less likely symbols are encoded using longer binary repre-

9



10 CHAPTER 2. SOURCES OF DIGITAL INFORMATION

sentations. Second, the statistical redundancy contained in the input signal

over time is removed, leading to a more concise description of the digital data.

Data compression algorithms are explained more thoroughly below.

As we will see, finding a pertinent measure of information is key in assessing

the performance and limitations of compression algorithms. While the general

notion of information may be quite broad, it has a precise definition in the

context of digital communication systems. To describe this specific meaning,

we first need to develop a rigorous mathematical model for digital information

sources.

2.1 Discrete Memoryless Sources

As mentioned above, a digital source produces a sequence of symbols drawn

from a countable alphabet. It can accordingly be modeled as a discrete-time

random process. Because of their indeterminate nature, random signals and

stochastic processes can be difficult to characterize. Later in this document,

we will discuss random processes in more detail. A thorough discussion of the

subject requires advanced concepts from probability theory, a topic that inter-

ested readers may wish to pursue on their own. For the sake of simplicity, we

focus on a class of elementary information sources that are collectively known

as discrete memoryless sources. These sources can be described simply as a se-

quence of independent and identically-distributed discrete random variables.

Furthermore, discrete memoryless sources provide valuable insights into the

design of efficient compression algorithms for more general settings.

Definition 2.1.1. A discrete memoryless source is a digital information

source that produces a sequence of independent and identically distributed sym-

bols over time. Mathematically, it consists of an alphabet X and a probability

mass function pX(·) such that, at any time t, the probability that the source

outputs symbol x ∈ X is equal to pX(x), irrespective of the past and future.

To completely characterize the statistical properties of a discrete memo-

ryless source, it suffices to define the probability mass function of individual

symbols. Since the source generates independent and indentically distributed

symbols, the higher-order statistics need not be specified explicitly. Instead,



2.1. DISCRETE MEMORYLESS SOURCES 11

they can be ontained from

Pr(Xt1 = xt1 , . . . , Xtn = xtn) =
n∏

k=1

pX(xtk) (2.1)

where xt1 , . . . , xtn ∈ X . In (2.1), the random variable Xti denotes the output

of the source at time ti. We provide two examples of memoryless sources below

to further illustrate their form.

Example 2.1.2 (Binary Source). The simplest possible information source is

a discrete memoryless source where pX(·) is the probability mass function of a

Bernoulli random variable,

pX(x) =




(1− p), x = 0

p, x = 1

with p ∈ [0, 1]. This source can be employed, for instance, to model the suc-

cessive flipping of a biased coin, where heads is obtained with probability p and

tails is obtained with probability 1− p.

Example 2.1.3. To construct a slightly more elaborate example, consider a

collection of experiments where a fair coin is flipped repetitively until heads is

observed. The outcome of each experiment is reported as a source output. The

source alphabet in this case is X = {1, 2, . . .}, the positive integers, and the

marginal probability mass function associated with individual outcomes becomes

pX(x) =
1

2x
, x = 1, 2, . . .

Thus, the distribution of the source output at time t is a geometric random

variable with parameter 1
2
.

The independence, over time, of symbols from a discrete memoryless source

makes them convenient for analysis. However, it should also be pointed out

that many realistic sources are more complicated than memoryless sources.

In particular, their outputs may be correlated over time, which can have a

major impact on information rates. Handling more complicated sources typi-

cally requires heavy mathematical machinery, and is beyond the scope of this

document. The results derived using more these are, nevertheless, similar in
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nature to the ones presented below. This partially explains why we choose not

to study more difficult information sources in this document.

Having constructed a suitable abstraction for digital sources, we turn to the

subject of digital information. From an intuitive point of view, the data rate

of a discrete memoryless source should be equal to the amount of information

it produces at every time instant. In other words, the amount of information

created by a discrete memoryless source at time t should be computable based

on X and pX(·) exclusively. This is indeed the case. Before we can make

this statement precise, we need a rigorous mathematical characterization of

information. We address this issue by introducing entropy, a concept closely

related to the notion of information.

2.2 Entropy

The entropy can be viewed as a measure of uncertainty in a random variable.

In the context of digital communications, it provides a lower bound on the

expected number of bits required to describe the output of a discrete mem-

oryless source. As we will see shortly, this lower bound is tight and can be

approached by practical encoders

Definition 2.2.1 (Entropy). Let X be a discrete random variable drawn from

alphabet X according to probability mass function pX(·). The entropy of X,

denoted H[X], is given by

H[X] = −
∑

x∈X

pX(x) log2(pX(x)). (2.2)

Under this definition, entropy is described in bits. When writing H[X], we use

the convention

0 · log2
(
1

0

)
= lim

ǫ→0
ǫ log2

(
1

ǫ

)
= 0.

Alternatively, the entropy of X can be interpreted as the expectation of a log-

arithmic function,

H[X] = E

[
log2

(
1

pX(X)

)]
.

The entropy as described in (2.2) has interesting properties. The value

H[X] does not depend on the actual symbols themselves, it only depends on
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the probability mass function of the possible outcomes. For instance, in Exam-

ple 2.2.2, the entropy of X remains the same whether we represent the flipping

of a coin by a single bit or through a string of letters, heads or tails. More

generally, the way we choose to designate the possible outcomes of a random

experiment has no bearing over the entropy of the corresponding source, only

the respective probabilities of the possible symbols matter.

Example 2.2.2. Let X be an abstract representation of the flipping of a (pos-

sibly biased) coin. The probability mass function of X is then equal to

pX(x) =




(1− p), x = 0

p, x = 1

with zero denoting tails and one for heads. We can compute the entropy of X

as follows,

H[X] = −(1− p) log2(1− p)− p log2(p).

If the coin is fair, p = 1
2
, then the entropy of X becomes one bit. Hence, the

minimum expected number of bits needed to describe the outcome of a fair coin

toss is one. This seems quite reasonable.

The entropy of pair of two independent random variables is the sum of the

individual entropies. Suppose that X is a vector random variable given by

X = (U, V ), where U and V are independent. Then, we can write

pX(x) = pX((u, v)) = pU(u)pV (v)

and the entropy of X can be computed as

H[X] = −
∑

x∈X

pX(x) log2(pX(x))

= −
∑

(u,v)∈U×V

pX((u, v)) log2(pX((u, v)))

= −
∑

u∈U

∑

v∈V

pU(u)pV (v) log2(pU(u)pV (v))

= −
∑

u∈U

pU(u) log2(pU(u))−
∑

v∈V

pV (v) log2(pV (v))

= H[U ] + H[V ].
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This corresponds to our intuitive understanding; the amount of information

contained in two unrelated events should be the sum of the information per-

taining to each individual event.

It is important to recognize that H[X] is computed based on the probability

mass function pX(·), it is not a function of the random variable X itself. As

such, H[X] is a deterministic quantity and does not depend on the actual

realization of X. Furthermore, we note that H[X] is continuous in the weights

of the distribution pX(·). A small change in the distribution of X only results

in a small variation in its entropy. It is therefore possible to construct accurate

entropy estimates based on empirical measurements of the source outputs.

2.3 Variable-Length Compression Codes

A code is a rule for converting a symbol (or a group of symbols) into a string of

bits called a codeword. Mathematically, an encoder is a mapping c : X 7→ C
from the input alphabet X to the collection of possible codewords C. The goal
of a compression code is, of course, to provide a more concise representa-

tion of the information signal. In lossless compression, the function c must

be invertible when restricted to the support of X. Without this one-to-one

relationship, decoding errors are guaranteed to happen. Encoding schemes

can be partitioned into two categories based on the structure of their code-

books. If the codewords all share the same bit-length, then the corresponding

code is called a fixed-length code. This section focuses on codes in the

second category, variable-length codes, which are often used in lossless data

compression.

As the name suggests, a variable-length code is an encoding function

that maps source symbols to a variable number of bits. This is a beneficial fea-

ture for many compression schemes, as the greater flexibility sometimes leads

to better compression ratio. The motivation behind variable-length encoding

is the intuition that data compression can be achieved by assigning short bit

strings to likely symbols, and necessarily longer bit strings to less probable

ones. In dealing with variable-length codes, it is essential to recognize that

they are inherently more tricky than fixed-length ones. With variable-length

coding, it may be impossible to know where codewords begin in a compressed
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binary file without knowing the content of the file. This is in stark contrast

with fixed-length codes where codewords are positioned at regular intervals

and, therefore, easy to distinguish. To ensure that the binary output of a

variable-length encoder can be recovered unambiguously, the code needs spe-

cific properties.

The extension of a code c is obtained by concatenating its codewords when

c is applied to a multitude of source symbols. Given the string of symbols

x1, x2, . . . , xn, the extension of c produces the output bit string

c(x1)c(x2) · · · c(xn).

An extension of c is a proper encoding scheme because it takes a group of

symbols as its argument and produces a string of bits as its output.

Variable-length codes can be nested in order of decreasing generality as

non-singular, uniquely decodable and instantaneous. A code is non-singular

if each source symbol is mapped to a different bit string. That is, the mapping

c from X to C is one-to-one. Rather, if two symbols map to the same codeword,

then it is intuitively clear that the original message cannot be recovered with

certainty. A code is said to be uniquely decodable if its extensions are

non-singular.

It is important to recognize that successive codewords in a message are

communicated as an undifferentiated sequence of bits. There is no separation

marker or frame between adjacent codewords, no commas or spaces. The

decoder, given a starting point, must infer the boundaries of every codeword

from the data. This process is called parsing. The third and final property

of variable-length encoding is related to parsing. A code is instantaneous, or

prefix-free, if no codeword in C is a prefix of a any other encoded symbol in

C. This property guarantees that each encoded symbol can be identified with

no further delay once the corresponding string of bits is received or read.

Example 2.3.1. Suppose that a source produces three possible symbols, X =

{x1, x2, x3}. We consider four encoding functions (c1, c2, c3, c4), each with dif-

ferent properties. The encoding schemes are defined as follows.
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Symbol Codeword

x c1(x) c2(x) c3(x) c4(x)

x1 0 0 0 0

x2 1 1 01 10

x3 0 01 11 11

The first scheme is not injective because it maps two different source sym-

bols to the same codeword, c1(x1) = c1(x3). Thus, individual codewords cannot

be decoded unambiguously. The second code is one-to-one; however, it is not

uniquely decodable. The encoded message 01 can be generated by either input

string x1x2 or input symbol x3. Clearly, the compressed message is not uniquely

decodable. The third code, c3(·) is uniquely decodable, but not instantaneous.

After receiving a zero, it not immediately clear whether x1 produced this out-

put or if this zero consists of the first half of codeword c(x2). While c4(·) is

a prefix code where every symbol can be decoded immediately after reading the

corresponding bits.

The measure of a good prefix code is the expected length of its encoded

symbols. Suppose that a discrete memoryless source (X , pX) is given along

with a code c. We denote the length in bits of codeword c(x) by ℓc(x). The

expected number of bits produced by the source at each time instant is given

by

E[ℓc(X)] =
∑

x∈X

pX(x)ℓc(x). (2.3)

We emphasize that the expected length is a function of both the statistics of the

source and the structure of compression code employed. Under the assumption

that the source outcomes are independent and identically distributed over time,

E[ℓc(X)] also represents the average data rate produced by the source, in bits

per source symbol.

2.3.1 Kraft Inequality

When building a compression code, it is obvious from (2.3) that assigning

short codewords is better than long codewords. Yet, it is clear that we cannot

describe every symbol using a very small number of bits, for otherwise the
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prefix condition will be violated. The collection of possible length assignments

for a prefix-free code is characterized by the following inequality.

Theorem 2.3.2 (Kraft Inequality). Let X be a finite alphabet. Any binary

prefix-free code c : X 7→ C satisfies the inequality

∑

x∈X

2−ℓc(x) ≤ 1. (2.4)

where ℓc(x) is the bit length of codeword c(x). Conversely, if we first assign the

codeword lengths such that (2.4) is satisfied, then there exists an instantaneous

code with these codeword lengths.

Proof. We wish to give necessary and sufficient conditions about the existence

of a prefix-free code with a specific length assignment. We employ simple

combinatorial arguments to a binary tree structure to establish this result. Let

0

0

0

0

0

0

0

1

1

1

1

1
1

1

000

001

010

011

100

101

110

111

Figure 2.1: This figure shows a binary tree with depth Lc = 3 and eight leaves.

The branches from every node correspond to zero or one.

Lc = maxx∈X ℓc(x) be the length of the longest codeword. Code c : X 7→ C can

be defined using a binary tree of depth Lc, where branches from every node

correspond either to zero or one. Each codeword consists of a unique path

from the root to a leaf at depth ℓc(x), following its binary string expansion.

The prefix condition ensures that no codeword is a descendant of any other

codeword in the binary tree. For the codewords in the tree, let Sx be the set of

descendants that c(x) would have in a full binary tree of depth Lc. The sets Sx
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are disjoint because of the prefix-free nature of the code, and |Sx| = 2Lc−ℓc(x).

Since the total number of nodes at depth Lc is 2
Lc , we have

∣∣∣∣∣
⋃

x∈X

Sx

∣∣∣∣∣ =
∑

x∈X

|Sx| =
∑

x∈X

2Lc−ℓc(x) ≤ 2Lc .

By dividing both sides by 2Lc , we conclude that (2.4) holds. That is, a binary

prefix-free code c over finite alphabet X satisfies the Kraft inequality.

Conversely, suppose that we have a code assignment such that (2.4) is

satisfied. Without loss of generality, we assume that the codeword lengths

ℓc(xi) are increasing in i,

ℓc(x1) ≤ ℓc(x2) ≤ ℓc(x3) ≤ · · ·

We can construct a prefix code with matching codeword lengths by pruning

subtrees from a full binary tree of depth Lc. First, choose any node from the

full tree at depth ℓ1 and remove all of its descendants. This removes 2Lc−ℓ1

leafs from the original binary tree. Next, select any available node from the

resulting tree at depth ℓ2, and remove all of its descendants. This time, an

additional 2Lc−ℓ2 leafs are taken away from the original binary tree. Continue

this procedure with the other codeword lengths. After m iterations, the total

number of leafs removed from the original binary tree is equal to

m∑

i=1

2Lc−ℓi = 2Lc

m∑

i=1

2−ℓi .

Since the Kraft inequality holds for the codeword length assignment, this im-

plies that all the codewords can be placed at different positions on the binary

graph. Then, following the binary structure of the graph, the binary string of

the codes can be inferred from the graph.

Example 2.3.3 (Code on a Tree). Suppose that we intend to construct a prefix

code for X = {x1, . . . , x5}, with code lengths

ℓc(x1) = ℓc(x2) = 2 ℓc(x3) = ℓc(x4) = 3 ℓc(x5) = 2.

First, we check the Kraft inequality to make sure that such an assignment is

feasible,
5∑

i=1

2−ℓc(x1) =
1

4
+

1

4
+

1

8
+

1

8
+

1

4
= 1.
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The inequality is fulfilled, we can therefore use a binary tree construction to

design the desired instantaneous code. The process is illustrated in Figure 2.2,

and the resulting code is shown below.

Source Symbol Codeword Source Symbol Codeword

x1 00 x4 101

x2 01 x5 11

x3 100

Since the Kraft inequality is met with equality, we know that it is impossible

to get a better code by shortening one of the codewords.

0

0

0

0

1

1

1

1

00

01

100

101

11

Figure 2.2: Construction of a prefix code with a binary tree.

2.3.2 Entropy Bounds on Prefix-Free Codes

Now that we know how to build instantaneous, we consider the problem of

finding good prefix-free codes. Recall from (2.3) that our objective is to find

a prefix-free code with the smallest possible expected length. As seen earlier,

this codeword length assignment is subject to the Kraft inequality. Putting

these two requirements together, we can formulate the optimization problem

as follows,

min
ℓ(x)

∑

x∈X

pX(x)ℓ(x) subject to
∑

x∈X

2−ℓ(x) ≤ 1.

We note that, for a code to exist, the function ℓ(x) must take values in the

positive integers. It turns out that this problem is difficult to solve.
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To gain insight into the problem, we relax the integer constrain on ℓ(x).

This added flexibility will provide a lower bound on E[ℓ(X)]; having more

choices can only lead to better results. We use the method of Lagrange multi-

pliers to solve the latter version of the problem. The objective function, with

Lagrange multiplier λ, becomes

∑

x∈X

pX(x)ℓ(x) + λ

(
∑

x∈X

2−ℓ(x) − 1

)
.

Note that this function is twice differentiable in ℓ(x). Taking a partial deriva-

tive with respect to ℓ(x) and setting it to zero, we get

pX(x)− λ ln(2)2−ℓ(x) = 0.

The optimal value for ℓ(x), which we denote by ℓ⋆(x), must therefore satisfy

2−ℓ⋆(x) = pX(x)/(λ ln(2)). Computing the derivative with respect to λ yields

∑

x∈X

2−ℓ⋆(x) = 1,

which in turn implies λ = 1/ ln(2). Putting these results together, we gather

that the optimal values for {ℓ(x) : x ∈ X} are given by

ℓ⋆(x) = − log2(pX(x))

for x ∈ X . Thus, by construction, we obtain

E[ℓc(X)] ≥ −
∑

x∈X

pX(x) log2(pX(x)) = H[X]

for any prefix-code c. In other words, the entropy is a lower bound on the

expected length of any prefix-free code.

It is equally easy to obtain an upper bound on the expected length of an

optimal prefix-free code. Observe that ⌈− log2(pX(x))⌉ is an integer, with

− log2(pX(x)) ≤ ⌈− log2(pX(x))⌉ ≤ − log2(pX(x)) + 1.

The Kraft inequality asserts that we can build a code c : X 7→ C such that

ℓc(x) = ⌈− log2(pX(x))⌉, as
∑

x∈X

2−ℓc(x) ≤
∑

x∈X

2−ℓ⋆(x) = 1.
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As such, there exists a code c such that

E[ℓc(X)] ≤ H[X] + 1.

We collect and formalize these important results in the form of a theorem.

Theorem 2.3.4. Consider a discrete memoryless source (X , pX(·)) over a

finite alphabet. If symbols are encoded individually using an optimal prefix-free

code c : X 7→ C, then the expected length of the codewords satisfies

H[X] ≤ E[ℓc(X)] ≤ H[X] + 1.

2.3.3 Huffman Codes

Theorem 2.3.4 identifies properties of an optimal prefix-code. However, it does

not provide an algorithmic methodology to design such a code. This is ad-

dressed by theHuffman code, which provides an efficient variable-length code

for lossless data compression. Not too surprisingly, the underlying strategy in

this scheme is to assign short strings of bits to likely symbols, and necessar-

ily longer ones to less probable source outputs. The encoding is specifically

crafted so that the code table forms a prefix-free code. Huffman codes are

the most efficient compression mapping for individual source symbols. The

expected length of the compressed data achieved with this technique will be

no greater than the expected message length of any other prefix-free code that

operates on individual source symbols.

The insight behind Huffman coding is based on three properties of optimal

prefix-codes. Suppose that we wish to encode outputs from discrete memo-

ryless source (X , pX), and let c⋆ : X 7→ C be an optimal prefix-code for this

source. If pX(x1) > pX(x2), then ℓc⋆(x1) ≤ ℓc⋆(x2). For any of the longest

codewords, its sibling (the bit string that differs only in the last digit) must

also be codeword; otherwise, the original codeword can be shortened by re-

moving the last bit. Finally, the code tree associated with an optimal code

must be full. A binary tree is full if every node has either zero or two children.

Again, if this condition fails, then some codewords in the codebook can be

shortened.
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The Huffman algorithm creates a code by building a binary tree. The

algorithm proceeds as follows. First, every source symbol x is assigned to an

individual node. Then, the simple recursion outlined below is applied.

1. Sort the nodes in decreasing order of probabilities.

2. Merge the two least probable nodes into a single one, whose probability

equals the sum of its constituents.

3. Arbitrarily assign zero or one to the branches emerging from this new

node.

4. Repeat the previous three steps with the new collection of nodes and

their corresponding probabilities until only one node remains.

The Huffman encoding algorithm is best grasped through simple examples.

Example 2.3.5. Suppose that a discrete memoryless source (X , pX) with al-

phabet X = {x1, x2, x3} has probability mass function

pX(x) =





2
3
, x = x1

1
6
, x ∈ {x2, x3}.

We wish to obtain an optimal prefix-code for this source, and thus we apply

the Huffman algorithm. For the given source, code design proceeds as follows.

Stage 3 Stage 2 Stage 1 Symbol Codeword

Pr{x1, x2, x3} = 1 Pr{x1} = 2
3

pX(x1) =
2
3

x1 0

Pr{x2, x3} = 1
3

pX(x2) =
1
6

x2 10

pX(x3) =
1
6

x3 11

From this successive re-ordering of probabilities, we use a binary tree to

build the actual code. This is illustrated in Figure 2.3.

Example 2.3.6. A source (Y , pY ) generates four different symbols {y1, y2, y3, y4}
with probabilities {0.35, 0.25, 0.2, 0.2}. A binary tree is generated from right to

left, by merging the two less probable symbols at every step. Once this is com-

plete, the code can then be form by assigning different bits to every pair of

branches emerging from a node. The table below shows the different stages of

the iterative procedure where probabilities are first sorted in decreasing order,

then the two least probable nodes are merged into a single one.
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0

10

11

x1

x2

x3

{x2, x3}
{x1, x2, x3}

Figure 2.3: A graphical representation for the construction of a simple Huffman

code. The source alphabet in this case is X = {x1, x2, x3} and the probabilities

of individual symbols are {2/3, 1/6, 1/6}, respectively.

Stage 4 Stage 3 Stage 2 Stage 1

0.6 + 0.4 = 1 0.35 + 0.25 = 0.6 0.2 + 0.2 = 0.4 pX(x1) = 0.35

0.4 0.35 pX(x2) = 0.25

0.25 pX(x3) = 0.2

pX(x4) = 0.2

The ensuing Huffman code is obtained by moving from left to right in the

corresponding binary tree. The binary tree and the resulting Huffman code are

shown in Figure 2.4.

00

01

10

11

x1

x2

x3

x4

Figure 2.4: This figure depicts a Huffman code construction for an alphabet

of size four.

Although Huffman coding is optimal for a symbol-by-symbol encoding with

a known input probability mass function, it can be outperformed when these

two conditions are not known. For instance, if the input distribution pX(·) is
not known, then it must be inferred from the available data prior to applying

Huffman coding. Small errors in the estimated probability mass function can

then lead to inefficiency, which in turn renders Huffman coding suboptimal.
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We will soon see an encoding algorithm that does not require the input dis-

tribution pX(·). However, before we can present this algorithm, we need to

consider the join encoding of source symbols.

2.4 Joint Encoding of Source Symbols

Under special circumstances, namely when the probability of every source

symbol is an exponent base two, the expected length of a Huffman code is

equal to the entropy of the source. However, in many situations, this is not

the case, and there exists a gap between the expected codeword length and

the entropy of a source output. An efficient way to encode data, where the

expected number of coded bits per source symbol approaches the entropy, is to

consider blocks of source symbols and to encode them jointly. Although more

complicated, this process leads to better performance and typically leads to

expected message lengths that are shorter than that of a symbol-by-symbol

Huffman code.

Consider a sequence X1, X2, . . . of symbols at the output of a discrete mem-

oryless source. Instead of using a code that operates on individual symbols,

we can design a more elaborate code that takes as input a group of n symbols,

c : X n 7→ C. Since the outputs of a discrete memoryless source are indepen-

dent and identically distributed random variables, we know from the additive

property of the entropy that

H[X1, . . . , Xn] = nH[X].

Then, by applying Theorem 2.3.4, we get that an optimal prefix code, which

operates on X n, yields

nH[X] ≤ E[ℓc(X1, . . . , Xn)] ≤ nH[X] + 1.

Then, the expected message length per source output becomes

H[X] ≤ E[ℓc(X1, . . . , Xn)]

n
≤ H[X] +

1

n
.

Thus, the expected number of bits per symbol produced by a source can be

made arbitrarily close to H[X] by jointly encoding strings of symbols.
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Example 2.4.1. Let (X , pX) be a binary discrete memoryless source, as de-

scribed in Example 2.1.2. Furthermore, assume that Bernoulli parameter p is

equal to 1
4
. Then, the entropy of the source can be calculated as

H[X] = −3

4
log2

(
3

4

)
− 1

4
log2

(
1

4

)
≈ 0.811.

Since there are only two source symbols, a code generated by the Huffman

algorithm is the identity code, where a source output is represented by its binary

value. In this case, the expected codeword length is equal to one.

Suppose instead that two symbols are encoded at a time. In this case, the

possible inputs to the encoder are {00, 01, 10, 11}, with respective probabilities{
9
16
, 3
16
, 3
16
, 1
16

}
. The Huffman code specified by

Symbol Codeword

00 0

01 10

10 110

11 111

has an expected length of

E[ℓc(X1, X2)] = 1 · 9

16
+ 2 · 3

16
+ 3 · 3

16
+ 3 · 1

16
=

27

16
.

The expected message length per source output becomes

E[ℓc(X1, X2)]

2
=

27

32
≈ 0.844,

which is much closer to the entropy of individual source symbols. Repeating

this procedure with an Huffman code that takes three symbols as its input would

lead to an expected codeword length per symbol of approximately 0.823.

Example 2.4.1 illustrates well how encoding several source symbol at a time

can lead to a decrease in the expected codeword length per symbol. The joint

encoding of source symbols works even better for sources that are correlated

over time. Although we will not discuss the specifics of this scenario, it is infor-

mative to mention that joint source coding is instrumental in approaching the

entropy rate of correlated sources. This is especially important considering the

fact that symbol-by-symbol encoding may perform very poorly for correlated

sources.
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2.5 Sources with Memory

Until now, we have focused on the compression of discrete memoryless sources

because they produce i.i.d. symbols. The majority of real-world sources gener-

ate symbol sequences where the probability of the next symbol depends on the

previously observed symbols. To model these sources, we use the mathematical

concept of a discrete-time random process.

A discrete-time random process is an infinite sequence . . . , X−1, X0, X1, . . .

of random variables defined on a common sample space Ω. This approach

treats each random variable Xn as a mapping Xn : Ω → R. Using this, each

ω ∈ Ω defines a realization . . . , X−1(ω), X0(ω), X1(ω), . . . of the random pro-

cess. While random processes can be quite complicated in their full generality,

the random processes used in this class have relatively simple descriptions.

For example, the discrete memoryless source introduced earlier in this chapter

defines a very simple random process.

In this section, we introduce a simple random process with memory known

as a Markov chain. A Markov chain assumes that the probability of the n-th

symbol depends only on the value of the previous symbol. Mathematically,

this condition can be written as

PXn|Xn−1,Xn−2,...,X0(xn|xn−1, xn−2, . . . , x0) = PXn|Xn−1(xn|xn−1).

If the conditional probability is time-invariant (i.e., it doesn’t depend on n),

then the Markov chain is called stationary. Mathematically, stationarity

implies that

PXn|Xn−1(xn|xn−1) = PX1|X0(xn|xn−1).

For a stationary Markov chain, the probability simplifies to

PXn,Xn−1,...,X0(xn, xn−1, . . . , x0) = PX0(x0)
n∏

i=1

PX1|X0(xi|xi−1).

2.6 Universal Source-Coding Algorithms

Huffman coding has two important drawbacks. First, the source statistics are

used to design a Huffman code. If one only has access to the source outputs,

the design procedure requires two passes through the data, one to estimate
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the statistics of the source, and a second one for encoding. To overcome this,

one can use adaptive Huffman codes where the code is updated dynamically to

match the statistics of the sequence as it is observed. This is a problem because

The second problem is that one must jointly encode multiple symbols to take

advantage of source memory and reduce length rounding loss. In this case, one

finds that the complexity increases exponentially with the number of symbols

that are encoded together. To provide a partial solution to these drawbacks, we

study an example of a universal source-coding algorithm, namely the Lempel-

Ziv algorithm. This type of universal data compression is the basis for

standard file compression algorithms (e.g., winzip, gzip).

The basic idea behind the Lempel-Ziv algorithm is to parse the input

sequence into non-overlapping strings of different lengths while constructing

a dictionary of the strings seen thus far. There are many versions of this

algorithm and we discuss the variant known as LZ78 that was described in

a 1978 paper by Lempel and Ziv. The encoding algorithm works as follows.

First, initialize the dictionary to contain all strings of length one and set the

input pointer to the beginning of the string. Then, apply the following iterative

procedure.

1. Starting at the input pointer, find the longest substring w that is already

in the dictionary.

2. Concatenate w with the next symbol y in the string and add wy to the

first empty location in the dictionary.

3. Encode the pair by sending the dictionary index of w and the value of y.

4. Set the input pointer to the symbol after y.

There are a number of practical variants of this algorithm that improve per-

formance and/or reduce the implementation complexity.

Decompression works in the reverse fashion. Each received index and sym-

bol can be immediately decoded and used to build a copy of the dictionary at

the receiver. In this fashion, one can resolve the input without ambiguity.

Example 2.6.1. Suppose that we are to use a Lempel-Ziv algorithm with dic-

tionary size 23 = 8. The dictionary is initialized to contain 0 and 1 in the first
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two positions. Then, the source sequence is sequentially parsed into strings

that have not appeared so far. For example,

10110101000101 . . . → 10, 11, 01, 010, 00, 101 . . .

The dictionary table at this point has eight elements.

Index Dictionary String Encoded Index Added Bit

000 0 N/A N/A

001 1 N/A N/A

010 10 001 0

011 11 001 1

100 01 000 1

101 010 100 0

110 00 000 0

111 101 010 1

Each phrase (the bit string contained between two commas) is coded by

giving the location of its prefix in the dictionary table, and the value of the

additional bit. This results in the coded sequence

10, 11, 01, 010, 00, 101 → (001, 0)(001, 1)(000, 1)(100, 0)(000, 0)(010, 1),

where the first number of each pair gives the index of the prefix in the table

and the second number gives the last bit of the new phrase. When applied

to sequences generated by any stationary ergodic source, the Lempel-Ziv cod-

ing algorithm asymptotically achieves the optimal encoding rate (known as the

entropy rate).

Most readers will notice that this algorithm, as stated, requires prior knowl-

edge of the total number of phrases in the dictionary. In fact, this problem

can be solved easily and the solution actually requires fewer transmitted bits.

The key point is that both the transmitter and receiver know the number of

phrases currently in the dictionary. Let M be the current number of phrases

in the dictionary. Then, the transmitter can be simply send the ⌈log2 M⌉ least
significant bits of the index. Since the receiver also knows M , there will be no

confusion. In this case, the encoded sequence will be

10, 11, 01, 010, 00, 101 → (1, 0)(01, 1)(00, 1)(100, 0)(000, 0)(010, 1).
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2.7 Fixed-Length Compression Codes*

In the previous sections, the joint encoding of multiple source symbols was

shown to perform well, with the average number of bits per symbol produced

by a source approaching H[X]. Below, we explore how the joint encoding of

symbols together with fixed-length codes can be used to produce good com-

pression ratios. Fixed-length compression codes have several advantages. They

are simple to encode and easy to decode, yielding unambiguous messages.

Furthermore, all fixed-length codes are prefix-free, and encoded symbols can

therefore be recovered instantaneously. However, fixed-length codes cannot

be used to compress data by assigning short descriptions to most frequent

symbols and longer descriptions to the less likely ones. Data compression in

fixed-length coding methods is only possible for large blocks of data, and any

compression beyond the logarithm of the total number of possibilities comes

with a finite, though perhaps small, probability of decoding failure.

The minimum number of binary strings in lossless fixed-length symbol-by-

symbol encoding is ⌈log2(|X |)⌉, where |X | is the size of the source alphabet

and ⌈·⌉ is the ceiling function, which returns the smallest integer greater than

or equal to its argument. More generally, the minimum number of binary

strings necessary to encode a group of n symbols is ⌈n log2(|X |)⌉. This strategy
alone, encoding multiple source symbols at a time, is not powerful enough

to compress data using fixed-length codes. To design effective fixed-length

codes, two components are necessary. First, we need to relax the assumption

that the data compression scheme should be lossless, rather we allow a small

probability of encoding failure. In particular, we assume that the probability

of encoding failure, where data cannot be decoded properly, is δ > 0, where δ

is implicitly very small. The second ingredient to fixed-length compression is

the asymptotic equipartition property, which we review next.

2.7.1 Asymptotic Equipartition Property

The asymptotic equipartition property (AEP) is a general property of

the output samples of discrete memoryless sources. This property implies

that, given a very long sequence of n source symbols, the probability that
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(X1, . . . , Xn) belongs to a set of typical sample strings is almost one. It takes

a few steps to make this statement precise.

Theorem 2.7.1. Let (X , pX) be a discrete memoryless source, which produces

a sequence of symbols X1, X2, . . . Furthermore, assume that the output alphabet

X is finite. The asymptotic equipartition probability asserts that

lim
n→∞

− 1

n
log2 (pXn(X1, . . . Xn)) = H[X].

Proof. We can proof this theorem through an application of the weak law of

large numbers. First, we observe that

log2 (pXn(X1, . . . Xn)) = log2

(
n∏

k=1

pX(Xk)

)

=
n∑

k=1

log2 pX(Xk).

That is, log2 (pXn(X1, . . . Xn)) is a sum of independent and identically dis-

tributed random variables, with bounded second moment. It follows, by the

law of large numbers, that

− 1

n
log2 (pXn(X1, . . . Xn))

converges in probability to E [− log2(pX(X))] = H[X]. In particular, we have

Pr

(∣∣∣∣
− log2 (pXn(X1, . . . Xn))

n
− H[X]

∣∣∣∣ ≥ ǫ

)
≤ σ2

nǫ2

where σ2 is the variance of random variable − log2(pX(X)).

Drawing intuition from the proof of Theorem 2.7.1, we define the typical

set T
(n)
ǫ as

T (n)
ǫ =

{
x ∈ X n :

∣∣∣∣
− log2 (pXn(x))

n
− H[X]

∣∣∣∣ < ǫ

}
.

The probability that the first n source symbols belongs to the typical set T
(n)
ǫ

is bounded below by

Pr
(
(X1, . . . , Xn) ∈ T (n)

ǫ

)
≥ 1− σ2

nǫ2
. (2.5)
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Thus, as n increases, the probability that the source produces a typical se-

quence approaches one. We note that an equivalent definition of typical set

is

T (n)
ǫ =

{
x ∈ X n : 2−n(H[X]+ǫ) < pXn(x) < 2−n(H[X]−ǫ)

}
.

Using the second definition of T
(n)
ǫ , we can bound the number of elements

contained in a typical set. First, recall that the sum of the probability of

disjoint events cannot exceed one. As a consequence, the number of elements

in T
(n)
ǫ is bounded by ∣∣T (n)

ǫ

∣∣ < 2n(H[X]+ǫ).

Similarly, using (2.5) and the second definition of T
(n)
ǫ , we get

∣∣T (n)
ǫ

∣∣ >
(
1− σ2

nǫ2

)
2n(H[X]−ǫ).

We collect these results in the following theorem.

Theorem 2.7.2 (Asymptotic Equipartition Property). Let (X , pX) be a dis-

crete memoryless source with finite alphabet X and output sequence X1, X2, . . .,

each with entropy H[X]. For any δ > 0 and all n sufficiently large, we have

Pr
(
(X1, . . . , Xn) ∈ T (n)

ǫ

)
≥ 1− δ

and the size of the typical set T
(n)
ǫ is bounded by

(1− δ)2n(H[X]−ǫ) <
∣∣T (n)

ǫ

∣∣ < 2n(H[X]+ǫ).

The intuition behind the asymptotic equipartition property is that a com-

pression scheme can focus on encoding only the symbol strings that belong

to T
(n)
ǫ . Under such a strategy, at most ⌈n(H[X] + ǫ)⌉ codewords are needed.

Although not lossless, this fixed-length coding scheme results in a decoding

failure with a probability no greater than δ.

Theorem 2.7.3 (Source Coding Theorem). Let (X , pX) be a discrete memo-

ryless source with finite alphabet X and entropy H[X]. For any δ > 0, ǫ > 0

and n sufficiently large, there exists a fixed-length compression scheme such

that the probability of failure is less than δ and the expected number of bits per

symbol is
E[ℓc(X1, . . . , Xn)]

n
≤ H[X] + ǫ+

1

n
.
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Chapter 3

Discrete-Time Communication

Most digital communication systems operate by converting digital data into

continuous waveforms that can be conveyed through some physical medium to

a receiver. For example, digital communication through wires (e.g., Ethernet

or USB) is based on moving electrons back and forth in the wire. In con-

trast, underwater wireless communication uses acoustic transmission through

the water. While radio communication relies on the propagation of electro-

magnetic waves through air.

The process by which a string of bits is converted into a waveform suit-

able for transmission is known as modulation. The reverse operation, called

demodulation, is performed at the destination and involves extracting the

information symbols from the received signal. The mapping between the trans-

mitted waveform and the received waveform is known as the channel.

Precise models of the physical channel can be very complicated and many

of the key ideas in digital communication do not depend on the exact details.

For this reason, one can model and design communication systems based a

simplified model that separates the communication problem from the physical

models. In this chapter, we develop some basic concepts of digital communi-

cation using this simplified model. The goal is to build some intuition about

how things work without getting lost in the mathematical details.

33
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Source
Source

Encoder
Encryption

Channel

Encoder
Modulator

Channel

Demodulator
Channel

Decoder
Decryption

Source

Decoder
Sink

Figure 3.1: The block diagram of a digital communication system where the

blocks comprising the discrete-time channel are shaded.

3.1 A Simple Channel Model

In this section, we introduce the discrete-time channel model for digi-

tal communication systems. We will see later that, for some communication

systems, this model is exactly equivalent to the more complicated waveform

model. The first channel model we discuss is where the nth output of the

channel, Yn, is equal to the nth input to the channel, xn, corrupted by an

additive noise term Zn so that

Yn = xn + Zn.

For this model, it is typical to assume that the noise sequence Z1, Z2, . . . con-

sists of independent identically distributed (i.i.d.) zero-mean Gaussian random

variables with variance σ2. This implies that each Yn is a Gaussian random

variable with mean xn and variance σ2, so that

fYn
(yn) =

1√
2πσ2

e−(yn−xn)2/(2σ2).

This model is commonly referred to as discrete-time communication in addi-

tive white Gaussian noise (AWGN) noise.

As an example, consider a system where the transmitter sets the voltage

on end of a wire and the receiver measures the voltage on the other end of

the wire. It turns out that the thermal agitation of electrons causes voltage

fluctuations known as Johnson noise. So, the receiver ends up measuring the
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transmitted voltage corrupted by noise fluctuations. In fact, Johnson noise

is quite well approximated by AWGN. So, the simple model described above

already gives a relatively accurate picture of reality.

3.2 A Simple Modulation Scheme

Once a channel model has been defined, the next step is choosing how to

transmit digital data through the channel. A common approach is to choose

a small set U of information symbols and represent each one by a distinct

channel input in the set X . This is the discrete-time model of a scheme known

as pulse-amplitude modulation (PAM). Let un ∈ U be the information

symbol transmitted during the nth time interval and xn = M(un) be the nth

input to the channel, whereM : U → X is called the symbol mapping function.

For example, one can transmit binary information symbols by mapping “0”

to +1V and “1” to −1V; mathematically, this is done by choosing U = {0, 1},
X = {−1, 1}, and M(u) = 1 − 2u. This particular type of PAM is called

binary phase-shift keying (BPSK) or 2-PAM.

Suppose a BPSK signal is transmitted through our discrete-time AWGN

channel model. The detector must measure the voltage and decide whether a

0 or 1 one was transmitted. A natural choice is to define a decoder function

that associates positive voltages with 0 and negative voltages with 1. Let

Ûn = D(Yn) be the output of the detector function

D(y) =




0 if y ≥ 0

1 if y < 0
.

This detector is optimal if 0’s and 1’s are transmitted with equal probability.

One of the main challenges in communication systems is providing reliable

data transmission. In this example, the noise variance σ2 is proportional to

the power of the thermal noise in the wire. Notice that, if a 1 is transmitted,

the detector described above will make an incorrect decision with probability

Pr (Yn ≥ 0|xn = 1) = Pr (Zn ≥ 1) =

∫ ∞

1

1√
2πσ2

e−y2/(2σ2)dy = Q

(
1

σ

)
.

This probability can be reduced by increasing the transmitted voltage, which

increases the power dissipated due to resistive losses, or by reducing the ther-
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−3 −2 −1 0 1 2 3

00 01 11 10

Figure 3.2: The symbol set X for 4-PAM with gray coded binary labels.

mal noise. For this reason, receivers used for large satellite dish receivers often

use liquid nitrogen to cool the first-stage amplifier to reduce this thermal noise.

On the other hand, the maximum transmitted power is typically limited by

physical constraints (e.g., the wire thickness) or FCC regulations.

To send more information per channel use, one can use larger sets of PAM

symbols. For example, 4-PAM uses the 4 symbols X = {−3,−1, 1, 3} while

8-PAM uses the 8 symbols X = {−7,−5,−3,−1, 1, 3, 5, 7}. Notice that these

two sets of symbols are centered around 0 to minimize the transmitted energy.

The mapping function M(·) determines the information symbol associated

with each channel input value. In general, sets of input values with 2m elements

are associated with binary strings. There are still some choices to be made,

however, because one can map the 4-PAM symbol set to binary strings in either

the standard binary order {00, 01, 10, 11} or with a Gray code {00, 01, 11, 10}.
For the 4-PAM symbol set with the mapping function M(·) that maps

{00, 01, 10, 11} (in order) to {−3,−1, 1, 3}, the natural decision function is

D(y) =





00 if y < −2

01 if − 2 ≤ y < 0

10 if 0 ≤ y < 2

11 if y ≥ 2

.

3.3 Quadrature Amplitude Modulation

In most communication systems, the baseband waveform is modulated onto

a high-frequency carrier to enable better propagation. This is because low-

frequency signals often do not propagate well through physical media. While

this process will be discussed later in more detail, the following key detail

affects the discrete-time model. High frequency modulation allows two inde-

pendent signals to be modulated onto the same carrier frequency; one onto

the sine wave and the other onto the cosine wave. This allows one to treat the
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Figure 3.3: The symbol constellations X for 16-QAM (left) and 8-PSK (right).

transmitted value xn and received value Yn as points in 2-dimensional space.

The set X of possible transmitted points in 2-dimensional space in called the

symbol constellation.

For mathematical convenience, points in these two-dimensional symbol

constellations are represented by complex numbers. The set of complex num-

bers is C and the constellation is a subset X ⊂ C. Likewise, the transmitted

symbol is xn ∈ C and the received value is Yn ∈ C. The noise term Zn now

consists of two i.i.d. Gaussian random variables (one in each direction). The

probabilistic observation model is formed by treating the real and imaginary

parts separately, and is given by

f
Y

(r)
n ,Y

(i)
n

(y(r)n , y(i)n ) =

(
1√
2πσ2

e
−
(

y
(r)
n −x

(r)
n

)2
/(2σ2)

)(
1√
2πσ2

e
−
(

y
(i)
n −x

(i)
n

)2
/(2σ2)

)

=
1

2πσ2
e−|yn−xn|

2/(2σ2).

Therefore, the probability of receiving a yn value is simply a function of its

Euclidean distance |yn − xn|2 from the actual transmitted symbol. This leads

to a nice geometric characterization of the optimal decision regions for the

detector.

The signal-to-noise ratio (SNR) of a communication system is typically

denoted by Es/N0 where Es is the average energy per channel input sym-

bol and N0 is the noise spectral density. For equiprobable signaling, one

finds that

Es =
1

|X |
∑

x∈X

|x|2.
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The noise spectral density measures how much the AWGN is affects the channel

and later we will see that N0 = 2σ2 for our discrete-time model.

Constellations are typically defined by first choosing the set of channel

input values X , and then choosing the mapping function M : U → X . This

second step is called labeling the constellation. While the labeling does not

affect the symbol error rate of the system, it generally does affect the bit

error rate. Therefore, one can optimize the mapping function for a particular

application.

Constellations can be chosen and optimized for a variety of reasons. Still,

there are a few very common choices:

• M -ary PAM (M -PAM) is M points equally spaced along a line or

X =
{
2a− (M − 1)

∣∣ a ∈ {0, 1, . . . ,M − 1}
}
⊂ C.

• M2-ary QAM (M2-QAM) is an M by M square grid of points or

X =
{
(2a− (M − 1)) + (2b− (M − 1)) i

∣∣ a, b ∈ {0, 1, . . . ,M − 1}
}
⊂ C.

• M -ary PSK (M -PSK) is M points equally spaced around a circle or

X =
{
e2πik/M

∣∣ k ∈ {0, 1, . . . ,M − 1}
}
⊂ C.

Example 3.3.1. The standard QAM constellation with 16 points (known as

16-QAM) is given by

X =
{
a+ bi

∣∣ a, b ∈ {−3,−1, 1, 3}
}
⊂ C.

The average energy of this constellation is given by

Es =
1

16

∑

a,b∈{−3,−1,1,3}

(a2 + b2) =
8

16

∑

a∈{−3,−1,1,3}

a2 = 10.

3.4 Optimal Symbol Detection

In this section, we consider the problem of designing a symbol detector that

minimizes the probability of error. This is known as an optimal detection

problem and has an elegant solution that is related to the classical problem of

hypothesis testing in statistics.
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3.4.1 Hypothesis Testing

Sir Ronald Fisher, one of the founders of statistical decision theory, was at a

tea party when Ms. Bristol mentioned that she preferred tea poured into milk

over milk poured into tea. Fisher commented that surely she could not tell

the difference, but his colleague William Roach suggested that they design an

experiment. At that point, they prepared eight cups of tea: four milk-into-

tea and four tea-into-milk. The cups were presented in a random order and

she correctly identified enough (all eight cups by some accounts) to prove her

point.

The mathematics behind this type of hypothesis test is based on defining a

null hypothesis, which states that the difference in preparation has no effect

on the outcome. In this example, the null hypothesis is H0 =“the order of

pouring the tea and milk does not affect Ms. Bristol’s answer”. Notice that

there are
(
8
4

)
= 70 ways that Ms. Bristol can divide the cups of tea into two

categories, but that only one identifies all of them correctly. Since the cups

are presented in a random order, we can compute

Pr(she identifies all cups correctly|H0) =
1

70
.

This number is small enough so that it is reasonable to conclude that H0 is

false and the order does influence Ms. Bristol’s decisions.

There are more subtle issues, however, than the case where Ms. Bristol

succeeds due to luck. What is more problematic is listing all other hypotheses

that can lead to the same observation. For example, variations in the temper-

ature or composition of the tea could help Ms. Bristol guess correctly. Fisher,

in his essay on this experiment, argues that proper use of randomization can

eliminate the effect of these variations. On the other hand, Ms. Bristol may

pass by cheating but still be unable to distinguish between the two drinks. If

all possible hypotheses are not explicitly considered, then one can come to an

incorrect conclusion. For this reason, it commonly understood that a scientific

test of an hypothesis can only disprove that hypothesis.
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3.4.2 Multiple Hypothesis Testing

Hypothesis testing in communication theory often has the luxury that one of

the hypotheses must be true. This leads to the more well-defined problem of

multiple hypothesis testing. Instead of testing a single hypothesis to see if

it is false, one can compare multiple hypothesis to see which is most supported

by the observation.

Let H0, H1, . . . , Hm−1 be m different hypotheses that affect a random ob-

servation Y . The probability of a hypothesis before the observation, Pr(Hi),

is called the a priori probability. For each hypothesis, the connection with

Y is defined by the observation probability Pr(Y = y |Hi).

The goal is to choose a decision function D(y) which, for any observation,

minimizes the decision error probability. Of course, this is equivalent to max-

imizing the probability that the decision is correct. Notice that, if Y = y,

then the probability that hypothesis Hi is correct is given by its a posteriori

probability Pr(Hi |Y = y). Therefore, one finds that the optimal choice is

the maximum a posteriori probability (MAP) decision rule

D(y) = argmax
i∈{0,...,m−1}

Pr(Hi |Y = y).

In practice, these probabilities can be computed with Bayes’ rule using

only the a priori probabilities and observation probabilities. This gives

Pr (Hi|Y = y) =
Pr(Hi) Pr(Y = y|Hi)∑m−1

j=0 Pr(Hj) Pr(Y = y|Hj)
.

Since the denominator of this expression is the same for all i, the MAP rule

can be simplified to

D(y) = argmax
i∈{0,...,m−1}

Pr(Hi) Pr(Y = y|Hi).

Example 3.4.1. Consider a system which transmits BPSK over an AWGN

channel. Let H0 be the hypothesis that a zero (i.e., +1) was sent and H1 be

the hypothesis that a one (i.e., −1) was sent. For binary hypothesis problems,

the MAP decision rule can be written as

Pr(H0) Pr(Y = y|H0)
H0

≷
H1

Pr(H0) Pr(Y = y|H0,
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where this notation implies that one should pick H0 if the LHS is greater than

the RHS and H1 otherwise. If Pr(H0) = 1− p and Pr(H1) = p, then one can

substitute formulae to rewrite this as

(1− p)
1√
2πσ2

e−(y−1)2/(2σ2)
H0

≷
H1

p
1√
2πσ2

e−(y+1)2/(2σ2).

After a little algebra, taking the logarithm of both sides simplifies this to

y
H0

≷
H1

σ2

2
ln

p

1− p
.

Another popular rule is the maximum likelihood (ML) decision rule

D(y) = argmax
i∈{0,...,m−1}

Pr(Y = y|Hi),

which ignores the a priori probability. When all the hypotheses have the same

a priori probability, these two rules are identical. In communication systems,

this is often the case.

Example 3.4.2. Consider a system which transmits 4-PAM (i.e, X = {−3,−1, 1, 3})
over an AWGN channel. If all channel inputs are equiprobable, then the opti-

mum detector is

D(y) = argmax
x∈{−3,−1,1,3}

(
1√
2πσ2

e−(y−x)2/(2σ2)

)

= argmax
x∈{−3,−1,1,3}

(
−1

2
ln(2πσ2)− 1

2σ2
(y − x)2

)

= argmin
x∈{−3,−1,1,3}

(y − x)2.

Therefore, the optimum detector chooses the constellation point closest to the

channel observation. Moreover, this statement remains true for any signal

constellation with equiprobable signalling and AWGN.
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Chapter 4

Fourier Analysis and Sampling

Fourier analysis refers to a collection of tools that can be applied to express

a function in terms of complex sinusoids, called basis elements, of different

frequencies. The result of the decomposition is the amplitude and the phase

to be imparted to each basis element in the reconstruction. This decomposition

is termed the frequency domain representation of the original signal.

Fourier analysis is extremely useful in engineering, with a myriad of appli-

cations. Part of its appeal lies in the fact that basis elements are characteristic

functions of linear time-invariant systems. This property, which may seem neb-

ulous at this point, is instrumental in solving many challenging problems, and

makes Fourier analysis a powerful methodology for the design of communica-

tion systems. We assume that the reader is familiar with basic Fourier analysis,

and only review details that are pertinent to our treatment of communication

systems. This is not intended to be a comprehensive treatment of the subject.

4.1 Fourier Series

Fourier series can be employed to express, as weighted sums of sinusoidal com-

ponents, either periodic functions or functions that are time-limited. Suppose

that the signal s(t) is zero for all |t| ≥ T
2
, is integrable and satisfies

∫

R

|s(t)|2dt =
∫ T

2

−T

2

|s(t)|2dt < ∞.

43
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Then, s(t) possesses a Fourier series representation, which is defined by

s(t) =





∑∞
k=−∞ ŝke

2πi k
T
t, if |t| ≤ T

2

0, otherwise
(4.1)

where the Fourier series coefficients {ŝk : k ∈ Z} are given by

ŝk =
1

T

∫ T

2

−T

2

s(t)e−2πi k
T
tdt.

We can use the standard rectangular function rect(·), defined by

rect(t) =




1, if |t| < 0.5

0, otherwise
(4.2)

to simplify (4.1), and rewrite the Fourier representation of s(t) as

s(t) =
∞∑

k=−∞

ŝke
2πi k

T
trect

(
t

T

)
. (4.3)

If s(t) is periodic with s(t+ T ) = s(t), instead of being zero for |t| > T
2
, then

the same result holds without the rectangular window function.

From a vector space perspective, (4.3) asserts that s(t) can be expressed

as a linear combination of basis elements {θk(t) : k ∈ Z}, where

θk(t) = e2πi
k

T
trect

(
t

T

)
.

Furthermore, note that the collection of functions {θk(t) : k ∈ Z} forms an

orthogonal set under the standard inner product; that is,

〈θk(t), θn(t)〉 =
∫ ∞

−∞

θk(t)θ
∗
n(t)dt =

∫ T

2

−T

2

e2πi
k

T
te−2πi n

T
tdt

=

∫ T

2

−T

2

e2πi
(k−n)

T
tdt = 0

for all k 6= n. An interesting and important aspect of Fourier series is that

time-limited functions can be characterized using a discrete set of coefficients.

This fact provides insight into the sampling theorem, which we will review

shortly.
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4.2 Fourier Transforms

The Fourier transform applies to functions that are not necessarily time-

limited. A signal x(t) is square integrable (or an energy-type signal)

if

‖x(t)‖2 ,
∫

R

|x(t)|2dt < ∞. (4.4)

Then, we can express x(t) using its frequency domain representation. The

Fourier transform of x(t), which we denote by x̂(f) or F [x(t)], is defined by

x̂(f) = F [x(t)] ,
∫

R

x(t)e−2πiftdt. (4.5)

Using the inverse Fourier transform, the original function can also be expressed

in terms of its decomposition with

x(t) = F−1[x(t)] ,
∫

R

x̂(f)e2πiftdf. (4.6)

It is interesting to point out the duality between the Fourier transform and

its inverse, F [x̂(t)] = x(−f). This relation is rooted in the striking similarity

between (4.5) and (4.6).

Definition 4.2.1. The sinc function is defined by

sinc(t) ,
sin(πt)

πt
.

Example 4.2.2 (Rectangular Pulse). The rectangular pulse rect(·), defined in

(4.2), can be used to constrain various signals in time or frequency. For α > 0,

one has ‖rect(αt)‖2 = 1/α < ∞, which guarantees that Fourier analysis can

be applied to this function. The Fourier transform of rect(αt) can be computed

as follows,

F [rect(αt)] =

∫

R

rect(αt)e−2πiftdt =

∫ 1
2α

− 1
2α

e−2πiftdt

=
1

πf

(
eπif/α − e−πif/α

2i

)
=

sin(πf/α)

πf

=
1

α
sinc

(
f

α

)
.

Thus, the Fourier transform of rect(t) is the aforementioned sinc(f) function,

which plays a central role in the sampling and reconstruction of information

signals.
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The Fourier transform x̂(f) of a square-integrable signal x(t) also allows

one to pose the question: how much signal energy is contained in the spectral

band between frequencies f0 and f1? The answer, for f0 ≤ f1, is given by the

integral
∫ f1

f0

|x̂(f)|2 df.

This integral allows us to interpret the quantity |x̂(f)|2 as the energy spectral

density of x(t). For technical reasons, we actually define the energy spectral

density later in more detail. In practice, the answer to the above question also

depends on whether the signal is real or complex. For real signals, the integral

is typically computed over the range f0 < |f | < f1.

When condition (4.4) is not satisfied, it may be hazardous to use Fourier

analysis and frequency domain representations. Strictly speaking, the Fourier

transform of a function may not exist if the function behaves wildly. Casually

taking the Fourier transforms of arbitrary signals should be avoided. Having

said that, there will be instances where we discuss the Fourier transforms

of functions that do not fulfill (4.4). In such circumstances, the argument

to the Fourier transform is carefully selected to remain meaningful from an

engineering viewpoint; one such example appears below.

4.2.1 The Dirac Delta Function

The Dirac delta function δ(t) can be defined in a naive fashion with the

operational rule

x(t) =

∫

R

δ(t− τ)x(τ)dτ. (4.7)

A more rigorous approach, based on generalized functions, is out of the scope

of this class. So, these notes adopt a somewhat cavalier attitude towards the

Fourier transform of δ(t) and rely on experience to avoid pitfalls. The benefit of

this approach to Fourier analysis is that it rapidly leads to valuable engineering

insight. On the downside, the reader is left with the burden of deciding whether

a signal has a proper spectral representation, or if the definition of the Fourier

transform is being applied loosely.



4.2. FOURIER TRANSFORMS 47

Starting with signal x(t), we can write

x(t) =

∫

R

x̂(f)e2πiftdf =

∫

R

[∫

R

x(τ)e−2πifτdτ

]
e2πiftdf

=

∫

R

[∫

R

e2πif(t−τ)df

]
x(τ)dτ,

(4.8)

where the second equality follows from (4.5) and the third equality is obtained

by changing the order of integration. Since (4.8) holds for any time t, it follows

from (4.7) that

δ(t) =

∫

R

e2πiftdf

is one representation of δ(t) and hence the (cavalier) Fourier transform of the

δ-function is F [δ(t)] = 1.

4.2.2 Periodic Signals

We can develop (cavalier) Fourier transform representations for periodic sig-

nals as well, thereby providing a unified treatment of periodic and aperiodic

functions. Indeed, we can construct the Fourier transform of a periodic sig-

nal directly from its Fourier series representation. Let x(t) be a signal with

Fourier transform x̂(f) = δ(f − f0). To recover the signal x(t), we can apply

the inverse Fourier transform

x(t) = F−1[δ(f − f0)] =

∫

R

δ(f − f0)e
2πiftdf = e2πif0t.

More generally, if x̂(f) is a linear combination of impulses equally spaced in

frequency

x̂(f) =
∞∑

k=−∞

ŝkδ(f − kf0), (4.9)

then its inverse Fourier transform becomes

x(t) =
∞∑

k=−∞

ŝke
2πikf0t. (4.10)

Note that (4.10) corresponds to the Fourier series representation of a periodic

signal. Thus, the Fourier transform of a periodic signal with Fourier series

coefficients {ŝk : k ∈ Z} can be interpreted as a train of impulses in the

frequency domain.
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A signal that will be useful in our analysis of sampling is the impulse train

(or Dirac comb)

x(t) =
∞∑

k=−∞

δ(t− kT ).

This is a special case of a periodic function, with period T . We can therefore

apply a methodology similar to the one derived above to compute its Fourier

transform. The Fourier series coefficients for the impulse train are obtained as

ŝk =
1

T

∫ T

2

−T

2

x(t)e−2πi k
T
tdt =

1

T
.

Using (4.9), we get

x̂(f) =
1

T

∞∑

k=−∞

δ

(
f − k

T

)
. (4.11)

Surprisingly, an impulse train in the time domain can be regarded as an im-

pulse train in the frequency domain. A second representation for x(t) is given

by (4.10),

x(t) =
∞∑

k=−∞

δ(t− kT ) =
1

T

∞∑

k=−∞

e2πi
k

T
t. (4.12)

Which representation to use depends on the problem at hand.

4.2.3 Spectral Density

The energy of a deterministic signal x(t) is given by (4.4). If the energy of

x(t) is finite, i.e. ‖x(t)‖2 < ∞, then we define its autocorrelation function

by

Rx(τ) ,
∫

R

x(t)x∗(t− τ)dt.

Using this notation, we see that the energy of x(t) is also given by Rx(0).

Definition 4.2.3. The energy spectral density of an energy-type signal

x(t), denoted by Gx(f), is defined to be the Fourier transform of its autocorre-

lation function,

Gx(f) = F [Rx(τ)] = |x̂(f)|2.

Intuitively, the energy spectral density captures the frequency content of a

signal and helps identify how its energy is distributed across frequencies.
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A signal x(t) is a power-type signal if the limit

Px = lim
T→∞

1

T

∫ T

2

−T

2

|x(t)|2dt

exists and 0 < Px < ∞. The autocorrelation function of a power-type signal

is defined accordingly as

Rx(τ) , lim
T→∞

1

T

∫ T

2

−T

2

x(t)x∗(t− τ)dt.

We note that the Fourier transform of a power-type signal x(t) need not

exist because it may fail to satisfy condition (4.4). Nevertheless, if truncated

versions of x(t), defined by

xT (t) , x(t)rect

(
t

T

)
,

are energy-type signals, then we can define the Fourier transforms

x̂T (f) , F
[
x(t)rect

(
t

T

)]
.

From this, the power spectral density, which represents the power (per unit

of bandwidth) present at each frequency of the signal, can be defined by

Sx(f) , lim
T→∞

1

T
|x̂T (f)|2.

Intuitively, the power spectral density captures the frequency content of a

signal and helps identify how its power is distributed across frequencies.

Notice how the truncated signal is used to overcome the difficulty of dealing

with infinite-energy signals. This is a common and valuable trick.

Definition 4.2.4. The power spectral density of a power-type signal x(t) is

also given by the Fourier transform of its autocorrelation function,

Sx(f) = F [Rx(τ)].

These two definitions of power spectral density are equivalent under mild

conditions on x(t).

The spectral bandwidth of a signal x(t) is the smallest value of W such

that its spectral density is zero for all |f | > W . An energy-type signal x(t)
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is bandwidth-limited to W if it can be obtained as the inverse Fourier

transform of a function x̂(f), where x̂(f) is identically zero for all |f | > W .

Likewise, a power-type signal is bandwidth-limited to W if its power-spectral

density Sx(f) is identically zero for all |f | > W .

4.2.4 Linear Time-Invariant Filters

The importance of the Fourier transform comes, partly, from its ability to cap-

ture the effects of linear time-invariant filters on deterministic signals. Suppose

that the input to a linear time-invariant filter is x(t), then its output is given

by

y(t) = x(t) ∗ h(t),

where h(t) is the impulse response of the linear filter and ∗ denotes the convo-

lution operator. If we use ĥ(f) to represent the Fourier transform of impulse

response h(t), then the output signal in the frequency domain becomes

ŷ(f) = x̂(f)ĥ(f).

That is, convolution in the time domain becomes multiplication in the fre-

quency domain, a much simpler operation. The output signal can then be

recovered by taking the inverse Fourier transform of ŷ(f),

y(t) = F−1[ŷ(f)] = F−1[x̂(f)ĥ(f)].

This also implies that the spectral density, Gy(f), of y(t) satisfies

Gy(f) = Gx(f)Gh(f).

4.3 Sampling Deterministic Signals

A great deal of inuition about sampling can be gained using the Fourier trans-

form representation for periodic signals developed in Section 4.2.2. Let xs(t)

denote the result of sampling x(t) by impulses at times {nT : n ∈ Z},

xs(t) = x(t)
∞∑

n=−∞

δ(t− nT ) =
∞∑

n=−∞

x(nT )δ(t− nT ).
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Looking at the sampled signal in the frequency domain, we get

x̂s(f) = x̂(f) ∗ F
[

∞∑

n=−∞

δ(t− nT )

]
= x̂(f) ∗ 1

T

∞∑

n=−∞

δ
(
f − n

T

)

=
1

T

∞∑

n=−∞

x̂(f) ∗ δ
(
f − n

T

)
=

1

T

∞∑

n=−∞

∫

R

x̂(ξ) ∗ δ
(
f − ξ − n

T

)
dξ

=
1

T

∞∑

n=−∞

x̂
(
f − n

T

)
,

where we have used (4.11) to express the Fourier transform of an impulse

train. When the sampling rate is fast enough, the translated copies of x̂(f)

contained in the transform x̂s(f) do not overlap, and the original signal can be

recovered using an ideal lowpass filter. However, when the sampling period T

is too small, the various copies of x̂(f) overlap and the content of the original

is partially destroyed. This is know as aliasing.

Figure 4.1: The sampling and reconstruction of a bandwidth-limited signal.

When the sampling rate exceeds twice the bandwidth of the original signal,

this signal can be reconstituted from its sampled values.

A succession of power spectral densities can be found in Figure 4.1. The

top component shows the power spectral density of the original signal. The
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density of the sampled signal appears below. Finally, the reconstruction op-

eration where a lowpass filter is employed to recovered the original function is

illustrated at the bottom of the figure. In contrast, Figure 4.2 exhibits a case

where the sampling frequency is too low. Aliasing in the frequency domain

Figure 4.2: A low sampling frequency leads to aliasing, thereby preventing

reconstruction of the original signal.

prevents the original signal from being retrieved.

Sampling and aliasing are also important in film and video. The illusion

of a moving image in video is achieved by displaying a rapid succession of still

pictures over time. Films are typically shot at a rate of twenty-four frames per

second, whereas the minimum frame rate required to create the appearance

of a moving image is about fifteen frames per second. The human eye acts

as a lowpass filter and transforms the succession of images into a live video.

High-speed cameras are used to record slow-motion playback movies. As a

consequence, they must run at much higher frame-rates than normal cameras.

4.3.1 The Sampling Theorem

The sampling theorem is one of the most significant results in digital commu-

nication and signal processing. Many digital communication systems rely on
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the validity of this theorem and on the design insights it provides for proper

operation.

The basic idea behind the sampling theorem can be summarized in a few

words. If a signal x(t) is bandwidth-limited to W , then this signal can be

reconstructed from a collection of samples so long as the samples are taken

at periodic intervals of T ≤ 1
2W

. A formal version of the sampling theorem

appears below.

Theorem 4.3.1 (Sampling Theorem). Let signal x(t) be a bandwidth-limited

function with bandwidth W . If x(t) is sampled at times {nT : n ∈ Z} where

T ≤ 1
2W

, then it is possible to reconstruct the original signal x(t) from its

sampled points {x(nT ) : n ∈ Z}. Specifically, if T ≤ 1
2W

then

x(t) =
∞∑

n=−∞

x(nT )sinc

(
t

T
− n

)
. (4.13)

Proof. The signal x(t) is bandwidth-limited with bandwidth W . It follows

that x(t) is the inverse Fourier transform of a function x̂(f), where x̂(f) = 0

for all frequencies such that |f | > W . For convenience, we define F = 1
T
and

we stress that W ≤ 1
2T

= F
2
. Thus, x̂(f) = 0 whenever |f | > F

2
. We can apply

the theory of Fourier series introduced in Section 4.1 to express x̂(f) as

x̂(f) =
∞∑

k=−∞

ske
2πi k

F
f rect

(
f

F

)

where the coefficients {sk : k ∈ Z} are equal to

sk =
1

F

∫ F

2

−F

2

x̂(f)e−2πi k

F
fdf.

Special care should be taken when reading these equations because we are

applying Fourier series analysis to a function in the frequency domain. This

can get confusing.
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We can then write x(t) in terms of basis elements,

x(t) = F−1 [x̂(f)] = F−1

[
∞∑

k=−∞

ske
2πi k

F
f rect

(
f

F

)]

=
∞∑

k=−∞

skF−1

[
e2πi

k

F
f rect

(
f

F

)]

=
∞∑

k=−∞

sk
T
sinc

(
t

T
+ k

)
.

Above, we have successively used the scaling and time-shift properties of the

Fourier transform. We can obtain the values of {sk : k ∈ Z} explicitly by

exploiting the characteristics of the sinc(·) function,

x(nT ) =
∞∑

k=−∞

sk
T
sinc

(
nT

T
+ k

)
=

∞∑

k=−∞

sk
T
sinc(n+ k) =

s−n

T
.

Thus, we have sn = Tx(−nT ) and formula (4.13) follows. The sampling rate

F = 2W associated with the sampling period T = 1
2W

is the minimum rate

at which perfect reconstruction is possible. It is called the Nyquist rate in

honor of Swedish-American engineer Harry Nyquist.

4.3.2 Imperfect Sampling and Reconstruction

In practice, it is impossible to measure (i.e., sample) a signal x(t) instanta-

neously. A more realistic model is to assume that the sample value is obtained

through the integral

u(t) =

∫

R

x(τ)p(τ − t)dτ,

for some sampling waveform p(t). In this case, the resulting samples are iden-

tical to the perfect sampling of the filtered waveform u(t) = x(t)∗p(−t). That

is, the sample values are given by

u(nT ) =

∫

R

x(τ)p(τ − nT )dτ.

It also follows that, if no aliasing occurs, this degradation can be eliminated

completely using a discrete-time filter to equalize the resulting samples.
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A similar imperfection occurs during reconstruction. In practice, it is not

possible to weight each sample by the exact sinc interpolation waveform. In-

stead, the samples x(nT ) are weighted by a pulse shape q(t). In this case, the

reconstruction output is given by

y(t) =
∞∑

n=−∞

x(nT )q(t− nT ).

Since q(t − nT ) = δ(t − nT ) ∗ q(t), we can see this instead as perfect recon-

struction followed by filtering and write

y(t) =

(
∞∑

n=−∞

x(nT )δ(t− nT )

)
∗ q(t) = x(t) ∗ q(t).

Again, it follows that this imperfection can be eliminated completely by post-

filtering. In practice, the main advantage of this observation is that one can

jointly optimize p(t), q(t) and the post-filter to provide good performance while

using inexpensive components.

4.4 Sampling Bandlimited Processes*

We know from Theorem 4.3.1 that a bandwidth-limited signal can be perfectly

reconstructed from its samples provided that the sampling rate exceeds twice

the bandwidth of the original signal. At this point, one may wonder whether

it is possible to extend the sampling theorem to bandwidth-limited stochastic

processes. This question is answered in the affirmative below.

Theorem 4.4.1. Suppose that X(t) is a wide-sense stationary bandwidth-

limited process with bandwidth W and power spectral density SX(f). Let X̃(t)

be an approximation for X(t) built from the sampled values {X(nT ) : n ∈ Z},

X̃(t) =
∞∑

n=−∞

X(nT )sinc(2W (t− nT )),

where T = 1
2W

denotes the sampling interval. Then the mean-squared error

between the original random process and the reconstructed version vanishes,

∥∥∥X(t)− X̃(t)
∥∥∥
2

= E



∣∣∣∣∣X(t)−

∞∑

n=−∞

X(nT )sinc(2W (t− nT ))

∣∣∣∣∣

2

 = 0.

(4.14)
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The expectation in (4.14) is over all possible realizations of X(t).

Proof. To establish this result, we expand the mean-squared error of (4.14),

∥∥∥X(t)− X̃(t)
∥∥∥
2

= E



∣∣∣∣∣X(t)−

∞∑

n=−∞

X(nT )sinc(2W (t− nT ))

∣∣∣∣∣

2



= RX(0)−
∞∑

n=−∞

[RX(t− nT ) +RX(t− nT )]sinc(2W (t− nT ))

+
∞∑

n=−∞

∞∑

m=−∞

RX((m− n)T )sinc(2W (t−mT ))sinc(2W (t− nT )).

The double summation above can be rewritten as

∞∑

n=−∞

∞∑

k=−∞

RX(kT )sinc(2W (t− kT − nT ))sinc(2W (t− nT ))

∞∑

n=−∞

(
∞∑

k=−∞

RX(kT )sinc(2W (t− kT − nT ))

)
sinc(2W (t− nT ))

=
∞∑

n=−∞

RX(t− nT )sinc(2W (t− nT )),

where the last equality follows from the sampling theorem for deterministic

signals (Theorem 4.3.1). Putting these results together, we get

∥∥∥X(t)− X̃(t)
∥∥∥
2

= RX(0)−
∞∑

n=−∞

R∗
X(t− nT )sinc(2W (t− nT )).

Applying Theorem 4.3.1 one more time and noticing that RX(0) = R∗
X(0), we

obtain ‖X(t)− X̃(t)‖2 = 0, as desired.

Theorem 4.4.1 is important because it confirms that the design insights

gained from analyzing deterministic signals hold for random signals as well.

4.5 Bandpass Signals and Processes*

One possible application of sampling is to take a continuous-time signal and to

transform it into a discrete-time signal. For instance, this operation gives the
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information coming out of a source a format more suitable for digital commu-

nications. This prime application of sampling served as the original motivation

for our study of the subject. A second possible application of sampling is the

processing of received waveforms at the output of communication channels. In

digital communications, the data often assumes the form of an analog carrier

signal modulated by a digital bit stream. Mathematically, this situation is

captured by the equation

y(t) = x(t) cos(2πfct).

The signal y(t) is a special form of a bandpass signal. Its Fourier transform

ŷ(f) is non-zero only for frequencies contained in a small neighborhood of

carrier frequency fc. That is, ŷ(f) = 0 for all frequencies such that |f − fc| ≥
W . To apply the sampling tools derived above to the information bearing

signal x(t), we need to shift the corresponding spectrum to the origin.

The Fourier transform of y(t) is given by

ŷ(f) =
1

2
x̂(f + fc) +

1

2
x̂(f − fc).

Our strategy is to first eliminate 1
2
x̂(f + fc) from ŷ(f), and then to scale and

shift 1
2
x̂(f + fc) back to the origin. Define the step function by

step(t) =
1

2
+

1

2
sign(t).

Taking the (cavalier) Fourier transform of step(t), we get

F [step(t)] = F
[
1

2
+

1

2
sign(t)

]

=
1

2
δ(f)− 1

2

∫ 0

−∞

e−2πiftdt+
1

2

∫ ∞

0

e−2πiftdt

=
1

2
δ(f) +

1

2πif
.

Using the duality property of the Fourier transform, we get

F−1[step(f)] =
1

2
δ(t) +

i

2πt
.

And, by construction, we obtain x̂(f − fc) = 2step(f)ŷ(f). We can therefore

recover the original lowpass signal x(t) using the frequency-shift property of
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the Fourier transform,

x(t) =

[
y(t) ∗

(
δ(t) +

i

πt

)]
e−2πifct =

[
y(t) + i

(
y(t) ∗ 1

πt

)]
e−2πifct.

The second component of this signal,

y(t) ∗ 1

πt
,

is called the Hilbert transform of y(t). Once x(t) is brought back to base-

band, the standard sampling theorem applies and a discrete-time version of

the signal can be produced.

4.6 Stochastic Signals

A random process (or stochastic process) is an extension of the concept

of random variable to the situation where the values of a signal are not known

beforehand. Mathematically, a stochastic process can be viewed in two differ-

ent ways. First, the process can be thought of as an instantiation of a random

experiment where the outcome is selected from a collection of time functions.

Alternatively, a stochastic process can be viewed as a collection of random

variables indexed by time. If the index set corresponds to the real numbers,

then the process is a continuous-time random process. Whereas if the

index set is discrete, then it is a discrete-time random process. The view-

point where a stochastic process is regarded as a collection of random variables

tends to prevail in the study of digital communications.

Random processes are frequently employed in the design of communication

systems. For example, they can be used to model the data originating from

a source, channel variations, noise and interference. Their importance will

become evident as we progress through these notes. In general, it is difficult

to provide a complete mathematical description for a random process. For

now, we restrict our attention to stationary and ergodic random processes.

Definition 4.6.1 (Stationarity). A random process X(t) is wide-sense sta-

tionary (WSS) if its mean

mX(t) , E[X(t)]
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Figure 4.3: Two distinct abstractions of a random process. It can be viewed

as the output of an experiment where a function is selected at random. Alter-

natively, a random process may be taken as a set of random variables indexed

by time.

is independent of time, and its autocorrelation function, defined by

RX(t1, t2) , E[X(t1)X
∗(t2)],

only depends on the difference between t1 and t2. With a slight abuse of no-

tation, we can denote the mean and autocorrelation of a stationary process

respectively by mX and RX(τ), where τ = t1 − t2.

Definition 4.6.2 (Ergodic). An ergodic theorem asserts that, under certain

conditions, the time average of a random process

〈g(X(t))〉 , lim
T→∞

1

T

∫ T

2

−T

2

g(X(t))dt

exists and is equal to the ensemble average E[g(X(t))] for almost all trajectories

of the random process. When a stochastic process fulfills these conditions, it

is called ergodic.

One of the important characteristics of an ergodic process is that it suf-

fices to look at one realization of the process to infer many of its statistical
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Figure 4.4: For ergodic processes, the time average of a function along a

trajectory is equal to the ensemble average.

attributes. Ergodicity is a very strong property, and it is hard to test and

validate. Rather, it is frequently taken as a premise in the design of commu-

nication systems. For instance, most information sources are assumed to be

stationary and ergodic. Such a postulate appears reasonable, especially con-

sidering the many successful communication systems implemented based on

this assumption.

4.6.1 Power Spectral Density

For a stochastic signal, the definition of the power spectral density is some-

what more intricate because it must account for uncertainty in the process.

Let X(t) be a wide-sense stationary random process with RX(0) < ∞. Then,

we can define

X̂T (f) , F
[
X(t)rect

(
t

T

)]

and

SX(f) , lim
T→∞

1

T
E
[
|X̂T (f)|2

]
.



4.6. STOCHASTIC SIGNALS 61

As we will soon see, the power spectral density plays an instrumental role

in the sampling theorem for random signals. First, we provide a means to

compute SX(f) from its statistical attributes.

Theorem 4.6.3 (Wiener-Khinchin). The power spectral density SX(f) of a

wide-sense stationary random process X(t) is equal to the Fourier transform

of its autocorrelation function, SX(f) = F [RX(τ)].

Proof. For a wide-sense stationary process, we have

SX(f) = lim
T→∞

1

T
E
[
|X̂T (f)|2

]
= lim

T→∞

1

T
E
[
X̂T (f)X̂

∗
T (f)

]

= lim
T→∞

1

T
E

[∫ T

2

−T

2

X(t1)e
−2πift1dt1

∫ T

2

−T

2

X∗(t2)e
2πift2dt2

]

= lim
T→∞

1

T

∫ T

2

−T

2

∫ T

2

−T

2

E [X(t1)X
∗(t2)] e

−2πif(t1−t2)dt1dt2

=

∫

R

RX(τ)e
−2πifτdτ = F [RX(τ)].

The fourth equality is obtained by interchanging the expectation and the inte-

grals, while the sixth equality follows from a change of variables and the fact

that X(t) is wide-sense stationary. To guarantee that the former operation is

legitimate, τRX(τ) must remain finite for all τ .

In some cases, it may be possible to estimate the power spectral density

from a single realization of X(t). For example, the autocorrelation of X(t) is

ergodic if it satisfies

〈X(t)X∗(t− τ)〉 , lim
T→∞

1

T

∫ T

2

−T

2

X(t)X∗(t− τ)dt = E [X(t)X∗(t− τ)] .

In this case, the expectation in the theorem above can be replaced by a time

average and the result can be computed from a single realization.

4.6.2 Filtering Stochastic Processes

We discussed in Section 4.2.4 how the Fourier transform can simplify the anal-

ysis of the effects of linear time-invariant filters on deterministic signals. In

this section, we consider the operation of such filters in the context of random

processes.
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Theorem 4.6.4. If a wide-sense stationary process X(t) with mean mX and

autocorrelation function RX(τ) is passed through a linear time-invariant filter

with impulse response h(t), then the output process Y (t) has mean

mY = mX

∫

R

h(t)dt

and its autocorrelation is equal to

RY (τ) = RX(τ) ∗ h(τ) ∗ h∗(−τ).

Proof. The output process at time t is given by Y (t) =
∫
R
X(t− ξ)h(ξ)dξ. We

can therefore obtain the expectation of Y (t) as follows,

mY (t) = E

[∫

R

X(t− ξ)h(ξ)dξ

]
=

∫

R

E [X(t− ξ)]h(ξ)dξ

= mX

∫

R

h(ξ)dξ.

We emphasize that mY is independent of time.

To derive the autocorrelation function for Y (t), we first compute the cross-

correlation between X(t) and Y (t),

E[X(t1)Y
∗(t2)] = E

[
X(t1)

∫

R

X∗(ξ)h∗(t2 − ξ)dξ

]

=

∫

R

E [X(t1)X
∗(ξ)]h∗(t2 − ξ)dξ

=

∫

R

RX(t1 − ξ)h∗(t2 − ξ)dξ

= RX(τ) ∗ h∗(−τ).

(4.15)

This shows that the cross-correlation between X(t) and Y (t) depends only on

τ ; we can therefore express it as RXY (τ). We are now ready to compute the

autocorrelation function for Y (t).

E[Y (t1)Y
∗(t2)] = E

[∫

R

X(ξ)h(t1 − ξ)dξY ∗(t2)

]

=

∫

R

E [X(ξ)Y ∗(t2)]h(t1 − ξ)dξ

=

∫

R

RXY (ξ − t2)h(t1 − ξ)dξ

= RXY (τ) ∗ h(τ).

(4.16)
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Substituting RXY (τ) by the equivalent expression RX(τ)∗h∗(−τ) from (4.15),

we get the desired result. We observe that the autocorrelation of the process

Y (t) only depends on the difference between t1 and t2, and hence Y (t) is also

wide-sense stationary.

Obtaining an expression for the autocorrelation function corresponding to

the output of a linear time-invariant filter allows us to characterize the power

spectral density of the output process. In terms of the frequency representa-

tion, we get mY = mX ĥ(0) and

SY (f) = F [RY (τ)]

= F [RX(τ) ∗ h(τ) ∗ h∗(−τ)]

= SX(f)|ĥ(f)|2.

A linear time-invariant filter can be employed to shape the spectrum of a

stochastic process, and to constrain its bandwidth. This is an important result,

as linear filters can be used to reduce the bandwidth of a random signal before

sampling or to reconstruct a random signal from its samples.

4.6.3 Gaussian Processes

A stochastic process X(t) is a Gaussian process if, for any finite set of sam-

pling times t1, t2, . . . , tn, the resulting random variablesX(t1), X(t2), . . . , X(tn)

are jointly Gaussian random variables. The distribution of jointly Gaussian

random variables is completely determined by their mean vector and correla-

tion matrix. Therefore, a Gaussian process is completely determined by its

mean function mX(t) and its autocorrelation function RXX(t1, t2). Of course,

if the process is also wide-sense stationary, then this reduces to its mean value

mX and its autocorrelation function RX(τ).

More generally, one finds that, for any finite set of energy-type signals

s1(t), s2(t), . . . , sn(t), the random variables

Zi =

∫ ∞

−∞

s(t)X(t)dt

are jointly Gaussian. The intuition behind this is that each integral is de-

fined as the limit of a sequence of Riemann sums. Since each Riemann sum



64 CHAPTER 4. FOURIER ANALYSIS AND SAMPLING

is simply the sum of Gaussian random variables, it is also Gaussian. This ar-

gument can be extended to show that the mean vector and correlation matrix

of the vector (Z1, Z2, . . . , Zn) is also jointly Gaussian. In fact, combining this

with Theorem 4.6.4, implies that the output of linear time-invariant system,

whose input is a wide-sense stationary Gaussian process, is also a wide-sense

stationary Gaussian process.

The most common random process in signal processing and communica-

tions is the Gaussian white-noise process N(t). This process is defined to

be a zero-mean wide-sense stationary Gaussian process whose power spectral

density SN(f) is constant (e.g., 1). Since this process has infinite power, it

is not particularly well-defined mathematically. Still, we can use the cavalier

Fourier transform F [1] = δ(t) to argue that the autocorrelation function of

N(t) should be RN(τ) = δ(τ). In practice, this is not a problem because N(t)

is only used as the input to a linear filter whose output process is guaranteed

to have finite power.



Chapter 5

Quantization

As mentioned in the introduction, two operations are necessary to transform

an analog waveform into a digital signal. The first action, sampling, consists of

converting a continuous-time input into a discrete-time function. The second

operation is the process of approximating continuous-space sample values by

a discrete set of possible points. This process, termed quantization, is also

essential to transmit an analog signal over digital media. Quantization invari-

ably induces a loss in signal quality. The distortion between the original and

quantized functions is usually unwanted, and cannot be reversed. Yet, for a

specific application, the level of signal degradation can be controlled.

In this chapter, we focus primarily on the quantization of real numbers.

The techniques described here can easily be extended to complex numbers by

quantizing the real and imaginary parts separately. In a more abstract sense,

the quantization of a complex number is equivalent to vector quantization for

a pair of real numbers.

5.1 Scalar Quantizers

Quantizers can generally be designed to be very robust for a large class of

signals. In scalar quantization, each source value is processed individually; the

input value is mapped to an output taking one of finitely many values. The

number of quantization levels is typically chosen to be a power-of-2 because

the outputs are usually represented using binary strings. Mathematically, a

65
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quantizer is a function taking value in a finite set. The input to the quantizer

is a real number and the output belongs to set Q. Then, one can define the

quantizer as a function Q : R 7→ Q with output

xq = Q(x).

This is perhaps best seen through an example.

Example 5.1.1. Let Q : R 7→ Q be a quantizer with four possible outputs

labeled q1 through q4. The output xq of the quantizer belongs to set Q, and it

must therefore be equal to one of the four possible points listed above. Figure 5.1

shows the functional representation of a four-level quantization scheme. The

q1

q2

q3

q4

O
u
tp
u
t

Input

Figure 5.1: This is a functional representation of a quantizer where the input

is converted to one of four possible values.

output of the quantizer in this example is determined according to a nearest

neighbor rule and this implies that

Q(x) =





q1 if x < q1+q2
2

q2 if q1+q2
2

≤ x < q2+q3
2

q3 if q2+q3
2

≤ x < q3+q4
2

q4 if x ≥ q3+q4
2

.

We note that this quantization function is not one-to-one and, therefore, does

not have an inverse.
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5.2 Distortion Measures

To compare different quantizers, a performance metric must be established. A

common distortion measure with desirable properties is the square of the error

d(x, xq) = |x−Q(x)|2 , (5.1)

where x− xq is called the quantization error. The expression in (5.1) mea-

sures how close the output xq is to the input for a specific value of x. It is

popular in communications and signal processing because it is proportional to

the increase in noise power caused by quantization.

When a quantizer is employed to discretize the value of a sampled wave-

form, it is appropriate to evaluate the performance of the quantizer in terms

of the difference between the original function and the reconstructed version

rather than the distortion between the sample values themselves. Suppose that

x(t) is a bandwidth-limited process with bandwidth W . We know that this

process can be accurately recovered from the sampled values {x(nT ) : n ∈ Z}
using the formula

x(t) =
∞∑

n=−∞

x(nT )sinc

(
t

T
− n

)

where T ≤ 1
2W

. Assume that the sampled values are quantized before recon-

struction, with

xq(nT ) = Q(x(nT )).

A legitimate question is, how close is the approximation xq(t) to the original

signal x(t) using the quantized data

xq(t) =
∞∑

n=−∞

xq(nT )sinc

(
t

T
− n

)
,

is anywhere close to x(t). A useful performance criterion is the energy in the

qunatization error signal,

∫

R

|x(t)− xq(t)|2 dt,

which quantifies the total distortion between the original and reconstructed
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signals. Using Parseval’s identity, we get
∫

R

|x(t)− xq(t)|2 dt =
∫

R

|x̂(f)− x̂q(f)|2 df

=

∫

R

∣∣∣∣∣

∞∑

n=−∞

(x(nT )− xq(nT ))

2W
e2πi

n

2W
f rect

(
f

2W

)∣∣∣∣∣

2

df

=
∞∑

n=−∞

|x(nT )− xq(nT )|2.

Above, we have used the fact that the basis elements
{
e2πi

n

2W
f rect

(
f

2W

)
: n ∈ Z

}

are orthogonal. In some sense, minimizing the quantization error for individ-

ual samples turns out to also minimize the overall squared error between the

original and reconstructed waveforms x(t) and xq(t).

5.2.1 Mean Squared Error

Since the quantizer is designed to operate on an information signal, a more rel-

evant assessment of performance weighs in the accuracy of the quantizer over

all possible realizations of the random input, as opposed to a specific realiza-

tion. An appropriate distortion measure for the quantization of a stochastic

signal is provided by the mean squared error (MSE),

E[d(X,Xq)] = E
[
(X −Q(X))2

]
. (5.2)

Note that this performance metric depends on the distribution of the input

signal, and hence is tied to a specific application. A quantizer can be said to

work well in a particular context. However, describing the performance of a

quantization scheme without specifying the distribution of its input signal is

meaningless.

Example 5.2.1. Suppose that the values of a discrete-time information signal

are uniformly distributed over [0, 16]. Furthermore, assume that the quantizer

implements a nearest neighbor rule with quantization levels equal to qm =

2m − 1 for m = 1, 2, . . . , 8. We wish to find the mean squared error of this

quantization scheme.
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Being uniformly distributed, the probability density function of the input is

fX(x) =
1

16

for x ∈ [0, 16], and zero otherwise. The decision regions corresponding to

the various quantization points are given by [0, 2], (2, 4], . . . , (14, 16]. We can

therefore compute the mean squared error as follows,

E[d(X,Xq)] = E
[
(X −Q(X))2

]
=

∫ 16

0

(x−Q(x))2

16
dx

=
8∑

m=1

∫ 2m

2m−2

(x− (2m− 1))2

16
dx

=
1

2

∫ 2

0

(x− 1)2dx =
1

3
.

That is, the mean squared error associated with this input distribution and

quantization scheme is E [(X −Q(X))2] = 1
3
.

5.2.2 Signal to Quantization-Noise Ratio

One of the criticisms about the MSE of (5.2) is that it has a tendency to

assign a larger distortion value to signal input with larger second moments.

Indeed, an information process likely to feature large amplitudes is bound to

yield outputs with a large mean squared error. On the other hand, under this

absolute metric, most quantizers may appear to work well for minute signals as

their mean squared errors are destined to remain small. A normalized version

of this criterion that takes into consideration the power of the original signal

is the signal-to-quantization-noise ratio (SQNR),

SQNR =
E [X2]

E [(X −Q(X))2]
. (5.3)

Because of the implicit normalization associated with (5.3), this latter mea-

sure is more suitable to compare quantizer performance for different input

processes. Like many quantities in communications and signal processing, the

value is often specified in decibels by applying the function 10 log10(·).

Example 5.2.2. Assume that the values of a discrete-time information signal

are uniformly distributed over [0, 2]. We denote the input signal in the present
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problem using Y . We wish to obtain the mean squared error associated with

the quantizer of Example 5.2.1, applied to the signal at hand. Also, we wish

to compare the SQNR of the quantization scheme of Example 5.2.1 with the

SQNR of the scenario described in this example.

To derive the mean squared error, we follow the same steps as before

E[d(Y, Yq)] =

∫ 2

0

(y −Q(y))2

2
dy

=
1

2

∫ 2

0

(y − 1)2dy =
1

3
.

We notice that the MSE is the same as the one derived in Example 5.2.1.

Nevertheless, the quantization scheme seems more suited to the signal described

in the previous example. The SQNR of the current scheme is given by

SQNR =
E[Y 2]

E[d(Y, Yq)]
= 3E[Y 2] = 4 ≈ 6.02 dB.

This can be compared with the SQNR of the problem featured in Example 5.2.1,

which is given by

SQNR =
E[X2]

E[d(X,Xq)]
= 3E[X2] = 256 ≈ 24.08 dB. (5.4)

Obviously, the SQNR is much better in the case of Example 5.2.1. Can you

think of an eight-level quantization scheme that would perform better for the

current problem, perhaps rivaling the SQNR of (5.4)?

Both the mean squared error and the signal-to-quantization-noise ratio are

valid and meaningful ways to present performance results for quantization

schemes. Still, they must be put in proper context, especially when compar-

ing scenarios where the distributions of the input signals differ. For a fixed

input process, a quantization scheme that minimizes the MSE will invariably

maximize the SQNR.
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Example 5.2.3 (Quantization Rule). Consider a signal whose amplitude is

bounded between -1 and 1 and whose amplitude distribution has a uniform dis-

tribution over the same range. Suppose that n bits are represent 2n uniformly

spaced quantization levels qm = −1 − 2−n + m2−n+1 for m = 1, . . . , 2n. The

performance as a function of n is typically approximated by the rule that the

SQNR increases by 6.02 dB per bit for additional quantization bits.

We can understand this by analyzing the quantizer function, which is

Q(x) =





−1 + 2−n if x < −1

1
2n−1

(
⌊2n−1x⌋+ 1

2

)
if − 1 ≤ x < 1

1− 2−n if x ≥ 1.

By symmetry, the distribution of the quantization error is the same for each

quantization cell so it suffices to calcluate

E
[
(X −Q(X))2

∣∣Q(X) = q
]
=

∫ q+2−n

q−2−n

fX|Q(X)=q(x)(x− q)2dx

=

∫ 2−n

−2−n

2n−1x2dx = 2n−12
−3n+1

3
=

2−2n

3
.

The SQNR in decibels is therefore given by

SQNR = 10 log10

(
3E[X2]

2−2n

)
= PX + 10 log10 3 + 20n log10 2

≈ PX + 4.77 + 6.02n dB.

Since E[X2] = 2/3, we have PX ≈ −1.76 dB and the SQNR simplifies to

SQNR ≈ 3.01 + 6.02n dB.

What is surprising is that, for large n, this rule holds for any continu-

ous amplitude distribution supported on [−1, 1]. This can be understood by

repeating the above computation for an arbitrary continuous amplitude distri-

bution fX(x). As n increases, the width of each quantization cell (i.e., 2−n+1)

decreases rapidly and the amplitude distribution becomes essentially constant

over each quantization cell. Therefore, the conditional amplitude distribution,

given the reconstruction point, satisfies

fX|Q(X)=q(x|q) ≈




2−n+1 if q − 2−n ≤ x < q + 2−n

0 otherwise.
.
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5.2.3 Dithering

While the SQNR accurately measures the increase in noise power caused by

quantization, it does not give any information about the spectral content of

the quantization noise. For many applications, it is also important that the

quantization noise be white (i.e., uncorrelated in time). To see the prob-

lem with standard quantization, consider the periodic signal xn that satisfies

xn+N = xn. In this case, the quantized version yn = Q(xn) and the quan-

tization error en = yn − xn are also periodic. Therefore, the spectral energy

of the quantization noise is concentrated in the harmonics of the fundamental

frequency.

Since the quantizer affects only one value at a time, one may wonder

how the quantization noise becomes correlated. The mechanism for this phe-

nomenon can be explained through the fact that the quantization noise is cor-

related with the input value. For example, one can compute this correlation

for the quantizer in Example 5.2.1 and obtain

E [X (X −Q(X))] =

∫ 16

0

x(x−Q(x))

16
dx

=
8∑

m=1

∫ 2m

2m−2

x(x− (2m− 1))

16
dx

=
8∑

m=1

∫ 2m

2m−2

x(x− (2m− 1))

16
dx

=
1

2

∫ 2

0

(x+ (2m− 2))(x− 1)dx

=
1

2

∫ 2

0

x(x− 1)dx =
1

3
.

From this, we see that the correlation is the same as the MSE. This means

that quantizing a pure sinusoid will typically create new spurious harmonics

whose powers are proportional to the power in the original sinusoid.

The process of adding a small amount of noise before quantization is called

dithering. Of course, the added noise increases the overall noise power in

the system by a small amount. But, if the noise sequence is chosen to be

independent and uniformly distributed over one quantization interval, then

correlation becomes exactly zero. To see this, we use the quantizer Q(x) =
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2⌊x/2⌋ + 1 and let Z be a uniform random variable on [−1, 1]. In this case,

we get

E [Q(X + Z)|X = x] =

∫ 1

−1

1

2
Q(x+ z)dz =

∫ 1

−1

1

2

(
2

⌊
x+ z

2

⌋
+ 1

)
dz

=

∫ x+1
2

x−1
2

(
⌊y⌋+ 1

2

)
2 dy = 1 + 2

∫ x+1
2

x−1
2

⌊y⌋ dy

= 1 + 2

(⌊
x− 1

2

⌋(
1−

{
x− 1

2

})
+

(⌊
x− 1

2

⌋
+ 1

){
x− 1

2

})

= 1 + 2

(⌊
x− 1

2

⌋
+

{
x− 1

2

})

= 1 + 2
x− 1

2
= x,

where {x} , x− ⌊x⌋. Using this, we can compute

E [X (X −Q(X + Z))] =

∫ ∞

−∞

fX(x)

∫ 1

−1

fZ(z)x(x−Q(x+ z)) dz dx

=

∫ ∞

−∞

fX(x)x(x− x) dx = 0.

This implies that the quantization noise is uncorrelated with the signal. With

a little more work, one can also show that it is white (i.e., uncorrelated with

time-shifts of itself).

5.2.4 Non-Uniform Quantization via Companding

Uniform quantizers are quite robust because their performance is relatively in-

sensitive to the input distribution. When the input statistics are not uniform,

it is possible to design a non-uniform quantizer with the same number of levels

and lower SQNR. One way of doing this is by quantizing the signal after it

is processed by a compressor. After reconstruction, an expander is used

to reverse the effect of the compresor. Since quantization occurs after com-

pression, the quanitization levels are effectively remapped by the compressor.

This whole process is called companding.

Assuming the amplitude distribution is supported on [−x0, x0], we can de-

fine the compressor g(x) to be a strictly increasing function mapping [−x0, x0]
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to [−1, 1]. Then, one has Xq = g−1 (Q (g(X))), where Q(·) is a uniform quan-

tizer with step size ∆. When ∆ is small, the step size ∆x after compression

can be approximated by

∆x ≈ ∆

g′(x)
.

This allows one to approximate the quantization noise variance by

E
[
(Xq −X)2

]
≈
∫ x0

−x0

fX(x)
∆2

x

12
dx =

∆2

12

∫ x0

−x0

fX(x)

g′(x)2
dx.

This equation for the noise variance is an instance of the Euler-Lagrange equa-

tion. Therefore, it can be minimized over g(x) using the calculus of variations

and the optimum compressor is defined by

g(x) ∝
∫ x

−x0

3
√

fX(z)dz −
∫ x0

x

3
√
fX(z)dz.

For signals with a wide dynamic range, the SQNR depends heavily on

the local average signal power. Using a logarithmic compressor allows one

efficiently quantize these signal so that the SQNR is independent of local

signal power. Since larger quantization cells are used for large signal values,

the quantization noise naturally scales with the signal power. For audio signals,

the perceptual effect of noise also depends more on the SQNR than the noise

power. Therefore, logarithmic compression is natural choice for such signals.

In fact, transforms of this type have been standardized for use in the tele-

phone system. The standard transform in the United States is called µ-law

companding and maps uniformly spaced 14-bit samples into non-uniformly

spaced 8-bit samples. The resulting distortion is not easily detectable by the

human ear. The µ-law companding algorithm maps [−1, 1] to [−1, 1] using the

rule, for some µ > 0,

g(x) = sgn(x)
ln (1 + µ|x|)
ln(1 + µ)

.

The benefits of companding are actually due to two different mechanisms.

First, the amplitude distribution of speech decays rapidly, so it makes sense to

include more quantization levels in the small signal range. Adjusting for this

correctly actually increases the SQNR. Second, human perception of audio de-

pends on the SQNR instead of the noise power. So, matching the quantization

noise to the perceptual measure improves perceived quality. In many cases,
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however, it is possible that the SQNR decreases while the perceived quality

increases.

5.3 Predictive Quantization

5.3.1 Delta Modulation

When a signal has a wide dynamic range but changes relatively slowly, it can

be more effective to quantize the difference between adjacent sample samples.

In this case, one can use differential quantization to construct the quantized

sequence X̃n from the input sequence Xn using the rule

X̃n = αX̃n−1 +Q
(
Xn − αX̃n−1

)
,

for any positive α ≤ 1. In this system, only the sequence Yn = Q
(
Xn − αX̃n−1

)

must be transmitted or stored. The receiver simply reconstructs the quantized

sequence using X̃n = αX̃n−1 + Yn.

This system is called delta modulation when a one-bit quantizer,

Q(x) =




+∆ if x ≥ 0

−∆ if x < 0
,

is used. In this case, the signal is typically sampled at a rate much higher than

the Nyquist rate (i.e., oversampled) to handle rapid changes in the signal. If

the sample rate is F , then the maximum signal slope that can be tracked is

∆F . The distortion caused by the input signal changing faster than this rate

is called slope overload noise. For a sinusoidal signal x(t) = A cos(2πft),

this effect can be avoided by choosing ∆ so that

max
t

|x′(t)| = 2πAf ≤ ∆F.

For a slowly varying signal, the noise due to the quantization step size ∆

is called granular noise. If the difference in signal amplitude is uniform over

[−∆,∆], then the granular noise power is given by

σ2
G =

∫ 0

−∆

1

2∆
(x+∆)2 dx+

∫ ∆

0

1

2∆
(x−∆)2 dx =

∆2

3
.
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Choosing ∆ ≥ 2πAf/F to avoid slope overload noise implies that

σ2
G ≥ 4π2A2f 2

3F 2
.

Since the signal power in the sinusoid x(t) is A2/2, this gives

SQNR =
A2

2σ2
G

≤ 3F 2

8π2f 2
.

Comparing the bit rate versus noise power of this system to standard quanti-

zation shows that delta modulation is sometimes better for moderate to low

SQNR.

The differential quantization scheme described here is a particular case of

a more general approach where the next sample is predicted from the previous

samples and subtracted before quantzation. Using better prediction allows

one to quantize a residual signal that has less variation.

5.3.2 Estimation and Prediction

Let X, Y be joint random variables defined on common sample space. If X, Y

are not independent, then it is often possible to estimate X from Y . For

example, let X̂ = g(Y ) be an estimate of X from Y based on the arbitrary

function g : R → R. If Y = y, then the MSE of this estimate is given by

E
[
(X − g(y))2|Y = y

]
= E

[
X2|Y = y

]
− 2g(y)E [X|Y = y] + g(y)2.

One can minimize the MSE, for the case where Y = y, by taking the derivative

w.r.t. to g(y). This shows that g(y) = E [X|Y = y] minimizes the MSE and

leads to a general rule that says “The MMSE estimate (i.e., the minimum

mean-squared error estimate) is given by the conditional mean of the random

variable given the observation”. Computing the conditional mean, however,

can be difficult in many cases.

It turns out that less information is required if we restrict our attention

to linear predictors of the form g(y) = ay + b. Computing the MSE for this

choice of g(·) gives

E
[
(X − g(Y ))2

]
= E

[
(X − aY − b)2

]

= E
[
X2
]
− 2E [X(aY + b)] + E

[
(aY + b)2

]

= E
[
X2
]
− 2aE [XY ]− 2bE [X] + a2E

[
Y 2
]
+ 2abE [Y ] + b2.
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In this case, one can minimize the MSE by taking derivatives w.r.t. a, b. This

results in

a =
E[X]E[Y ]− E[XY ]

E[Y ]2 − E[Y 2]
b = E[X]− aE[Y ].

This is known as the LMMSE estimate (i.e., the linear minimum mean-

square error estimate).

More generally, linear prediction can be applied to random processes

X0, X1, X2, . . .. In this case, the m-th order linear prediction is given by

X̂n =
m∑

i=1

aiXn−i.

Optimizing the coefficients a1, . . . , am leads to the matrix equation Ra = p,

where Rij = E [Xn−iXn−j] and pi = E [XnXn−i]. This type of linear prediction

is often used to analyze stationary signals. In this case, the matrix R and the

vector p become independent of n.

Linear prediction is also the basis of many speech analysis techniques (e.g.,

speech compression and speech recognition). Since speech signals appear sta-

tionary when viewed in 5-10 ms blocks, the optimizing the prediction coeffi-

cients for a short block creates a prediction filter for that block. These predic-

tion filters are typically used to remove the effect of the throat-tongue-mouth

filter and leave only the glottal pulses generated by the vocal chords. Most of

the information in a speech signal is actually carried by the linear prediction

coefficients themselves because the glottal pulses define only the pitch and

timbre of a voice.

5.4 Optimal Quantization

5.4.1 Uniform Quantizers

Finding an optimal quantizer is not an easy task. An eight-level quantizer has

eight degrees of freedom, and the overall performance of the quantizer is jointly

determined by the positions of the quantization points. A means to reduce

the difficulty of identifying an optimal quantization scheme is to constrain the

possible candidates. This can be achieved, for instance, by imposing a rule on

the respective position of the quantization points. Restricting the search space
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to uniform quantizers is one possible way to ensure that an optimal quantizer

can be found.

A uniform quantizer is a function where the locations of successive out-

puts are situated at a fixed interval, qm− qm−1 = ∆ for all the possible values.

That is, the distance between two quantization points is the same for all neigh-

bors. This scheme is one of the simplest quantizer designs. The quantization

function considered in Figure 5.1 is in fact a uniform quantizer. If the ob-

jective function of the optimization process is the mean squared error, then

optimal locations for the quantization points can be found in a straightforward

manner. First, note that we can write the position of the quantization points

as

qm = q1 + (m− 1)∆

for m = 1, 2, . . . ,M where M is the number quantization levels. As usual, the

MSE is given by

E[d(X,Xq)] =

∫

R

(x−Q(x))2fX(x)dx.

We emphasize that the performance of the quantizer is optimized by mini-

mizing the value of the integrand at each point. We deduce that the decision

regions corresponding to q1, q2, . . . , qM must be equal to

(
−∞, q1 +

∆

2

]
,

(
q2 −

∆

2
, q2 +

∆

2

]
, . . . ,

(
qM − ∆

2
,∞
)
,

respectively. The objective function then becomes

MSE =

∫ q1+
∆
2

−∞

(x− q1)
2fX(x)dx+

M−1∑

m=2

∫ qm+∆
2

qm−∆
2

(x− qm)
2fX(x)dx

+

∫ ∞

qM−∆
2

(x− qM)2fX(x)dx.

(5.5)

The resulting optimization process has two degrees of freedom, namely q1 and

∆. For a suitable probability density function fX(·), an optimal solution can

be obtained explicitly using standard optimization methods.

Example 5.4.1. We revisit Example 5.2.1 in the context of uniform quan-

tizers. Again, suppose that the values of the discrete-time input process are
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uniformly distributed over [0, 16]. We wish to find the optimal eight-level uni-

form quantizer associated with this input distribution.

For simplicity, we assume that the quantization points {q1, q2, . . . , q8} are

contained in the interval [0, 16]. This implies that q1 > 0 and q8 < 16. The

mean squared error as a function of q1 and ∆ is given by (5.5), which we can

rewrite as

MSE (q1,∆) =

∫ ∆
2

−q1

ξ2

16
dξ + 6

∫ ∆
2

−∆
2

ξ2

16
dξ +

∫ 16−q8

−∆
2

ξ2

16
dξ

Recall that, by construction, we can write q8 = q1+7∆. Taking first derivatives

with respect to q1 and ∆, we obtain

∂

∂q1
MSE (q1,∆) =

q21
16

− (16− q1 − 7∆)2

16

∂

∂∆
MSE (q1,∆) =

7∆2

64
− 7(16− q1 − 7∆)2

16
.

Setting these derivatives equal to zero, we get q1 = 1 and ∆ = 2. A second

derivative test ensures that this corresponds to a local minimum. Since this

point is the only inflection point of the function MSE (q1,∆) within our search

space, we gather that the quantization scheme of Example 5.2.1 coincide with

the optimal uniform quantizer.

Although the search space for uniform quantizers is much smaller than the

set of all possible quantizers, finding an optimal uniform quantizer remains a

strenuous task in most situations. The resulting minimization problem need

not have a closed-form solution, in contrast to Example 5.4.1. This task is

often accomplished by discretizing the search space and applying numerical

techniques to identify the best candidate.

5.4.2 Non-Uniform Quantizers

For a non-uniform quantizer, the restriction that neighboring quantization

points should be equidistant is relaxed. As such, these points can be located

anywhere on the real line, and the decision region corresponding to each quan-

tization point need not have a simple structure. The collection of non-uniform

quantizers is much larger then the set of uniform quantizers described in Sec-

tion 5.4.1. This greater flexibility in choosing a quantizer often results in
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better overall performance. However, it also comes with added complexity in

designing the quantization scheme. In this section, we explore some properties

of an optimal quantizer for the mean squared error criterion and we present

an algorithm that can be employed to obtain a non-uniform quantizer.

First, suppose that the quantization points {qm : m = 1, . . . ,M} are fixed.

An optimal quantizer for these points is a function Q⋆ : R 7→ Q that minimizes

the corresponding MSE,

min
Q

E[d(X,Xq)] = min
Q

∫

R

(x−Q(x))2fX(x)dx

=

∫

R

min
Q(x)

(x−Q(x))2fX(x)dx.

The last equality follows from the fact that a quantization point can be selected

independently for every possible input value. It should then be clear that the

value of the function Q⋆(·) evaluated at x is the point qm that is closest to x,

Q⋆(x) = argmin
{qm}

(x− qm)
2,

where ties can be broken arbitrarily. In particular, an optimal M -level scalar

quantizer always has M decision regions, each being an interval containing its

quantization point.

Also, we can assume that the decision intervals are given. Let the bound-

aries of these intervals be denoted by b1, b2, . . . , bM−1. Then, the corresponding

MSE is given by

∫ b1

−∞

(x− q1)
2fX(x)dx+

M−1∑

m=2

∫ bm

bm−1

(x− qm)
2fX(x)dx

+

∫ ∞

bM−1

(x− qM)2fX(x)dx.

(5.6)

The value of the MSE can be minimized by selecting the quantization points

{qm : m = 1, . . . ,M} appropriately. Note that each quantization point can be

optimized individually, as the integrals in (5.6) have a nice additive structure.

Solving one instance of the decoupled problem, we get

q⋆m = min
qm

∫ bm

bm−1

(x− qm)
2fX(x)dx.
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To obtain the solution, we differentiate the objective function with respect to

qm and set the derivative equal to zero;

d

dqm

∫ bm

bm−1

(x− qm)
2fX(x)dx = −

∫ bm

bm−1

2(x− qm)fX(x)dx = 0.

This implies that

q⋆m = E[X|bm−1 < X ≤ bm].

Once the decision intervals are picked, the optimal quantization point q⋆m is

equal to the expectation of X conditioned on X falling inside interval m.

Putting these two observations together, we can summarized the properties

of an optimal M -level quantizer as follows. Suppose that Q⋆ : R 7→ Q is an

optimal quantizer with respect to the mean squared error criterion (or the

signal-to-quantization-noise ratio). Then, the decision regions corresponding

to the quantization points {qm : m = 1, . . . ,M} form a partition of the real

line where each decision set is an interval. Given the positions of the various

quantization points {qm : m = 1, . . . ,M}, the boundaries of the decision

intervals are given by

bm =
qm + qm+1

2

wherem = 1, 2, . . . ,M−1. Furthermore, the quantization point corresponding

to decision interval (bm−1, bm] is equal to the expectation of X conditioned on

bm−1 < X ≤ bm. These properties are collectively known as the Lloyd-Max

conditions.

5.4.3 Lloyd-Max Algorithm

The Lloyd-Max conditions enumerated above define a set of rules that are

necessarily fulfilled by optimal quantizers. Yet, they do not provide an explicit

means to compute the exact positions of the quantization points in an optimal

quantizer. Furthermore, it may not be possible to find these points analytically.

A method that is frequently used to find a non-uniform scalar quantizer is

the Lloyd-Max algorithm. This algorithm starts with an initial assignment

for the quantization points which, in this case, we label q
(0)
1 , q

(0)
2 , . . . , q

(0)
M . The

ensuring procedure is to alternate iteratively between the following two steps.
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1. Compute the boundaries of the decision intervals according to

b(t)m =
q
(t)
m + q

(t)
m+1

2
, m = 1, 2, . . . ,M − 1.

2. Find the updated values of the quantization points,

q(t+1)
m = E[X|bm−1 < X ≤ bm], m = 1, 2, . . . ,M.

We adopt the simplifying notation b0 = −∞ and bM = ∞ to express the

conditional expectation in a consistent manner. The MSE of the quantization

scheme decreases at every step, thereby becoming smaller than the MSE of all

the previous assignments. This insures that performance improves with every

iteration. The algorithm terminates when a satisfactory level of performance

has been achieved, or when the quantization points have converged to their

final values.

5.5 Vector Quantizers

A quantizer can work either on single-source outputs or on blocks of source

outputs. So far, we have studied the former approach by focusing on scalar

quantizers. Although more involved, the second method where multiple out-

puts are aggregated prior to being quantized typically yields better results.

This latter approach, called vector quantization, is especially powerful for

sources producing signals that are strongly correlated over time. We do not ex-

plore the details of vector quantization in this document, however we motivate

its purpose through a simple example.

Example 5.5.1. Assume that a source produces two correlated symbols, de-

noted X and Y . We are tasked with designing a vector quantizer for this source

with a total of four quantization points. The joint probability distribution func-

tion associated with this source is known to be

fX,Y (x, y) =
1

4
g(x+ 1.5, y + 1.5) +

1

4
g(x+ 0.5, y + 0.5)

+
1

4
g(x− 0.5, y − 0.5) +

1

4
g(x− 1.5, y − 1.5),

(5.7)



5.5. VECTOR QUANTIZERS 83

where the function g(·, ·) is given by

g(x, y) =




1, |x|, |y| < 0.5

0, otherwise.

For illustrative purposes, fX,Y (·, ·) is shown in Figure 5.2. The four quanti-

x

y fX,Y (·, ·)

Figure 5.2: A graphical rendering of the joint probability density function

defined in (5.7).

zation points for the vector quantizer are located at q1 = (−1.5,−1.5), q2 =

(−0.5,−0.5), q3 = (0.5, 0.5), and q4 = (1.5, 1.5). Let Q(x, y) the the quantizer

function that maps each (x, y) point to its nearest q-quantization point. Then,

the MSE associated with this vector quantizer can be computed as

E
[
‖(X, Y )−Q(X, Y )‖2

]

=

∫ ∞

−∞

∫ ∞

−∞

‖(x, y)−Q(x, y)‖2fX,Y (x, y)dxdy

= 4

∫ 0.5

−0.5

∫ 0.5

−0.5

x2 + y2

4
dxdy =

1

6
.

That is, the MSE per pair of symbols associated with our vector quantizer is
1
6
. Note that we have used an extended version of the mean squared error that

accounts for the 2-D aspect of the problem.

Suppose instead that we wish to use an optimal scalar quantizer instead of

the aforementioned vector quantizer. We are then left with two quantization
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points per axis. The marginal distributions of the source symbols are given by

fX(ϕ) = fY (ϕ) =





1
4
, |ϕ| < 2

0, otherwise.

The optimal scalar quantization scheme in this case is to put one point at −1

and the other at 1. Once combined, the two scalar quantizers are equivalent to

having points at r1 = (1, 1), r2 = (−1, 1), r3 = (−1,−1), and r4 = (1,−1) in

the plane. Let R(x, y) the the quantizer function that maps each (x, y) point to

its nearest r-quantization point. Then, the resulting MSE per pair of symbols

becomes

E
[
‖(X, Y )−R(X, Y )‖2

]

=

∫ ∞

−∞

∫ ∞

−∞

‖(x, y)−R(x, y)‖2 fX,Y (x, y)dxdy

= 4

∫ 1

0

∫ 1

0

x2 + y2

4
dxdy =

2

3
.

Comparing with our previous result, we notice that the MSE is much larger

when using the scalar approach.

q1

q2

q3

q4

r1r2

r3 r4

x

y

Figure 5.3: A graphical comparison of vector and scalar quantization schemes

applied to the two-dimensional problem of Example 5.5.1.

Although this example may not be the most realistic scenario, it provides

a good illustration of the potential benefits associated with using vector quan-
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tizers. The improved performance comes from the greater flexibility in posi-

tioning the various quantization points in a high-dimensional setting together

with the ability to exploit correlation among consecutive source symbols. On

the downside, the mathematical treatment of a quantization problem becomes

more intricate in higher-dimensional spaces.

5.6 Analysis-Synthesis Algorithms

All the quantizers described up to this point are generic schemes designed to

work well with abstract sources. In practice, many quantization algorithms

are tailored to specific applications. These quantizers are called analysis-

synthesis coders, and their design is typically fairly intricate. They require

advanced models and are often evaluated according to complex performance

metrics. These criteria are rooted in human perception rather than con-

ventional mathematics. When developed properly, model-based quantization

schemes achieve better compression ratios than the waveform coders pre-

sented hitherto. A serious treatment of analysis-synthesis algorithms is beyond

the scope of this document. Nevertheless, we mention two popular schemes

below for illustrative purposes.

Speech Coding: The quantization mechanism employed in speech coding

provides a nice example of an analysis-synthesis scheme. Speech coders are

widely used in mobile telephony and VoIP. Human speech is modeled as a

much simpler random process than most other audio signals, and there is an

abundance of knowledge about its statistical properties and the way voice is

generated. As a result, some auditory information which is relevant in generic

audio signals becomes inconsequential in the context of speech. The primary

performance criteria for voice signals are intelligibility and pleasantness of the

received signal. In addition, most speech applications require low delay, as long

delays interfere with speech interaction in real-time applications. The Code

Excited Linear Prediction (CELP) is a class of algorithms developed for

human speech. The basic idea behind this approach is to model human speech

production using a time-varying linear filter. The speech samples are sub-

sequently separated in two distinct parts. The first component contains the
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current parameters governing the operation of the linear filter; these param-

eters are selected from a finite set of possible values. The second component

captures the residual error, the difference between the predicted signal and the

actual one. This second signal is quantized using standard waveform coding

techniques. The overall operation of the system works quite well for conversa-

tions. However, a speech coder applied to music fails to provide an adequate

rendition of the original signal.

Joint Photographic Experts Group (JPEG): The JPEG algorithm is a

file format designed to store photographs and paintings digitally. The acronym

JPEG is derived from the name of the committee that created this standard.

A JPEG file can actually be created in various ways. A commonly used proce-

dure specified in this standard is the JPEG file interchange format (JFIF),

which we describe briefly. The encoding process consists of several steps. First,

an image is represented using YCbCr, an encoding scheme that specifies every

pixel (sample point) in the image according to a light intensity component (Y)

and two chroma (Cb and Cr) for colors. This scheme, as opposed to RGB,

is interesting because it parallels the way the human visual system perceives

image elements. The image is then split into blocks of 8 × 8 pixels; and for

each block, the Y, Cb, and Cr data undergoes a two-dimensional cosine trans-

form. This step is similar to a Fourier transform in the sense that it produces a

spatial frequency spectrum. The amplitudes of the resulting frequency compo-

nents are quantized. The resolution of the chroma data is reduced, compared

to the light intensity component. This reflects the fact that the human eye

is less sensitive to fine color details than to fine brightness details. Further-

more, human perception is much more sensitive to small variations in color or

brightness over large areas than to the strength of high-frequency brightness

variations. Thus, the magnitudes of the high-frequency components are stored

with a lower accuracy than the low-frequency components. The resulting data

for all 8 × 8 blocks is further compressed with a lossless algorithm that is a

variant of the Huffman code. The important concept exposed in this exam-

ple is how JPEG is built with a specific application in mind, and therefore

quantizes sample data as to minimize the perceived distortion. This is a very

good illustration of an analysis-synthesis quantizer.



Chapter 6

Channel Coding

6.1 Introduction

6.1.1 What is channel coding and why do we use it?

Channel coding is the art of adding redundancy to a message in order to

make it more robust against noise. It is used because noise and errors are

essentially unavoidable in many systems (e.g., wireless communications and

magnetic storage). Coding allows one to trade-off rate for reliability and usu-

ally provides large gains in overall system efficiency. In contrast, source coding

(or compression) is used to remove the redundancy from sources (e.g., zip files

JPEG pictures). Channel coding carefully adds redundancy to a message so

that it can be transmitted reliably over noisy channels.

Example 6.1.1 (Repeat Code). Consider the 1 bit message u ∈ {0, 1} mapped

to a codeword of length 2t+1 by repeating the message bit. This gives a binary

code with two codewords:

C = {00 . . . 00︸ ︷︷ ︸
2t+1

, 11 . . . 11︸ ︷︷ ︸
2t+1

}.

If fewer than t errors, then received sequence is closer to correct codeword.

Therefore, a decoder which chooses the codeword closest to the received se-

quence will decode successfully. For a binary code, the code rate is defined to

be

R =
# information bits

# code bits
,

87
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Figure 6.1: Block diagram of digital communication from a coding perspective.

and this gives 1
2t+1

for the repeat code.

Example 6.1.2 (Credit Card Numbers). Credit card numbers use a check

digit to detect single errors and adjacent transpositions. Let x be a credit card

number whose digits are given by x = (x1, x2, . . . , x16), then

[
8∑

i=1

x2i +
8∑

i=1

(2x2i−1 mod 9)

]
mod 10 = 0

Consider the number 5420 1213 7904 9210. In this case, the first sum gives

4+0+2+3+9+4+2+0 = 24 and the second sum gives: 1+4+2+2+5+

0 + 0 + 2 = 16. So, we have the overall sum [24 + 16] mod 10 = 0. The code

detects single errors because, for i = 1, . . . , 8, changing x2i to x′
2i changes the

check value by x′
2i − x2i and changing x2i−1 to x′

2i−1 changes the check value

by 2(x′
2i − x2i) mod 9. Likewise, swapping x1, x2 changes the check by

[(x1 − x2) + (2x2 mod 9− 2x1 mod 9)] mod 10.

Coding is used in many systems and devices including:

• CD / DVD players : Modulation code + Reed-Solomon (RS) code

• Digital Video Broadcasting (DVB): Convolutional Code + RS code

• Deep Space Communications: Advanced Turbo and LDPC codes

• Cell Phones: Convolutional codes for voice and Turbo/LDPC codes for

data

6.1.2 Channels and Error Models

When designing and analyzing channel codes, one often uses a simple model

of a communications channel known as a discrete memoryless channel

(DMC). The channel input X is an element of input alphabet X and the
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channel output Y is an element of the output alphabet Y . The main assump-

tion is that each channel use is indepedent and governed by the probability

law

W (y|x) , Pr (Y = y|X = x) .

[Add figure with transition diagrams]

The binary symmetric channel (BSC) with error probability p is defined

by X = Y = {0, 1} and

W (y|x) =




p if x 6= y

1− p if x = y

The binary erasure channel (BEC) with erasure probability ǫ is defined by

X = {0, 1}, Y = {0, 1, ?} and

W (y|x) =





ǫ if y =?

1− ǫ if x = y

0 if x 6= y

The binary-input AWGN channel (BIAWGN) with σ2 = N0

2
is defined by

X = {−1, 1}, Y = R and

W (y|x) = 1√
πN0

e−|y−x|2/N0 ,

where N0 is the noise spectral density at the receiver.

The SNR of communication system is defined in terms of the energy per

information bit,Eb, and the average energy per transmitted symbol, Es.

The conversion between these two quantities is based on keeping track of the

units

Es =
# information bits

# transmitted symbols

Energy

information bit
= R′ Eb.

The information rate R′ (bits/channel use) is equal to the code rate R for

binary-input channels. To make a fair comparisons, one must use the rate-

normalized quantity Eb/N0 (pronounced ebb-no). The normalization adjusts

for the extra energy used to send parity symbols. The coding gain is the

reduction in required Eb/N0 to achieve a particular error rate. In other cases,

it more convenient to use the quantity Es/N0 (pronounced ess-no).



90 CHAPTER 6. CHANNEL CODING

Figure 6.2: Venn diagram representation of the (7,4) binary Hamming code.

For example, a bit-error rate (BER) of 10−5 is achieved by uncoded BPSK

transmission with Eb/N0 = 9.6 dB. Whereas, a rate-1
2
code with moderate

decoding complexity (Viterbi decoding of a convolutional code) has a BER of

10−5 at Eb/N0 = 4.2 dB. The coding gain in this case is 9.6− 4.2 = 5.4 dB

6.2 The Basics of Coding

6.2.1 Codes

Let X be the input alphabet of a channel (assume |X | = q)

Definition 6.2.1. A length-n code over the alphabet X is simply a subset

C ⊆ X n of all input sequences.

If a binary code has M = |C| codewords, then the code rate is R = log2 M
n

.

This means we can send k information bits when M = 2k.

For example, the binary repeat code of length 5 is defined by X = {0, 1}
and

C = {00000, 11111} ⊂ {0, 1}5 .
Likewise, the binary even parity code of length 3 is

C = {000, 110, 101, 011} ⊂ {0, 1}3 .

Definition 6.2.2. The Hamming distance d(x, y) is equal to the number

of places where the vectors differ. It can be defined mathematically by

d(x, y) =
n∑

i=1

(1− δxi,yi),
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where δa,b is Kronecker delta function

δa,b =




0 if a 6= b

1 if a = b
.

The distance between codewords is typically measured with the Hamming

distance. Using this metric, the set X n forms a discrete metric space Another

important code parameter is the minimum distance dmin between any two

codewords is

dmin , min
x,y∈C,x 6=y

d(x, y).

Example 6.2.3 (Hamming Code). The (7,4) binary Hamming Code has n =

7, M = 16, and dmin = 3. The code can be defined in terms of a Venn diagram

showing three partially overlapping sets. Each of the seven subregions represent

a code bit and the three circles represent even parity costraints. Encoding can

be done by choosing x0, . . . , x3 arbitrarily and then computing the last three

parity bits. Any single error can be corrected by observing each bit error gives

a unique pattern of parity violations. The codewords can be listed as follows:

0000000 0100110 1000011 1100101

0001111 0101001 1001100 1101010

0010101 0110011 1010110 1110000

0011010 0111100 1011001 1111111

6.2.2 Decoding

Consider the decoding problem for binary codes with X = Y = {0, 1} and

C ⊆ X n. The channel input is x ∈ C, the received sequence is y, and the

number of errors is t = d(x, y) It is not hard to verify that minimum distance

decoding, which returns the codeword closest to the channel output, is optimal.

Breaking ties arbitrarily, one can write

x̂ = argmin
w∈C

d(w, y)

The following implies that the minimum distance decoder can always cor-

rect t errors if dmin ≥ 2t+ 1.
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Proposition 6.2.4. For any received sequence y, there is at most one codeword

w such that d(y, w) ≤ dmin−1
2

.

Proof. Suppose there are codewords w, z where d(y, w) and d(y, z) are ≤
dmin−1

2
. Then, the triangle inequality implies d(w, z)≤d(y, w)+d(y, z)≤dmin−1

and contradicts the definition of dmin. Therefore, if t ≤ dmin−1
2

, then x is the

unique codeword such that d(x, y) ≤ dmin−1
2

.

The following allows simultaneous error correction of t errors and detection

of d errors.

Proposition 6.2.5. If dmin ≥ t + d + 1 and d ≥ t, then a single decoder can

both correct t and detect d errors.

Proof. Assume that each codeword is surrounded a inner ball of radius t and

an outer ball of radius d. If the received vector is in an inner ball, decode to

the codeword at the center. Otherwise, declare decoding failure.

From the previous result, we see that no two inner balls overlap and that

the inner ball of one codeword does not overlap the outer ball of any codeword.

If the number of errors is at most t, then received vector will be in the inner

ball of the transmitted codeword and will be decoded correctly. If the number

of errors is between t + 1 and d, then received vector will not be in the inner

ball of any codeword and failure will be declared.

Proposition 6.2.6. If dmin ≥ e+1, then there is a decoder which corrects all

patterns of e erasures.

Proof. Make a list of all codewords and then erase any e positions. Each

erasure reduces the minimum distance between any two codewords by at most

one. After e steps, the new dmin ≥ e + 1 − e = 1. This implies that the

codewords, defined by the remaining symbols, are all unique.

6.3 Binary Linear Codes

6.3.1 Basic Properties

This chapter focuses almost exclusively on binary linear codes, which are the

simplest and most important class of error-correcting codes. The restriction
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+ 0 1

0 0 1

1 1 0

* 0 1

0 0 0

1 0 1

Table 6.1: The addition and multiplication operations for the binary field.

to linear codes can be motivated by two things: simplicity and performance.

We will see later that linear codes are much simpler to describe, encode, and

analyze. Moreover, there are very few cases where non-linear codes are better

than linear codes. So, there is essentially no performance penalty for this

simplicity.

Linear codes, like linear algebra, make use of matrices and vectors of ele-

ments that can be added, subtracted, multipled, and divided. A set of numbers

which obey all the standard rules of arithmetic is an algebraic object known

as a field. For example, the real and complex numbers are both fields.

There are also fields which have a finite number of elements. Let a, d

be positive integers so that the division of a by d gives the equation a =

dq + r, where q is quotient and 0 ≤ r ≤ d − 1 is the remainder. The modulo

operation is defined to return the remainder from division and is denoted

r = a mod d. It turns out that the binary alphabet, {0, 1}, with standard

arithmetic (+,−, ∗, /) performed modulo 2 is also a field. The operations are

shown explicitly in Table 6.1.

For linear algebra over a field, the scalar (i.e., field) operations are used to

define vector and matrix operations. Vector addition is defined element-wise,

so that
[
x+ y

]
i
= xi + yi. An (n, k) binary linear code is C ⊆ {0, 1}n with

|C| = 2k where x, y ∈ C implies x + y ∈ C Since x + x = 0, this implies all

zero vector 0 ∈ C. For example, the n = 3 “even parity” code is a (3,2) binary

linear code with codewords C = {000, 110, 101, 011}.

Definition 6.3.1. The Hamming weight w(x) is the number of non-zero

elements in x or

w(x) =
n∑

i=1

(1− δxi,0).
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For binary vectors, this also implies that the Hamming distance is given by

d(x, y) = w(x− y).

Linear codes also have a simplified distance structure. Instead of consider-

ing the minimum distance between all codewords, it suffices to focus only on

the all-zero codeword.

Proposition 6.3.2. The minimum distance of a linear code is given by

dmin = min
x∈C,x 6=0

w(x− y).

Proof. The linear property of the code allows one to translate computations

involving the distance between two codewords to expressions involving the

Hamming weight of one codeword. This gives

dmin , min
x,y∈C,x 6=y

d(x, y)

= min
x,y∈C,x 6=y

w(x− y)

= min
x∈C,x 6=0

w(x− y),

where the last step follows from the fact that

{
x− y | x, y ∈ C, x 6= y

}
= {x ∈ C | x 6= 0} .

6.3.2 Generator and Parity-Check Matrices

Linear codes can be represented compactly using matrices. The generator

defines the code by allowing one to list all the codewords.

Definition 6.3.3. The generator matrix G of an (n, k) binary linear code

is a k × n binary matrix such that all codewords, x ∈ C, can be written as

u ·G = x for some message vector u ∈ {0, 1}k. Therefore, the code is the row

space of G).
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Example 6.3.4. The generator matrix

G =

[
1 0 1 1 0

1 1 1 0 1

]

defines the (5, 2) code

C = {00000, 10110, 01011, 11101} .

Encoding u = [11] gives u ·G = [0 1 0 1 1]

If G has full rank k (over the binary field), then the code has 2k distinct

codewords. Otherwise, some non-zero messages encode to the all-zero code-

word and there are at most 2k−1 codewords.

Definition 6.3.5. The generator matrix is in systematic form if G =

[P Ik], where Ik is the k× k identity matrix. The matrix P is called the par-

ity generator of the code because u · P computes the parity bits for u. For a

generator matrix in systematic form, the message vector appears in codeword

u ·G = u · [P Ik] = [u·P u] .

The parity-check (PC) matrix defines the code by listing the parity-check

equations that each codeword must satisfy.

Definition 6.3.6. The parity-check matrix H of an (n, k) binary linear

code is an (n − k) × n binary matrix such that x · HT = 0 for all x ∈ C.
Therefore, the code is the null space of H.

While the generator matrix defines the code and an encoder, the parity-

check matrix defines only the code; there is no implied encoder. There is also a

relationship between and generator and parity-check matrix for the same code.

Recall that, for all codewords x, there is a message u such that x = u ·G. This

means that G ·HT = 0.

Example 6.3.7. For the (5, 2) code we saw previously, one possible parity-

check matrix is

H =




1 0 0 1 1

0 1 0 0 1

0 0 1 1 1


 .

Notice that it satisfies G ·HT = 0 for the previous G.
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In general, we assume that H has full rank. Otherwise, there are redundant

constraints and some row can eliminated without changing the code.

A parity-check matrix is in systematic form if H =
[
In−k − P T

]
. When

both the generator and parity-check matrices are in systematic form, we can

write

G ·HT = [P Ik] ·
[
In−k − P T

]T

= [P Ik] ·
[
In−k

−P

]

= P − P

= 0.

Example 6.3.8. A single parity-check code is an (n, n− 1) binary linear

code with parity-check matrix

H = [1, 1, . . . , 1︸ ︷︷ ︸
n times

].

For all codewords x, the parity-check constraint x · HT = 0 implies that
∑n

i=1 xi mod 2 = 0 (i.e., the codeword has an even number of ones). The

minimum distance is dmin = 2 and the generator matrix is given by

G =




1 1 0 · · · 0

1 0 1 · · · 0
... 0 . . .

. . . 0

1 0 0 0 1



.

Next, we consider the minimum distance of a code in terms of its generator

and parity check matrices. In general, it is very difficult to compute the

minimum distance without enumerating all codewords. But, one can get upper

and lower bounds on the minimum distance much more easily. In this way,

the minimum distance can be found approximately.

Since the minimum distance is equal to the minimum of the Hamming

weight overall codewords, it is clearly upper bounded by the Hamming weight

of any particular non-zero codeword. This gives, for any non-zero codewords

x,

dmin ≤ w(x).
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Likewise, the parity-check matrix can be used to lower bound the minimum

distance.

Proposition 6.3.9. The minimum distance of a code with parity-check matrix

H = [h1, h2, . . . , hn]

is equal to the minimum number of columns that sum to zero or

dmin = min
{
w(x)|x ·HT = 0, x ∈ {0, 1}n \0

}
.

Proof. Notice that

x ·HT =
n∑

i=1

xihi =
∑

i:xi=1

hi,

where hiis the ith column of H. Therefore, the statement that x ·HT = 0 (i.e.,

x is a codeword) is equivalent to the statement that the sum of w(x) columns

is 0. Taking the minimum over all non-zero codewords gives the minimum

distance.

One can also bound the minimum distance in terms of error-correction

ability. Recall that a code corrects all error patterns of weight t if and only if

dmin ≥ 2t+ 1. This gives a simple lower bound on the minimum distance.

Example 6.3.10. Correcting all single errors requires dmin−1
2

= 1 or dmin = 3.

Let us try to find the longest code, for a fixed number of parity bits m, that

corrects all single errors. In this case, H is matrix with m rows and we can

add columns, one at a time, until it is not possible to add a column without

losing the ability to correct a single error. How many columns can we choose?

The maximum value is n = 2m − 1 and the resuting optimal code is called the

binary Hamming code of length n.

6.3.3 Decoding

Assume a codeword x ∈ C is transmitted over a channel and r = x + e is

received, where e is the error pattern with w(e) errors. For any received

sequence r, a decoder either returns a codeword x̂ = D(r) or declares failure.

The decoded message û associated with x̂ is the unique message satisfying

x̂ = ûG. A decoder makes
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• a block error (or word error) if x̂ 6= x and PB is used to denote the

probability of block error,

• b code bit errors if w(x̂−x) = b and Pb is used to denote the probability

that a randomly chosen bit in x̂ is in error,

• and b message bit errors if w(û− u) = b and Pb is used to denote the

probability that a randomly chosen bit in û is in error.

From this, we see that the probability of bit error Pb can have multiple mean-

ings. The correct meaning can usually be inferred from the context. Decoding

can also be simplified for linear codes.

Definition 6.3.11. Let s = r ·HT be the syndrome of the received vector r.

It turns out that s depends only on the error pattern. Since x ∈ C, we have

s = r ·HT = (x+ e) ·HT = x ·HT + e ·HT = e ·HT .

A syndrome decoder ê = Ds(s) maps the syndrome s to an estimated

error pattern ê. Let us define the equivalence relation ∼ by x ∼ y iff x ·HT =

y · HT . This means that two binary vectors are equivalent if they have the

same syndrome. A syndrome decoder can be designed correct exactly one

error pattern in each equivalence class. The best choice for correction is the

most-likely error pattern in that equivalence class. For most channels, these

vectors are chosen to be the minimum weight vector in the equivalence class.

The standard array is way of listing all vectors of length-n that exposes

the connectiion between syndromes, codewords, and error correction. In gen-

eral, it is a 2n−k × 2k table that contains each length-n binary vector exactly

once. The main idea behind this table is that, when one chooses to correct a

particular error pattern, the decoder is automatically defined for all received

sequences equal to that error pattern plus a codeword. Of course, this limits

one’s ability choose correctable error patterns.

Each row is indexed by a syndrome s and contains all binary vectors x

that satisfy the equation s = x · HT . The first row is reserved for s = 0 and

contains the all-zero codeword c1 in the first column followed the remaining

codewords c2, . . . , c2k in any order. The first column contains the correctable
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error patterns e1, . . . , e2n−k where e1 is the all-zero sequence. The row-i column-

j entry always contains ei + cj, and is therefore defined by the first row and

first column of the table. The column associated with a particular codeword

can be seen as all the received vectors that will be decoded to that codeword.

Using the parity-check matrix for our (5, 2) our example code, the process

is as follows

1. Start with 8 by 5 table and list the zero syndrome and all codewords on

first row

2. Pick a minimum weight vector of length n that is not already in table

and compute its syndrome

3. Add a new row by writing syndrome followed by the minimum weight

vector plus each codeword

4. Repeat from step 2 until table is complete.

The resulting standard array is

syn\cw 00000 10110 01011 11101

100 10000 00110 01101

010 01000 00011

001 00100 10010 11001

101 00010 01001

111 00001 10111 11100

110 11000 01110 10011

011 01100 11010 10001

To see if you understand this example, try filling in the missing entries. One

can prove that this process always enumerates all 2n binary vectors, so you can

test your answers by checking if all binary vectors appear in the table exactly

once.

Example 6.3.12. To see syndrome decoding in action, let x = 10110 and

e = 11000. Then, r = 01110 and s = 110. Looking in the syndrome table, we

find that ê = 11000 and x̂ = 10110.
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6.3.4 Manipulating Linear Codes

It follows from linear algebra that any G,H can be put in systematic form

using elementary row operations and (possibly) a column permutation. For

the parity-check matrix H, the basic idea is to use elemtary row operations

to form an identity matrix in the first few columns (i.e., put it in reduced

row-echelon form). For the generator matrix G, elementary row operations

are used to form an identity matrix in the last few columns. Sometimes an

identity cannot be formed in the desired columns and a column permutation

is required to complete the process. For this reason, two codes are called

equivalent if and only if they differ only in the order of the code symbols.

Definition 6.3.13. For a matrix, an elementary row operation is any

one of the following operations:

1. interchaging any two rows,

2. scaling any row by a non-zero constant,

3. and adding a multiple of one row to another row.

Example 6.3.14. In this example, we consider a parity-check matrix

H =




1 1 0 1 0 0

0 1 1 0 1 0

1 1 0 0 1 1




that requires a column permutation for systematic form. Let us put H is re-

duced row-echelon form and then find a column permutation to achieve an

identity in the first few rows. The first step gives

H →




1 1 0 1 0 0

0 1 1 0 1 0

0 0 0 1 1 1


→




1 0 1 1 1 0

0 1 1 0 1 0

0 0 0 1 1 1


→




1 0 1 0 0 1

0 1 1 0 1 0

0 0 0 1 1 1


 ,

and a column permutation gives

H̃ =




1 0 0 1 0 1

0 1 0 1 1 0

0 0 1 0 1 1


 .
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Now, we can compute parity generator and generator associated with H̃ to get

P̃ =




1 1 0

0 1 1

1 0 1


 G̃ =




1 1 0 1 0 0

0 1 1 0 1 0

1 0 1 0 0 1


 .

Finally, reversing the column permutation gives, for the original code, a gen-

erator

G =




1 1 1 0 0 0

0 1 0 1 1 0

1 0 0 1 0 1




that contains an identity in a subset of its columns.

6.4 Performance Analysis

Consider an (n, k) binary code of rate R = k/n with dmin ≥ 2t∗ + 1 and a

decoder that corrects all error patterns of weight at most t∗. It is relatively

easy to upper bound the probability of block error when this code and decoder

are used on a BSC, because a block error cannot occur unless there are more

than t∗ errors. This gives

PB ≤ 1−
t∗∑

i=0

(
n

i

)
pi(1− p)n−i =

n∑

i=t∗+1

(
n

i

)
pi(1− p)n−i.

If p is small enough, then we can approximate this by the first term in the sum

PB ≈
(

n

t∗ + 1

)
pt

∗+1.

If the code bits are transmitted over an AWGN channel using BPSK followed

by a hard-decision detector, then we also have

p = Q

(√
2Es

N0

)
= Q

(√
2REb

N0

)
.

The latter expression allows us to make relatively fair comparisons between

coding systems with different rates.
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Definition 6.4.1. The coding gain achieved by a channel code is the re-

duction in Eb/N0 required achieve a particular error rate. For example, if the

uncoded system achieves an error rate of 10−5 at Eb/N0 = 9.6 dB and the coded

system achieves an error rate of 10−5 at Eb/N0 = 6.6dB, then the coding gain

is 9.6 − 6.6 = 3 dB at the error rate 10−5. The coding gain often approaches

a limit, for low error rates, known as the asymptotic coding gain.

Now, we compute the asymptotic coding gain, in terms of t∗ and R, of

hard-decision decoding of a block code. For the uncoded system, let γu be the

Eb/N0 so that the probability of block error is given by

P
(u)
B (γu) = 1−

(
1−Q

(√
2γu

))k
.

For the coded system, let γc be the Eb/N0 so that the probability of block

error is

P
(c)
B (γc) ≈

(
n

t∗ + 1

)
Q
(√

2γc

)t∗+1

.

The exponential decay rate of these error probabilities with Eb/N0 is given by

lim
γ→∞

1

γ
ln (PB(γ)) .

For large x, the Q-function is very well approximated by

Q(x) ≈ 1√
2πx2

e−x2/2.

This implies that the exponential decay rate of P
(u)
B is γu and the exponential

decay rate of P
(c)
B is (t∗+1)Rγc. Matching these exponential decay rates gives

the equation
γu
γc

= (t∗ + 1)R,

and converting to dB shows that the asymptotic coding gain is

10 log10 ((t
∗ + 1)R) .

Example 6.4.2. Consider the (15, 11) binary Hamming code with dmin = 3

and t∗ = 1. This code achieves an asymptotic coding gain of

10 log10

(
2
11

15

)
≈ 1.66 dB.
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For syndrome decoding, one can compute exactly the probability of block

error (including decoding failure) by observing that the decoder only returns

the correct codeword if the error vector is a coset leader. In this case, we can

define Ah be the number of coset leaders with Hamming weight h and write

PB = 1−
n∑

h=0

Ahp
h(1− p)n−h.

6.5 Cyclic Codes

6.5.1 Basic Properties

In this section, we consider a subset of linear codes which have even more

algebraic structure. A cyclic (or circular) shift of a vector is another vector

with the same elements in the same order, but starting from an different index.

For example, the left circular shift of (x0, x1, . . . , xn−1) by 1 position gives the

vector (xn−1, x0, x1, . . . , xn−2).

Definition 6.5.1. A cyclic code is a linear code where any cyclic shift of a

codeword is also a codeword.

Example 6.5.2. Consider the (7, 3) binary linear code whose 8 codewords are

C = {0000000, 1011100, 0101110, 1110010, 0010111, 1001011, 0111001, 1100101} .

Since all non-zero codewords are circular shifts of a single codeword, it is a

cyclic code. Its cyclic structure can also be exposed by choosing the generator

matrix to be

G =




1 0 1 1 1 0 0

0 1 0 1 1 1 0

0 0 1 0 1 1 1




and the parity-check matrix to be

H =




1 1 0 1 0 0 0

0 1 1 0 1 0 0

0 0 1 1 0 1 0

0 0 0 1 1 0 1



.
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The benefits of cyclic codes follow largely from a close conection to polyno-

mial arithmetic. This allows the encoding and decoding of cyclic codes to make

use of efficient algorithms and hardware for polynomial arithmetic. Consider

an (n, k) cyclic code and assume each codeword vector c = (c0, c1, . . . , cn−1)

and message vector m = (m0,m1, . . . ,mk−1) is associated with a polynomial

c(x) =
n−1∑

i=0

cix
i m(x) =

k−1∑

i=0

mix
i.

It turns out that every (n, k) cyclic code is uniquely defined by its generator

polynomial g(x), which allows all codewords c(x) = m(x)g(x) to be gener-

ated by multiplication with some message polynomial m(x). The generator

polynomial for the code in the previous example is g(x) = 1 + x2 + x3 + x4.

Before proceeding any further, we must define a few mathematical terms

asociated with polynomial arithmetic. The degree of a polynomial c(x), de-

noted deg (c(x)), is the maximum power of x that appears in the polynomial.

For the example g(x), we have deg (g(x)) = 4. In fact, for all (n, k) cyclic

codes, we have deg (c(x)) ≤ n−1, deg (m(x)) ≤ k−1, and deg (g(x)) = n−k.

For a polynomial a(x) and a divisor d(x), the remainder r(x) and quo-

tient q(x) are uniqely defined by deg (r(x)) < deg (d(x)) and

a(x) = q(x)d(x) + r(x).

In discrete mathematicss, the modulo polynomial operation

r(x) = a(x) mod d(x)

is used to compactly represent the remainder r(x) of division by d(x).

Proposition 6.5.3. For an (n, k) cyclic code defined by its generator polyno-

mial g(x), the parity-check polynomial h(x) is defined uniquely by g(x)h(x) =

xn − 1 and satisfies

h(x)c(x) mod xn − 1 = 0,

for all codeword polynomials c(x).

Proof. First, we observe that h(x) can be computed by dividing xn−1 by g(x).

Therefore, one can prove this statement by observing that c(x) = m(x)g(x)

for some m(x) and therefore

h(x)c(x) = m(x)g(x)h(x) = m(x)(xn − 1).
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Since xn − 1 divides h(x)c(x) without remainder, the result follows.

The parity-check polynomial for the code in the previous example is h(x) =

1 + x2 + x3.

In general, the generator matrix of an (n, k) cyclic code with generator

g(x) = g0 + g1x+ g2x
2 + · · · gn−kx

n−k can be written in the form

G =




g0 g1 · · · gn−k 0 0 0

0 g0 g1 · · · gn−k 0 0
...

...
. . . . . . . . . . . . 0

0 0 0 g0 · · · gn−k−1 gn−k



.

Likewise, the parity-check polynomial h(x) = h0 + h1x+ h2x
2 + · · ·hkx

k gives

rise to a parity-check matrix of the form

H =




hk hk−1 · · · h0 0 0 0

0 hk hk−1 · · · h0 0 0
...

...
. . . . . . . . . . . . 0

0 0 0 hk · · · h1 h0



.

The encoder mapping c = mG is actually identical to the encoder mapping

c(x) = m(x)g(x). If the rows and columns of G are numbered from zero, then

this can be seen by associating the ith row of G with xi and the jth column

of G with xj. Observing that [G]ij = gj−i for i ≤ j ≤ n − 1 and 0 otherwise,

we find that

c(x) =
n−1∑

j=0

xjcj =
n−1∑

j=0

xj

k−1∑

i=0

mi[G]ij =
n−1∑

j=0

xj

k−1∑

i=0

migj−i

=
k−1∑

i=0

mix
i

n−1∑

j=i

xj−igj−i =
k−1∑

i=0

mix
ig(x) = m(x)g(x).

Example 6.5.4. The binary Hamming codes are a family of (n, k) cyclic codes,

with n = 2r−1 and k = n−r, that can correct all single errors. The generator

polynomials for k = 3, 4, 5 are given by

(7, 4) g(x) = 1 + x2 + x3

(15, 11) g(x) = 1 + x3 + x4

(31, 26) g(x) = 1 + x3 + x5.
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6.5.2 Systematic Encoding

For cyclic codes, the basic encoding process c(x) = m(x)g(x) does not provide

systematic encoding. One can overcome this limitation by observing that

c(x) mod g(x) = 0 for all codewords. Using this equation instead, one can

choose the codeword have the format

c(x) = p(x) + xn−km(x),

where the message m(x) appears as the last k bits in the codeword and the

parity polynomial p(x) = p0 + p1x+ · · · pn−k−1x
n−k−1 has degree deg (p(x)) =

n− k − 1. Applying the modulo g(x) operation to both sides of this equation

shows that

0 = c(x) mod g(x) = p(x) mod g(x) + xn−km(x) mod g(x).

Solving for p(x) gives

p(x) = −xn−km(x) mod g(x),

where p(x) = p(x) mod g(x) follows from the fact that deg (p(x)) < deg (g(x)).

For cyclic codes, this process defines the standard systematic encoder used

in practice. It turns out that that p(x) can be calculated efficiently using

a shift register circuit. So, systematic encoders for cyclic codes are easy to

implement in practice.

Example 6.5.5. Consider our example (7, 3) code with g(x) = 1+x2+x3+x4.

The message m = [0 1 1] is associated with the message polynomial m(x) =

x+ x2 and the systematic encoding equation says that

p(x) = −x4m(x) mod g(x) = −x5 − x6 mod 1 + x2 + x3 + x4.

To compute p(x), we proceed by using polynomial long division

− x2 + 1

x4 + x3 + x2 + 1
)
− x6 − x5

x6 + x5 + x4 + x2

x4 + x2

− x4 − x3 − x2 − 1

− x3 − 1
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This implies that p(x) = x3 + 1 and c(x) = 1 + x3 + x5 + x6. One can verify

that this is a codeword by observing that (1 + x2)(1 + x2 + x3 + x4) mod 2 =

1 + x3 + x5 + x6.

6.5.3 Cyclic Redundancy Check

A cyclic redundancy check (CRC) code calculates its check bits using a

process very similar to the systematic encoding of cyclic codes. The main

difference is that the message polynomial m(x) is not constrained to be k bits

in length and it is not multiplied by xn−k before the modulo operation. Let

g(x) be the CRC polynomial and m(x) be the message polynomial, then the

CRC encoder generates the check polynomial

p(x) = m(x) mod g(x).

Since deg (p(x)) < deg (g(x)), the resulting check sequence is represented by

exactly deg (g(x))− 1 bits. Many of the CRCs defined in standards (or com-

monly used in practice) have subtle variations such as

• extra bits are appended to the start or end of the message,

• the shift register state is initialized to a non-zero value,

• the message sequence is XOR’d with a known sequence before division,

• and the bit (or byte) ordering may differ between standards.

In most specifications, the CRC polynomial is not described as a polyno-

mial but instead given as the hexadecimal value of the binary representation

of g(x). Moreover, the topmost bit is not included in this value because the

length is know and it must a 1.

Example 6.5.6. The standard unix CRC32 polynomial is often listed in hex-

adecimal as 04C11DB7. Writing this in binary gives

0000 0100 1100 0001 0001 1101 1011 0111.

Counting from the right (i.e., the LSB), we find ones in the positions

0, 1, 2, 4, 5, 7, 8, 10, 11, 12, 16, 22, 23, 26.
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Therefore, it follows that

g(x) = x32+x26+x23+x22+x16+x12+x11+x10+x8+x7+x5+x4+x2+x+1.

Notice the x32 is added based on the known length of the CRC and is not

described by the hexadecimal value.

The CRC32 algorithm prepends the data sequence by 32 ones, performs the

modulo, and then inverts the resulting parity sequence. The ASCII sequence

“123456789” has the hexadecimal representation 31 32 33 34 35 36 37 38 39 and

is commonly used to test CRC implementations. For this sequence, the correct

CRC result, in hexadecimal, is CBF43926.



Chapter 7

Waveform Communication

In Chapter 3, we introduced digital communication using a discrete-time model

that allowed us to neglect the details of the more realistic continuous-time

model. The goal of this chapter is to delve into the details of waveform-based

communication and see that the discrete-time model can be derived from the

continuous-time model under some conditions. The waveform channel de-

fines the probabilistic mapping between the deterministic channel input wave-

form s(t) and the random-process R(t) observed at the output of the channel.

The basic model is that R(t) = s(t)+N(t), where N(t) is Gaussian white-noise

random process with autocorrelation function RN(τ) = δ(τ)N0/2.

7.1 A Single Digital Symbol

Suppose that one would like to send a single digital symbol taking M different

values to a receiver through a waveform channel. Then, one can associate a

waveform sm(t) with each symbol m = 1, . . . ,M and transmit the waveform

assigned with the desired message. For mathematical convenience, we assume

that the energy integral exists and is finite for each waveform.

The demodulation process is based on mathematical operation, known as

an inner product, that maps any two signals to a complex number. The inner

product 〈s(t), r(t)〉 between the signals s(t) and r(t) is defined by

〈s(t), r∗(t)〉 =
∫ ∞

−∞

s(t)r∗(t)dt,

109
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Channel

s(t)

N(t)

R(t)

Figure 7.1: Block diagram of a basic waveform channel for input signal s(t),

noise process N(t), and received signal R(t).

where r∗(t) is the complex conjugate of r(t). This is the same as the cross-

correlation between r(t) and s(t) evaluated at lag-time 0. Mathematically, we

are treating the set of all finite-energy signals as a vector space and using

this inner product to define distances and angles in this space. The energy (or

length squared) of a signal s(t) is given by

∫ ∞

−∞

|s(t)|2 dt = 〈s(t), s(t)〉.

Two signals s1(t), s2(t) are said to be orthogonal if 〈s1(t), s2(t)〉 = 0. A

signal s(t) is said to be normalized if 〈s(t), s(t)〉 = 1. A set of signals is

said to be orthonormal if every signal in the set is orthogonal to every other

signal in the set and all signals in the set are normalized. The set of all linear

combinations of signal waveforms is called the signal space.

7.1.1 Orthogonal Waveforms

The simplest scenario occurs when the set of signal waveforms {s1(t), . . . , sM(t)}
are orthogonal and each has energy Es. In this case, one can demodulate the

received signal R(t) by computing

Rj = 〈R(t), sj(t)〉,

for each j = 1, . . . ,M . This is the same as correlating the received signal with

each of the transmitted waveforms. Due to the noise process, the resulting
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values R1, . . . , RM are Gaussian random variables. Their expected values de-

pend on which waveform was actually transmitted. If sm(t) was transmitted,

then R(t) = sm(t) +N(t), E[R(t)] = sm(t), and we have

E [Rj] = E

[∫ ∞

−∞

R(t)s∗j(t)dt

]

=

∫ ∞

−∞

E [R(t)] s∗j(t)dt

=

∫ ∞

−∞

sm(t)s
∗
j(t)dt

= Esδm,j .

The random variables R1, . . . , RM also have some other nice properties.

They are uncorrelated because the the waveforms are orthogonal and they

have variance 1
2
EsN0. Proving this statement will be left as a homework

exercise.

This transforms the waveform detection problem into a detection problem

for a length-M vector of Gaussian random variables. If sm(t) was transmit-

ted, then the mean of the random vector is scaled unit vector with Es in

the mth position. Let (r1, . . . , rM) be the realization of the random vector

(R1, . . . , RM). Then, based on the techniques from Chapter 3, we know that

the maximum-likelihood decision rule chooses the symbol whose unit vector

is closest to (r1, . . . , rM ) in Euclidean distance. This implies that we should

choose the signal sm̂(t) if

M∑

i=1

(ri − δm̂,iEs)
2 ≤

M∑

i=1

(ri − δm,iEs)
2 for m = 1, . . . ,M.

Expanding both sides of this equation shows that this is equivalent to

rm̂ ≥ rm for m = 1, . . . ,M.

This whole process is known as a correlation-based receiver.

Example 7.1.1 (Frequency-Shift Keying). For a fixed time-interval T , con-

sider the collection of waveforms given by

sm(t) =
1√
T
e2πi

m

T
trect

(
t

T

)
.
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for m = 1, . . . ,M . This set of waveforms is known as M-ary frequency-shift

keying (or M-FSK). We wish to show that these waveforms are orthonormal.

To prove that they are orthogonal, we consider the inner product of sm(t)

and sn(t) when m 6= n,

〈sm(t), sn(t)〉 =
∫

R

sm(t)s
∗
n(t)dt =

1

T

∫ T

2

−T

2

e2πi
m

T
te−2πi n

T
tdt

=
1

T

∫ T

2

−T

2

e2πi
(m−n)

T
tdt = 0.

Next, we show that these basis elements have unit energy,

‖sm(t)‖2 =
∫

R

sm(t)s
∗
m(t)dt =

1

T

∫ T

2

−T

2

e2πi
m

T
te−2πim

T
tdt

=
1

T

∫ T

2

−T

2

dt = 1.

7.1.2 General Waveforms

When the signal waveforms are not orthonormal, the detection problem is

solved most easily by constructing a set of orthonormal basis vectors for the

signal space. In general, this can be accomplished by applying the Gram-

Schmidt orthogonalization process to the signal waveforms. Rather than fo-

cusing on this process, we assume that {φ1(t), . . . , φN(t)} is an orthonormal

set of waveforms such that the coefficients am,k allow us to write

sm(t) =
N∑

k=1

am,kφk(t).

This implies that the orthonormal set spans the signal space.

In this case, the received signal R(t) can be demodulated by computing

Rj = 〈R(t), φj(t)〉,

for each j = 1, . . . , N . This is the same as correlating the received signal with

each of the basis waveforms. Again, the noise process implies that R1, . . . , RN

are Gaussian random variables whose means are determined by which wave-

form was actually transmitted. For j = 1, . . . , N , the noise component of Rj
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is independent of the transmitted signal, and is given by

Nj = 〈N(t), φj(t)〉 =
∫ ∞

−∞

N(t)φ∗
j(t)dt.

Therefore, Rj = E[Rj] + Nj and, assuming sm(t) was transmitted, the mean

is given by

E [Rj] = E

[∫ ∞

−∞

R(t)φ∗
j(t)dt

]

=

∫ ∞

−∞

E [R(t)]φ∗
j(t)dt

=

∫ ∞

−∞

sm(t)φ
∗
j(t)dt

=

∫ ∞

−∞

(
N∑

k=1

am,kφk(t)

)
φ∗
j(t)dt

=
N∑

k=1

am,kδk,jdt

= am,j.

Again, we have transformed the waveform detection problem into a detec-

tion problem for a vector of Gaussian random variables. In this case, however,

there are M different mean vectors of dimension N . Let (r1, . . . , rN) be the

realization of the random vector (R1, . . . , RN). Based on the techniques from

Chapter 3, the maximum-likelihood decision rule chooses the symbol m̂ whose

coordinate vector (am̂,1, . . . .am̂,N) is closest to (r1, . . . , rN ) in Euclidean dis-

tance. This implies that we should choose the signal sm̂(t) if

N∑

i=1

(ri − am̂,i)
2 ≤

N∑

i=1

(ri − am,i)
2 for m = 1, . . . ,M.

This approach can be seen as first projecting the infinite-dimensional re-

ceived waveform onto the finite-dimensional signal-subspace and then using

the optimal detector assuming only the projection was observed. This over-

all approach is optimal only if the projection is a sufficient statistic for

maximum-likelihood decision problem. While this is indeed true, we disregard

this detail for now.
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φ1(t)

φ2(t)

φN−1(t)

φN(t)

∫
R
(·)dt

∫
R
(·)dt

∫
R
(·)dt

∫
R
(·)dt

r(t)

r1

r2

rN−1

rN

Figure 7.2: For a particular realization r(t) of the received signal, the pro-

jection (r1, . . . , rN) onto the signal-space basis vectors can be computed by a

bank of correlators.

7.1.3 The Matched Filter

Let s(t) be a finite-energy signal and R(t) = s(t)+N(t) be the received wave-

form. Suppose that the receiver computes R = 〈R(t), z(t)〉 with an arbitrary

finite-energy signal z(t). One’s ability to detect s(t) correctly is largely depen-

dent on the SNR of R. Since the noise is zero mean, we have

SNR ,
|E[R]|2
Var(R)

=

∣∣∣
∫∞

−∞
s(t)z∗(t)dt

∣∣∣
2

N0

2

∫∞

−∞
|z(t)|2

.

Rewriting this in inner product notation shows that

SNR =
2

N0

|〈s(t), z(t)〉|2
〈z(t), z(t)〉 =

2

N0

∣∣∣∣
〈
s(t),

z(t)

‖z(t)‖

〉∣∣∣∣
2

.

Our intuition about vectors tells us that we can maximize this inner product

by choosing the unit vector z(t)/‖z(t)‖ to point in the same direction as s(t).

Therefore, choosing z(t) = c s(t), for c 6= 0, maximizes this function and gives

SNR =

∣∣∣c
∫∞

−∞
s(t)s∗(t)dt

∣∣∣
2

N0

2

∫∞

−∞
|c s(t)|2

=
c2E2

s
N0

2
c2Es

=
2Es

N0

,
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where Es is the energy in the waveform s(t). This is one of the reasons that

receivers based on the inner product (i.e., cross-correlation) can be optimal.

Using a bank of correlators requires timing information to zero each inte-

grator at the correct time. In many cases, it is more convenient to build a filter

h(t) matched to the transmitted waveform and sample this filter as needed.

The matched filter h(t) = s∗(−t) is the time-reversed complex-conjugate of

the transmitted waveform. Then, y(t) = h(t) ∗R(t) can be sampled at time 0

to get

y(0) =

∫ ∞

−∞

R(τ)h(t− τ)dτ

∣∣∣∣
t=0

=

∫ ∞

−∞

R(τ)s∗(τ − t)dτ

∣∣∣∣
t=0

=

∫ ∞

−∞

R(τ)s∗(τ)dτ

= 〈R(t), s(t)〉.

This shows that correlating against s(t) is mathematically identical to fil-

tering by h(t) = s∗(−t) followed by sampling.

7.2 Time-Shift Waveforms

In practical communication systems, a succession of symbols is transmitted to

the destination. Not only can waveforms interfere with one another in signal

space, they can also disrupt signal quality across time. Suppose that a different

symbol is sent every T seconds using time shifts of a basic pulse waveform p(t).

The transmitted signal, accounting for the different values of {xn}, is equal to

s(t) =
∞∑

n=−∞

xnp(t− nT ).

Note that in this case, the available waveforms are simply translated versions

of one another. Ideally, we want the collection {p(t−nT )} to be orthonormal.

This would greatly simplify system implementation and decision making at

the receiver. However, we cannot use standard techniques such as the Gram-

Schmidt procedure to construct a set of orthogonal waveforms, because the
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elements of {p(t−nT )} are constrained to be translated version of one another.

If an orthonormal set is needed, it is typically chosen by design.

7.2.1 Demodulation

As before, the received signal is the random process R(t) = s(t) + N(t) and

N(t) is zero-mean Gaussian white-noise process. One can detect the symbol

xm by correlating the received signal with the waveform p(t−mT ). This gives

Rm = 〈R(t), p(t−mT )〉

=

∫ ∞

−∞

R(t)p∗(t−mT )dt

=

∫ ∞

−∞

N(t)p∗(t−mT )dt+
∞∑

n=−∞

xn

∫ ∞

−∞

p(t− nT )p∗(t−mT )dt

=

∫ ∞

−∞

N(t)p∗(t−mT )dt+
∞∑

n=−∞

xnv ((m− n)T )

= Zm︸︷︷︸
noise

+ xmv(0)︸ ︷︷ ︸
signal

+
∞∑

n=−∞,n 6=m

xnv ((m− n)T )︸ ︷︷ ︸
intersymbol interference

,

where v(τ) is the autocorrelation function of p(t) and

Zm =

∫ ∞

−∞

N(t)p∗(t−mT )dt.

The xm term in the Rm expansion contains the desired symbol. The sum

of the remaining xn terms is called intersymbol interference (ISI); it contains

the contributions from all the other time-shifted waveforms. To retrieve the

information sequence unambiguously, we wish to have Rm = xm + Zm, irre-

spective of the values in the sequence {xn}. This will be achieved provided

that

v(nT ) =




1, n = 0

0, otherwise.
(7.1)
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Notice also that the autocorrelation of the noise sequence is given by

E[ZiZ
∗
j ] = E

[(∫ ∞

−∞

N(t)p∗(t− iT )dt

)(∫ ∞

−∞

N∗(u)p(u− jT )du

)]

=

∫ ∞

−∞

∫ ∞

−∞

E[N(t)N∗(u)]p∗(t− iT )p(u− jT )dudt

=
N0

2

∫ ∞

−∞

∫ ∞

−∞

δ(t− u)p∗(t− iT )p(u− jT )dudt

=
N0

2

∫ ∞

−∞

p∗(t− iT )p(t− jT )dt

=
N0

2
v((i− j)T ).

If (7.1) holds, then it follows that the noise {Zm} is a sequence of independent

and identically distributed Gaussian random variables.

Example 7.2.1. Therefore, if the condition in (7.1) holds, then we find that

Rm = xm + Zm,

and we have recovered exactly the discrete-time model of communication dis-

cussed in Chapter 3.

Alternatively, one can use a matched filter h(t) = p∗(−t) and define the

filter output to be Y (t) = R(t) ∗ h(t). In this case, sampling Y (t) gives

Y (mT ) =

∫ ∞

−∞

R(τ)h(mT − τ)dτ

=

∫ ∞

−∞

R(τ)p∗(τ −mT )dτ

= Rm.

This shows that sampling the matched filter is equivalent to the correlation-

based receiver.

7.2.2 The Nyquist Criterion

To understand how the condition (7.1) impacts our choice of a functions p(t)

and h(t), we let g(t) = p(t) ∗h(t) and use the frequency representation of g(t).
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Looking at the inverse Fourier transform of ĝ(f), we get

g(τ) = F−1 [ĝ(f)] =

∫

R

ĝ(f)e2πifτdf

=
∞∑

m=−∞

∫ F

2

−F

2

ĝ(f − Fm)e2πi(f−mF )τdf

where, for reasons that will soon be obvious, we have judiciously selected

F = 1
T
. The value of g(τ) at the sample points {τ = nT : n ∈ Z} can then be

expressed as

g(−nT ) =
∞∑

m=−∞

∫ F

2

−F

2

ĝ
(
f − m

T

)
e−2πi(f−m

T )nTdf

=

∫ F

2

−F

2

(
∞∑

m=−∞

ĝ
(
f − m

T

))
e−2πinTfdf

=
1

F

∫ F

2

−F

2

ẑ(f)e−2πi n
F
fdf,

(7.2)

where we have defined

ẑ(f) = F

∞∑

m=−∞

ĝ
(
f − m

T

)
rect

(
f

F

)
.

Notice the similarity between (7.2) and the Fourier series representation of

a time-limited function. Specifically, {g(nT ) : n ∈ Z} can be viewed as the

Fourier series coefficients of the frequency-limited function ẑ(f). Under con-

dition (7.1), and using the reconstruction formula for Fourier series, we get

ẑ(f) =
∞∑

n=−∞

g(−nT )e2πi
n

F
f rect

(
f

F

)
= rect

(
f

F

)
(7.3)

because g(nT ) = 0 whenever n 6= 0. Thus, the system exhibits no intersymbol

interference if and only if (7.3) holds.

Equivalently, condition (7.1) is satisfied whenever

∞∑

m=−∞

ĝ
(
f − m

T

)
= T. (7.4)

We formalize this key result, known as the Nyquist pulse-shaping criterion, in

the theorem below.
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Theorem 7.2.2 (Nyquist). Let g(τ) and ĝ(f) be square integrable functions

that are Fourier transforms of each other. Furthermore, assume that the func-

tion

ẑ(f) = F

∞∑

m=−∞

ĝ
(
f − m

T

)
rect(fT )

has finite energy. Then, a necessary and sufficient condition for

g(nT ) =




1, n = 0

0, otherwise

is that the following equality holds for all values of f ∈ R,

∞∑

m=−∞

ĝ
(
f − m

T

)
= T. (7.5)

It is important to note that the Nyquist criterion is applied not the trans-

mitted pulse p(t), but to the overall response g(t). But, optimum detection in

white-noise requires that h(t) is matched to p(t). Therefore, the best solution

is to split the g(t) filter between the transmitter and receiver. If ĝ(f) is real

and positive, then we can simply choose

p̂(f) = ĥ(f) =
√
ĝ(f).

This is known as a square-root Nyquist pulse. In this case, p̂(f) is real

and p(t) = p∗(−t) and the matched filter is h(t) = p∗(−t) = p(t). Since ĝ(f)

satisfies the Nyquist criterion, this allows one to achieve optimum detection

without ISI.

Example 7.2.3. One of the simplest possible choices for waveforms p(t) and

h(t) is

p(t) = h(t) =
1√
T
rect

(
t

T

)
.

In this case, we get

g(τ) = 〈p(t), h(t− τ)〉 = 1

T

∫

R

rect

(
t

T

)
rect

(
t− τ

T

)
dt

=
1

T

∫

R

rect

(
t

T

)
rect

(
τ − t

T

)
dt =

1

T
rect

(
t

T

)
∗ rect

(
t

T

)
.
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Obviously, this selection leads to the desired property with g(0) = 1, and

g(nT ) = 0 for any non-zero integer n. One of the design issues with the

rectangular pulse is that its bandwidth is infinite and decays slowly. This be-

comes a problem in most practical systems where spectral bandwidth comes at

a premium. Notice also that this is the square-root Nyquist pulse associated

with a triangular g(t).

Example 7.2.4. Consider the pulse-shaping criterion applied to

p(t) = h(t) =
1√
T
sinc

(
t

T

)
.

We wish to show that this choice of waveforms satisfies the Nyquist criterion

and leads to a set of orthogonal time-shift waveforms.

First, we find an expression for g(τ),

g(τ) = 〈p(t), h(t− τ)〉 = 1

T

∫

R

sinc

(
t

T

)
sinc

(
t− τ

T

)
dt

=
1

T

∫

R

sinc

(
t

T

)
sinc

(
τ − t

T

)
dt =

1

T
sinc

(
t

T

)
∗ sinc

(
t

T

)
.

In the frequency domain, we have

ĝ(f) = F [g(τ)] =
1

T
F
[
sinc

(
t

T

)]
F
[
sinc

(
t

T

)]

= T rect(Tf)rect(Tf) = T rect(Tf).

We can therefore verify condition (7.5) as

∞∑

m=−∞

ĝ
(
f − m

T

)
=

∞∑

m=−∞

T rect(Tf −m) = T.

That is, the conditions of Theorem 7.2.2 hold and, consequently, g(0) = 1

and g(nT ) = 0 for any non-zero integer. One of the positive attributes of

the sinc(·) waveform is that it is bandwidth-limited. However, this pulse is

not time-limited and it decays quite slowly in the time-domain. It is therefore

somewhat impractical, as using sinc(·) waveforms without truncation would en-

tail infinite delay at the destination. Notice that this is the square-root Nyquist

pulse associated with ĝ(f) = T rect(Tf) and that the square root has no effect.
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Although, there are many choices for ĝ(f) that satisfy Theorem 7.2.2, we

are primarily interested in waveforms that are approximately both bandwidth-

limited and time-limited. The Nyquist bandwidth associated with a signal

s(t) =
∞∑

n=−∞

xnp(t− kT )

is defined by 1
2T
; it represents the smallest possible bandwidth for which it is

possible to prevent intersymbol interference. The spectral bandwidth of ĝ(f)

is the smallest possible value of W such that ĝ(f) = 0 for |f | > W .

Example 7.2.5. The raised-cosine Nyquist pulse introduces some band-

width expansion in order to achieve a more rapid pulse decay in the time-

domain. It is the basis for the one of the most popular pulse shaping filters

used in digital communications. In the frequency domain, it has the represen-

tation

ĝ(f) =





T if |f | ≤ 1−β
2T

T cos2
(

πT
2β

[
|f | − 1−β

2T

])
if 1−β

2T
< |f | ≤ 1+β

2T

0 otherwise,

where β is the roll-off factor that measures the excess bandwidth (beyond the

Nyquist minimum) used by the filter.

To compute the correct pulse-shaping filter, we must take the square-root

in the frequency domain and the inverse Fourier transform. This results in

the root raised-cosine pulse given by

p(t) =





1− β + 4
β

π
if t = 0

β√
2

[(
1 +

2

π

)
sin

(
π

4β

)
+

(
1− 2

π

)
cos

(
π

4β

)]
if t = ± Ts

4β

sin

[
π
t

Ts

(1− β)

]
+ 4β

t

Ts

cos

[
π
t

Ts

(1 + β)

]

π
t

Ts

[
1−

(
4β

t

Ts

)2
] otherwise.

In this case, the slow 1/t decay rate of the sinc function has been improved to

a decay rate of 1/t2.
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7.2.3 Linear Time-Invariant Channels

Now, we can also generalize the system model to include an LTI channel re-

sponse hc(t) and a LTI receive filter hr(t). Since we assume that the dominant

source of noise is the low-noise amplifier, the noise is added after the channel

filter but before the receive filter. This implies that the received signal is given

by R(t) = s(t) ∗ hc(t) +N(t) and the output of the receive filter is given by

Y (t) = s(t) ∗ hc(t) ∗ hr(t) +N(t) ∗ hr(t)

=

(
∞∑

n=−∞

xnp(t− nT )

)
∗ hc(t) ∗ hr(t) +N(t) ∗ hr(t)

=
∞∑

n=−∞

xng(t− nT ) +

∫ ∞

−∞

N(τ)hr(t− τ),

where g(t) = p(t) ∗ hc(t) ∗ hr(t) and ys(t) is the deterministic portion of Y (t).

Let Rm = Y (mT ) be the sampled output of the matched filter. Then,

Rm = ys(mT ) + Zm with

ys(mT ) = xmg(0) +
∞∑

n=−∞,n 6=m

xng ((m− n)T )

and

Zm =

∫ ∞

−∞

N(τ)hr(mT − τ).

If we choose hr(t) such that its autocorrelation function v(τ) satisfies (7.1),

then the noise {Zm} is a sequence of independent and identically distributed

Gaussian random variables.

Example 7.2.6. If g(nT ) 6= 0 for some n 6= 0, then we say that system has

ISI. For example, consider the case where

g(nT ) =





1 if n = 0

1
4

if n = 1

0 otherwise

.

This gives a discrete-time model of communication with ISI where

Ym = xm +
1

4
xm−1 + Zm.
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7.2.4 Passband Communication

Until now, our study of waveform communication has focused on baseband

signals, which have the majority of their energy near DC. Signals which oc-

cupy a narrow frequency band well separated from DC are known as pass-

band signals. All of wireless communications is based on passband signals

because low-frequency electromagnetic waves require enormous antennas for

efficient transmission. Typical frequency ranges for wireless communications

start around 100 MHz and short-range communication is possible up until

about 60 GHz.

The process of shifting a baseband signal in frequency to make it passband

is know as mixing. Let s(t) be a baseband signal with bandwidthW and define

x(t) = e2πjf0ts(t).

From the modulation property of the Fourier transform, one sees that

x̂(f) = ŝ(f − f0).

This implies that x(t) is a passband signal centered at frequency f0 with band-

width 2W .

The resulting x(t) must be complex because it does not have negative-

frequency conjugate-symmetry. But, any signal represented by a single time-

varying voltage on a single wire is necessarily real. Therefore, we must take

do something before coupling x(t) to the antenna. It turns out that the real

part of x(t) gives a physically realizable passband signal that works for our

purposes. The result

ℜ{x(t)} =
1

2
e2πjf0ts(t) +

1

2
e−2πjf0ts∗(t)

= ℜ{s(t)} cos(2πf0t)−ℑ{s(t)} sin(2πf0t)

shows us how to mix a complex baseband signal s(t) with real oscillators (i.e.,

for the sine and cosine) to generate the passband signal. This mixing process

is known as quadrature amplitude modulation.

In wireless communication, the real passband signal is coupled to an an-

tenna to generate radio waves that propagate through space. At the receiver,

another antenna couples the received radio waves into the the time-varying
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voltage r(t). Demodulation of the received waveform r(t) = ℜ{x(t)} is done

using a similar process with

y(t) = r(t)e−2πjf0t

=
1

2
ℜ{s(t)}

(
cos2(2πf0t)− j cos(2πf0t) sin(2πf0t)

)

+
j

2
ℑ{s(t)}

(
sin2(2πf0t)− j cos(2πf0t) sin(2πf0t)

)

=
1

2
ℜ{s(t)} (1 + cos(4πf0t)− j sin(4πf0t))

+
j

2
ℑ{s(t)} (1− cos(4πf0t)− j sin(4πf0t) .

If f0+W < 2f0−W , then we can use an ideal low-pass filter h(t) (with cutoff

f0 + W ) to remove the images centered at 2f0 without affecting the signal.

This gives

y(t) ∗ h(t) = 1

2
s(t).

So this approach allows us to upconvert s(t) to a passband signal and then

downconvert it back to a bandpass signal.



Index

channel coding, 87

binary erasure channel, 89

binary linear code, 93

binary symmetric channel, 89

binary-input AWGN channel, 89

coding gain, 89, 102

cyclic code, 103

cyclic redundancy check, 107

discrete memoryless channel, 88

generator matrix, 94

Hamming code, 97

Hamming distance, 90

Hamming weight, 93

modulo polynomial, 104

parity generator, 95

parity-check matrix, 95

standard array, 98

syndrome decoder, 98

systematic encoder, 106

systematic form, 95, 96

digital communication, 1, 33, 109

additive white Gaussian noise, 34

baseband signals, 123

binary phase-shift keying, 35

channel, 33

demodulation, 33

discrete-time channel model, 34

inner product, 109

matched filter, 115

modulation, 33

noise spectral density, 37

optimal detection, 38

orthogonal, 110

passband signals, 123

pulse-amplitude modulation, 35

raised-cosine Nyquist pulse, 121

root raised-cosine pulse, 121

signal space, 110

signal-to-noise ratio, 37

square-root Nyquist pulse, 119

symbol constellation, 37

vector space, 110

waveform channel, 109

Fourier analysis, 43

aliasing, 51

autocorrelation function, 48

bandpass signal, 57

bandwidth-limited, 50

Dirac delta function, 46

energy spectral density, 46, 48

energy-type signal, 45

Fourier series, 44

Fourier transform, 45

frequency domain, 43

125



126 INDEX

Hilbert transform, 58

Nyquist rate, 54

power spectral density, 49

power-type signal, 49

sinc function, 45

spectral bandwidth, 49

square integrable, 45

step function, 57

hypothesis testing, 38

a posteriori probability, 40

a priori probability, 40

maximum a posteriori, 40

maximum likelihood, 41

multiple hypothesis testing, 40

null hypothesis, 39

observation probability, 40

information theory

AEP, 29

entropy, 12

typical set, 30

quantization, 65

analysis-synthesis, 85

Code Excited Linear Prediction, 85

companding, 73

conditional mean, 76

delta modulation, 75

differential quantization, 75

distortion, 65

dithering, 72

JPEG file interchange format, 86

linear prediction, 77

Lloyd-Max algorithm, 81

LMMSE estimate, 77

mean squared error, 68

MMSE estimate, 76

non-uniform quantizer, 79

quantization error, 67

signal-to-quantization-noise ratio,

69

uniform quantizer, 78

vector quantization, 82

waveform coders, 85

random process, 58

autocorrelation function, 59

continuous-time, 58

discrete-time, 26, 58

ergodic, 58, 59

Gaussian process, 63

Gaussian white-noise, 64

Markov chain, 26

mean, 58

power spectral density, 60

stationary, 26, 58

stochastic process, 58

source coding

code, 14

codeword, 14

compression code, 14

discrete memoryless source, 10

fixed-length code, 14

Huffman code, 21, 86

Lempel-Ziv algorithm, 27

non-singular, 15

prefix-free, 15

uniquely decodable, 15



INDEX 127

universal data compression, 27

variable-length code, 14


	Preface
	Digital Communication
	System Components
	The Input-Output Blocks
	The Transmitter-Receiver Pair

	Common Channels and Applications

	Sources of Digital Information
	Discrete Memoryless Sources
	Entropy
	Variable-Length Compression Codes
	Kraft Inequality
	Entropy Bounds on Prefix-Free Codes
	Huffman Codes

	Joint Encoding of Source Symbols
	Sources with Memory
	Universal Source-Coding Algorithms
	Fixed-Length Compression Codes*
	Asymptotic Equipartition Property


	Discrete-Time Communication
	A Simple Channel Model
	A Simple Modulation Scheme
	Quadrature Amplitude Modulation
	Optimal Symbol Detection
	Hypothesis Testing
	Multiple Hypothesis Testing


	Fourier Analysis and Sampling
	Fourier Series
	Fourier Transforms
	The Dirac Delta Function
	Periodic Signals
	Spectral Density
	Linear Time-Invariant Filters

	Sampling Deterministic Signals
	The Sampling Theorem
	Imperfect Sampling and Reconstruction

	Sampling Bandlimited Processes*
	Bandpass Signals and Processes*
	Stochastic Signals
	Power Spectral Density
	Filtering Stochastic Processes
	Gaussian Processes


	Quantization
	Scalar Quantizers
	Distortion Measures
	Mean Squared Error
	Signal to Quantization-Noise Ratio
	Dithering
	Non-Uniform Quantization via Companding

	Predictive Quantization
	Delta Modulation
	Estimation and Prediction

	Optimal Quantization
	Uniform Quantizers
	Non-Uniform Quantizers
	Lloyd-Max Algorithm

	Vector Quantizers
	Analysis-Synthesis Algorithms

	Channel Coding
	Introduction
	What is channel coding and why do we use it?
	Channels and Error Models

	The Basics of Coding
	Codes
	Decoding

	Binary Linear Codes
	Basic Properties
	Generator and Parity-Check Matrices
	Decoding
	Manipulating Linear Codes

	Performance Analysis
	Cyclic Codes
	Basic Properties
	Systematic Encoding
	Cyclic Redundancy Check


	Waveform Communication
	A Single Digital Symbol
	Orthogonal Waveforms
	General Waveforms
	The Matched Filter

	Time-Shift Waveforms
	Demodulation
	The Nyquist Criterion
	Linear Time-Invariant Channels
	Passband Communication


	Index

