
Chapter 2

Sources of Digital Information

Digital systems use sequences of symbols (e.g., binary systems use 0’s and

1’s) to represent information. A source of digital information is assumed to

produce a succession of symbols, each drawn from a discrete alphabet. The

three goals of this chapter are to understand the nature of digital information,

find an adequate measure of information for digital systems and to describe

compression algorithms that can be employed to represent the said information

in a succinct manner. Data compression, also known as source coding, is

important because it reduces the consumption of expensive resources such as

hard disk space or transmission bandwidth. Alternatively, it can be applied

to lower the cost of communication, reduce latency or improve the quality of

the received messages.

This chapter offers an introductory treatment of lossless compression al-

gorithms, whereby the original message can be recovered perfectly from the

compressed data. This is in contrast to lossy data compression, which provides

improved compression ratios at the expense of introducing some distortion in

the message. In the latter case, part of the information may be lost and the

original data need not be perfectly recoverable, although the reconstructed

message may be quite close to the original one. For instance, the JPEG algo-

rithm can be employed as a lossy compression scheme to reduce the size of a

digital photograph.

In lossless data compression, two strategies are employed to reduce the

expected length of a message. Highly probable symbols are assigned short

descriptions, and less likely symbols are encoded using longer binary repre-

9

10 CHAPTER 2. SOURCES OF DIGITAL INFORMATION

sentations. Second, the statistical redundancy contained in the input signal

over time is removed, leading to a more concise description of the digital data.

Data compression algorithms are explained more thoroughly below.

As we will see, finding a pertinent measure of information is key in assessing

the performance and limitations of compression algorithms. While the general

notion of information may be quite broad, it has a precise definition in the

context of digital communication systems. To describe this specific meaning,

we first need to develop a rigorous mathematical model for digital information

sources.

2.1 Discrete Memoryless Sources

As mentioned above, a digital source produces a sequence of symbols drawn

from a countable alphabet. It can accordingly be modeled as a discrete-time

random process. Because of their indeterminate nature, random signals and

stochastic processes can be difficult to characterize. Later in this document,

we will discuss random processes in more detail. A thorough discussion of the

subject requires advanced concepts from probability theory, a topic that inter-

ested readers may wish to pursue on their own. For the sake of simplicity, we

focus on a class of elementary information sources that are collectively known

as discrete memoryless sources. These sources can be described simply as a se-

quence of independent and identically-distributed discrete random variables.

Furthermore, discrete memoryless sources provide valuable insights into the

design of efficient compression algorithms for more general settings.

Definition 2.1.1. A discrete memoryless source is a digital information

source that produces a sequence of independent and identically distributed sym-

bols over time. Mathematically, it consists of an alphabet X and a probability

mass function pX(·) such that, at any time t, the probability that the source

outputs symbol x ∈ X is equal to pX(x), irrespective of the past and future.

To completely characterize the statistical properties of a discrete memo-

ryless source, it suffices to define the probability mass function of individual

symbols. Since the source generates independent and indentically distributed

symbols, the higher-order statistics need not be specified explicitly. Instead,

2.1. DISCRETE MEMORYLESS SOURCES 11

they can be ontained from

Pr(Xt1 = xt1 , . . . , Xtn = xtn) =
n∏

k=1

pX(xtk) (2.1)

where xt1 , . . . , xtn ∈ X . In (2.1), the random variable Xti denotes the output

of the source at time ti. We provide two examples of memoryless sources below

to further illustrate their form.

Example 2.1.2 (Binary Source). The simplest possible information source is

a discrete memoryless source where pX(·) is the probability mass function of a

Bernoulli random variable,

pX(x) =




(1− p), x = 0

p, x = 1

with p ∈ [0, 1]. This source can be employed, for instance, to model the suc-

cessive flipping of a biased coin, where heads is obtained with probability p and

tails is obtained with probability 1− p.

Example 2.1.3. To construct a slightly more elaborate example, consider a

collection of experiments where a fair coin is flipped repetitively until heads is

observed. The outcome of each experiment is reported as a source output. The

source alphabet in this case is X = {1, 2, . . .}, the positive integers, and the

marginal probability mass function associated with individual outcomes becomes

pX(x) =
1

2x
, x = 1, 2, . . .

Thus, the distribution of the source output at time t is a geometric random

variable with parameter 1
2
.

The independence, over time, of symbols from a discrete memoryless source

makes them convenient for analysis. However, it should also be pointed out

that many realistic sources are more complicated than memoryless sources.

In particular, their outputs may be correlated over time, which can have a

major impact on information rates. Handling more complicated sources typi-

cally requires heavy mathematical machinery, and is beyond the scope of this

document. The results derived using more these are, nevertheless, similar in

12 CHAPTER 2. SOURCES OF DIGITAL INFORMATION

nature to the ones presented below. This partially explains why we choose not

to study more difficult information sources in this document.

Having constructed a suitable abstraction for digital sources, we turn to the

subject of digital information. From an intuitive point of view, the data rate

of a discrete memoryless source should be equal to the amount of information

it produces at every time instant. In other words, the amount of information

created by a discrete memoryless source at time t should be computable based

on X and pX(·) exclusively. This is indeed the case. Before we can make

this statement precise, we need a rigorous mathematical characterization of

information. We address this issue by introducing entropy, a concept closely

related to the notion of information.

2.2 Entropy

The entropy can be viewed as a measure of uncertainty in a random variable.

In the context of digital communications, it provides a lower bound on the

expected number of bits required to describe the output of a discrete mem-

oryless source. As we will see shortly, this lower bound is tight and can be

approached by practical encoders

Definition 2.2.1 (Entropy). Let X be a discrete random variable drawn from

alphabet X according to probability mass function pX(·). The entropy of X,

denoted H[X], is given by

H[X] = −
∑

x∈X

pX(x) log2(pX(x)). (2.2)

Under this definition, entropy is described in bits. When writing H[X], we use

the convention

0 · log2
(
1

0

)
= lim

ǫ→0
ǫ log2

(
1

ǫ

)
= 0.

Alternatively, the entropy of X can be interpreted as the expectation of a log-

arithmic function,

H[X] = E

[
log2

(
1

pX(X)

)]
.

The entropy as described in (2.2) has interesting properties. The value

H[X] does not depend on the actual symbols themselves, it only depends on

2.2. ENTROPY 13

the probability mass function of the possible outcomes. For instance, in Exam-

ple 2.2.2, the entropy of X remains the same whether we represent the flipping

of a coin by a single bit or through a string of letters, heads or tails. More

generally, the way we choose to designate the possible outcomes of a random

experiment has no bearing over the entropy of the corresponding source, only

the respective probabilities of the possible symbols matter.

Example 2.2.2. Let X be an abstract representation of the flipping of a (pos-

sibly biased) coin. The probability mass function of X is then equal to

pX(x) =




(1− p), x = 0

p, x = 1

with zero denoting tails and one for heads. We can compute the entropy of X

as follows,

H[X] = −(1− p) log2(1− p)− p log2(p).

If the coin is fair, p = 1
2
, then the entropy of X becomes one bit. Hence, the

minimum expected number of bits needed to describe the outcome of a fair coin

toss is one. This seems quite reasonable.

The entropy of pair of two independent random variables is the sum of the

individual entropies. Suppose that X is a vector random variable given by

X = (U, V), where U and V are independent. Then, we can write

pX(x) = pX((u, v)) = pU(u)pV (v)

and the entropy of X can be computed as

H[X] = −
∑

x∈X

pX(x) log2(pX(x))

= −
∑

(u,v)∈U×V

pX((u, v)) log2(pX((u, v)))

= −
∑

u∈U

∑

v∈V

pU(u)pV (v) log2(pU(u)pV (v))

= −
∑

u∈U

pU(u) log2(pU(u))−
∑

v∈V

pV (v) log2(pV (v))

= H[U] + H[V].

14 CHAPTER 2. SOURCES OF DIGITAL INFORMATION

This corresponds to our intuitive understanding; the amount of information

contained in two unrelated events should be the sum of the information per-

taining to each individual event.

It is important to recognize that H[X] is computed based on the probability

mass function pX(·), it is not a function of the random variable X itself. As

such, H[X] is a deterministic quantity and does not depend on the actual

realization of X. Furthermore, we note that H[X] is continuous in the weights

of the distribution pX(·). A small change in the distribution of X only results

in a small variation in its entropy. It is therefore possible to construct accurate

entropy estimates based on empirical measurements of the source outputs.

2.3 Variable-Length Compression Codes

A code is a rule for converting a symbol (or a group of symbols) into a string of

bits called a codeword. Mathematically, an encoder is a mapping c : X 7→ C
from the input alphabet X to the collection of possible codewords C. The goal
of a compression code is, of course, to provide a more concise representa-

tion of the information signal. In lossless compression, the function c must

be invertible when restricted to the support of X. Without this one-to-one

relationship, decoding errors are guaranteed to happen. Encoding schemes

can be partitioned into two categories based on the structure of their code-

books. If the codewords all share the same bit-length, then the corresponding

code is called a fixed-length code. This section focuses on codes in the

second category, variable-length codes, which are often used in lossless data

compression.

As the name suggests, a variable-length code is an encoding function

that maps source symbols to a variable number of bits. This is a beneficial fea-

ture for many compression schemes, as the greater flexibility sometimes leads

to better compression ratio. The motivation behind variable-length encoding

is the intuition that data compression can be achieved by assigning short bit

strings to likely symbols, and necessarily longer bit strings to less probable

ones. In dealing with variable-length codes, it is essential to recognize that

they are inherently more tricky than fixed-length ones. With variable-length

coding, it may be impossible to know where codewords begin in a compressed

2.3. VARIABLE-LENGTH COMPRESSION CODES 15

binary file without knowing the content of the file. This is in stark contrast

with fixed-length codes where codewords are positioned at regular intervals

and, therefore, easy to distinguish. To ensure that the binary output of a

variable-length encoder can be recovered unambiguously, the code needs spe-

cific properties.

The extension of a code c is obtained by concatenating its codewords when

c is applied to a multitude of source symbols. Given the string of symbols

x1, x2, . . . , xn, the extension of c produces the output bit string

c(x1)c(x2) · · · c(xn).

An extension of c is a proper encoding scheme because it takes a group of

symbols as its argument and produces a string of bits as its output.

Variable-length codes can be nested in order of decreasing generality as

non-singular, uniquely decodable and instantaneous. A code is non-singular

if each source symbol is mapped to a different bit string. That is, the mapping

c from X to C is one-to-one. Rather, if two symbols map to the same codeword,

then it is intuitively clear that the original message cannot be recovered with

certainty. A code is said to be uniquely decodable if its extensions are

non-singular.

It is important to recognize that successive codewords in a message are

communicated as an undifferentiated sequence of bits. There is no separation

marker or frame between adjacent codewords, no commas or spaces. The

decoder, given a starting point, must infer the boundaries of every codeword

from the data. This process is called parsing. The third and final property

of variable-length encoding is related to parsing. A code is instantaneous, or

prefix-free, if no codeword in C is a prefix of a any other encoded symbol in

C. This property guarantees that each encoded symbol can be identified with

no further delay once the corresponding string of bits is received or read.

Example 2.3.1. Suppose that a source produces three possible symbols, X =

{x1, x2, x3}. We consider four encoding functions (c1, c2, c3, c4), each with dif-

ferent properties. The encoding schemes are defined as follows.

16 CHAPTER 2. SOURCES OF DIGITAL INFORMATION

Symbol Codeword

x c1(x) c2(x) c3(x) c4(x)

x1 0 0 0 0

x2 1 1 01 10

x3 0 01 11 11

The first scheme is not injective because it maps two different source sym-

bols to the same codeword, c1(x1) = c1(x3). Thus, individual codewords cannot

be decoded unambiguously. The second code is one-to-one; however, it is not

uniquely decodable. The encoded message 01 can be generated by either input

string x1x2 or input symbol x3. Clearly, the compressed message is not uniquely

decodable. The third code, c3(·) is uniquely decodable, but not instantaneous.

After receiving a zero, it not immediately clear whether x1 produced this out-

put or if this zero consists of the first half of codeword c(x2). While c4(·) is

a prefix code where every symbol can be decoded immediately after reading the

corresponding bits.

The measure of a good prefix code is the expected length of its encoded

symbols. Suppose that a discrete memoryless source (X , pX) is given along

with a code c. We denote the length in bits of codeword c(x) by ℓc(x). The

expected number of bits produced by the source at each time instant is given

by

E[ℓc(X)] =
∑

x∈X

pX(x)ℓc(x). (2.3)

We emphasize that the expected length is a function of both the statistics of the

source and the structure of compression code employed. Under the assumption

that the source outcomes are independent and identically distributed over time,

E[ℓc(X)] also represents the average data rate produced by the source, in bits

per source symbol.

2.3.1 Kraft Inequality

When building a compression code, it is obvious from (2.3) that assigning

short codewords is better than long codewords. Yet, it is clear that we cannot

describe every symbol using a very small number of bits, for otherwise the

2.3. VARIABLE-LENGTH COMPRESSION CODES 17

prefix condition will be violated. The collection of possible length assignments

for a prefix-free code is characterized by the following inequality.

Theorem 2.3.2 (Kraft Inequality). Let X be a finite alphabet. Any binary

prefix-free code c : X 7→ C satisfies the inequality

∑

x∈X

2−ℓc(x) ≤ 1. (2.4)

where ℓc(x) is the bit length of codeword c(x). Conversely, if we first assign the

codeword lengths such that (2.4) is satisfied, then there exists an instantaneous

code with these codeword lengths.

Proof. We wish to give necessary and sufficient conditions about the existence

of a prefix-free code with a specific length assignment. We employ simple

combinatorial arguments to a binary tree structure to establish this result. Let

0

0

0

0

0

0

0

1

1

1

1

1
1

1

000

001

010

011

100

101

110

111

Figure 2.1: This figure shows a binary tree with depth Lc = 3 and eight leaves.

The branches from every node correspond to zero or one.

Lc = maxx∈X ℓc(x) be the length of the longest codeword. Code c : X 7→ C can

be defined using a binary tree of depth Lc, where branches from every node

correspond either to zero or one. Each codeword consists of a unique path

from the root to a leaf at depth ℓc(x), following its binary string expansion.

The prefix condition ensures that no codeword is a descendant of any other

codeword in the binary tree. For the codewords in the tree, let Sx be the set of

descendants that c(x) would have in a full binary tree of depth Lc. The sets Sx

18 CHAPTER 2. SOURCES OF DIGITAL INFORMATION

are disjoint because of the prefix-free nature of the code, and |Sx| = 2Lc−ℓc(x).

Since the total number of nodes at depth Lc is 2
Lc , we have

∣∣∣∣∣
⋃

x∈X

Sx

∣∣∣∣∣ =
∑

x∈X

|Sx| =
∑

x∈X

2Lc−ℓc(x) ≤ 2Lc .

By dividing both sides by 2Lc , we conclude that (2.4) holds. That is, a binary

prefix-free code c over finite alphabet X satisfies the Kraft inequality.

Conversely, suppose that we have a code assignment such that (2.4) is

satisfied. Without loss of generality, we assume that the codeword lengths

ℓc(xi) are increasing in i,

ℓc(x1) ≤ ℓc(x2) ≤ ℓc(x3) ≤ · · ·

We can construct a prefix code with matching codeword lengths by pruning

subtrees from a full binary tree of depth Lc. First, choose any node from the

full tree at depth ℓ1 and remove all of its descendants. This removes 2Lc−ℓ1

leafs from the original binary tree. Next, select any available node from the

resulting tree at depth ℓ2, and remove all of its descendants. This time, an

additional 2Lc−ℓ2 leafs are taken away from the original binary tree. Continue

this procedure with the other codeword lengths. After m iterations, the total

number of leafs removed from the original binary tree is equal to

m∑

i=1

2Lc−ℓi = 2Lc

m∑

i=1

2−ℓi .

Since the Kraft inequality holds for the codeword length assignment, this im-

plies that all the codewords can be placed at different positions on the binary

graph. Then, following the binary structure of the graph, the binary string of

the codes can be inferred from the graph.

Example 2.3.3 (Code on a Tree). Suppose that we intend to construct a prefix

code for X = {x1, . . . , x5}, with code lengths

ℓc(x1) = ℓc(x2) = 2 ℓc(x3) = ℓc(x4) = 3 ℓc(x5) = 2.

First, we check the Kraft inequality to make sure that such an assignment is

feasible,
5∑

i=1

2−ℓc(x1) =
1

4
+

1

4
+

1

8
+

1

8
+

1

4
= 1.

2.3. VARIABLE-LENGTH COMPRESSION CODES 19

The inequality is fulfilled, we can therefore use a binary tree construction to

design the desired instantaneous code. The process is illustrated in Figure 2.2,

and the resulting code is shown below.

Source Symbol Codeword Source Symbol Codeword

x1 00 x4 101

x2 01 x5 11

x3 100

Since the Kraft inequality is met with equality, we know that it is impossible

to get a better code by shortening one of the codewords.

0

0

0

0

1

1

1

1

00

01

100

101

11

Figure 2.2: Construction of a prefix code with a binary tree.

2.3.2 Entropy Bounds on Prefix-Free Codes

Now that we know how to build instantaneous, we consider the problem of

finding good prefix-free codes. Recall from (2.3) that our objective is to find

a prefix-free code with the smallest possible expected length. As seen earlier,

this codeword length assignment is subject to the Kraft inequality. Putting

these two requirements together, we can formulate the optimization problem

as follows,

min
ℓ(x)

∑

x∈X

pX(x)ℓ(x) subject to
∑

x∈X

2−ℓ(x) ≤ 1.

We note that, for a code to exist, the function ℓ(x) must take values in the

positive integers. It turns out that this problem is difficult to solve.

20 CHAPTER 2. SOURCES OF DIGITAL INFORMATION

To gain insight into the problem, we relax the integer constrain on ℓ(x).

This added flexibility will provide a lower bound on E[ℓ(X)]; having more

choices can only lead to better results. We use the method of Lagrange multi-

pliers to solve the latter version of the problem. The objective function, with

Lagrange multiplier λ, becomes

∑

x∈X

pX(x)ℓ(x) + λ

(
∑

x∈X

2−ℓ(x) − 1

)
.

Note that this function is twice differentiable in ℓ(x). Taking a partial deriva-

tive with respect to ℓ(x) and setting it to zero, we get

pX(x)− λ ln(2)2−ℓ(x) = 0.

The optimal value for ℓ(x), which we denote by ℓ⋆(x), must therefore satisfy

2−ℓ⋆(x) = pX(x)/(λ ln(2)). Computing the derivative with respect to λ yields

∑

x∈X

2−ℓ⋆(x) = 1,

which in turn implies λ = 1/ ln(2). Putting these results together, we gather

that the optimal values for {ℓ(x) : x ∈ X} are given by

ℓ⋆(x) = − log2(pX(x))

for x ∈ X . Thus, by construction, we obtain

E[ℓc(X)] ≥ −
∑

x∈X

pX(x) log2(pX(x)) = H[X]

for any prefix-code c. In other words, the entropy is a lower bound on the

expected length of any prefix-free code.

It is equally easy to obtain an upper bound on the expected length of an

optimal prefix-free code. Observe that ⌈− log2(pX(x))⌉ is an integer, with

− log2(pX(x)) ≤ ⌈− log2(pX(x))⌉ ≤ − log2(pX(x)) + 1.

The Kraft inequality asserts that we can build a code c : X 7→ C such that

ℓc(x) = ⌈− log2(pX(x))⌉, as
∑

x∈X

2−ℓc(x) ≤
∑

x∈X

2−ℓ⋆(x) = 1.

2.3. VARIABLE-LENGTH COMPRESSION CODES 21

As such, there exists a code c such that

E[ℓc(X)] ≤ H[X] + 1.

We collect and formalize these important results in the form of a theorem.

Theorem 2.3.4. Consider a discrete memoryless source (X , pX(·)) over a

finite alphabet. If symbols are encoded individually using an optimal prefix-free

code c : X 7→ C, then the expected length of the codewords satisfies

H[X] ≤ E[ℓc(X)] ≤ H[X] + 1.

2.3.3 Huffman Codes

Theorem 2.3.4 identifies properties of an optimal prefix-code. However, it does

not provide an algorithmic methodology to design such a code. This is ad-

dressed by theHuffman code, which provides an efficient variable-length code

for lossless data compression. Not too surprisingly, the underlying strategy in

this scheme is to assign short strings of bits to likely symbols, and necessar-

ily longer ones to less probable source outputs. The encoding is specifically

crafted so that the code table forms a prefix-free code. Huffman codes are

the most efficient compression mapping for individual source symbols. The

expected length of the compressed data achieved with this technique will be

no greater than the expected message length of any other prefix-free code that

operates on individual source symbols.

The insight behind Huffman coding is based on three properties of optimal

prefix-codes. Suppose that we wish to encode outputs from discrete memo-

ryless source (X , pX), and let c⋆ : X 7→ C be an optimal prefix-code for this

source. If pX(x1) > pX(x2), then ℓc⋆(x1) ≤ ℓc⋆(x2). For any of the longest

codewords, its sibling (the bit string that differs only in the last digit) must

also be codeword; otherwise, the original codeword can be shortened by re-

moving the last bit. Finally, the code tree associated with an optimal code

must be full. A binary tree is full if every node has either zero or two children.

Again, if this condition fails, then some codewords in the codebook can be

shortened.

22 CHAPTER 2. SOURCES OF DIGITAL INFORMATION

The Huffman algorithm creates a code by building a binary tree. The

algorithm proceeds as follows. First, every source symbol x is assigned to an

individual node. Then, the simple recursion outlined below is applied.

1. Sort the nodes in decreasing order of probabilities.

2. Merge the two least probable nodes into a single one, whose probability

equals the sum of its constituents.

3. Arbitrarily assign zero or one to the branches emerging from this new

node.

4. Repeat the previous three steps with the new collection of nodes and

their corresponding probabilities until only one node remains.

The Huffman encoding algorithm is best grasped through simple examples.

Example 2.3.5. Suppose that a discrete memoryless source (X , pX) with al-

phabet X = {x1, x2, x3} has probability mass function

pX(x) =





2
3
, x = x1

1
6
, x ∈ {x2, x3}.

We wish to obtain an optimal prefix-code for this source, and thus we apply

the Huffman algorithm. For the given source, code design proceeds as follows.

Stage 3 Stage 2 Stage 1 Symbol Codeword

Pr{x1, x2, x3} = 1 Pr{x1} = 2
3

pX(x1) =
2
3

x1 0

Pr{x2, x3} = 1
3

pX(x2) =
1
6

x2 10

pX(x3) =
1
6

x3 11

From this successive re-ordering of probabilities, we use a binary tree to

build the actual code. This is illustrated in Figure 2.3.

Example 2.3.6. A source (Y , pY) generates four different symbols {y1, y2, y3, y4}
with probabilities {0.35, 0.25, 0.2, 0.2}. A binary tree is generated from right to

left, by merging the two less probable symbols at every step. Once this is com-

plete, the code can then be form by assigning different bits to every pair of

branches emerging from a node. The table below shows the different stages of

the iterative procedure where probabilities are first sorted in decreasing order,

then the two least probable nodes are merged into a single one.

2.3. VARIABLE-LENGTH COMPRESSION CODES 23

0

10

11

x1

x2

x3

{x2, x3}
{x1, x2, x3}

Figure 2.3: A graphical representation for the construction of a simple Huffman

code. The source alphabet in this case is X = {x1, x2, x3} and the probabilities

of individual symbols are {2/3, 1/6, 1/6}, respectively.

Stage 4 Stage 3 Stage 2 Stage 1

0.6 + 0.4 = 1 0.35 + 0.25 = 0.6 0.2 + 0.2 = 0.4 pX(x1) = 0.35

0.4 0.35 pX(x2) = 0.25

0.25 pX(x3) = 0.2

pX(x4) = 0.2

The ensuing Huffman code is obtained by moving from left to right in the

corresponding binary tree. The binary tree and the resulting Huffman code are

shown in Figure 2.4.

00

01

10

11

x1

x2

x3

x4

Figure 2.4: This figure depicts a Huffman code construction for an alphabet

of size four.

Although Huffman coding is optimal for a symbol-by-symbol encoding with

a known input probability mass function, it can be outperformed when these

two conditions are not known. For instance, if the input distribution pX(·) is
not known, then it must be inferred from the available data prior to applying

Huffman coding. Small errors in the estimated probability mass function can

then lead to inefficiency, which in turn renders Huffman coding suboptimal.

24 CHAPTER 2. SOURCES OF DIGITAL INFORMATION

We will soon see an encoding algorithm that does not require the input dis-

tribution pX(·). However, before we can present this algorithm, we need to

consider the join encoding of source symbols.

2.4 Joint Encoding of Source Symbols

Under special circumstances, namely when the probability of every source

symbol is an exponent base two, the expected length of a Huffman code is

equal to the entropy of the source. However, in many situations, this is not

the case, and there exists a gap between the expected codeword length and

the entropy of a source output. An efficient way to encode data, where the

expected number of coded bits per source symbol approaches the entropy, is to

consider blocks of source symbols and to encode them jointly. Although more

complicated, this process leads to better performance and typically leads to

expected message lengths that are shorter than that of a symbol-by-symbol

Huffman code.

Consider a sequence X1, X2, . . . of symbols at the output of a discrete mem-

oryless source. Instead of using a code that operates on individual symbols,

we can design a more elaborate code that takes as input a group of n symbols,

c : X n 7→ C. Since the outputs of a discrete memoryless source are indepen-

dent and identically distributed random variables, we know from the additive

property of the entropy that

H[X1, . . . , Xn] = nH[X].

Then, by applying Theorem 2.3.4, we get that an optimal prefix code, which

operates on X n, yields

nH[X] ≤ E[ℓc(X1, . . . , Xn)] ≤ nH[X] + 1.

Then, the expected message length per source output becomes

H[X] ≤ E[ℓc(X1, . . . , Xn)]

n
≤ H[X] +

1

n
.

Thus, the expected number of bits per symbol produced by a source can be

made arbitrarily close to H[X] by jointly encoding strings of symbols.

2.4. JOINT ENCODING OF SOURCE SYMBOLS 25

Example 2.4.1. Let (X , pX) be a binary discrete memoryless source, as de-

scribed in Example 2.1.2. Furthermore, assume that Bernoulli parameter p is

equal to 1
4
. Then, the entropy of the source can be calculated as

H[X] = −3

4
log2

(
3

4

)
− 1

4
log2

(
1

4

)
≈ 0.811.

Since there are only two source symbols, a code generated by the Huffman

algorithm is the identity code, where a source output is represented by its binary

value. In this case, the expected codeword length is equal to one.

Suppose instead that two symbols are encoded at a time. In this case, the

possible inputs to the encoder are {00, 01, 10, 11}, with respective probabilities{
9
16
, 3
16
, 3
16
, 1
16

}
. The Huffman code specified by

Symbol Codeword

00 0

01 10

10 110

11 111

has an expected length of

E[ℓc(X1, X2)] = 1 · 9

16
+ 2 · 3

16
+ 3 · 3

16
+ 3 · 1

16
=

27

16
.

The expected message length per source output becomes

E[ℓc(X1, X2)]

2
=

27

32
≈ 0.844,

which is much closer to the entropy of individual source symbols. Repeating

this procedure with an Huffman code that takes three symbols as its input would

lead to an expected codeword length per symbol of approximately 0.823.

Example 2.4.1 illustrates well how encoding several source symbol at a time

can lead to a decrease in the expected codeword length per symbol. The joint

encoding of source symbols works even better for sources that are correlated

over time. Although we will not discuss the specifics of this scenario, it is infor-

mative to mention that joint source coding is instrumental in approaching the

entropy rate of correlated sources. This is especially important considering the

fact that symbol-by-symbol encoding may perform very poorly for correlated

sources.

26 CHAPTER 2. SOURCES OF DIGITAL INFORMATION

2.5 Sources with Memory

Until now, we have focused on the compression of discrete memoryless sources

because they produce i.i.d. symbols. The majority of real-world sources gener-

ate symbol sequences where the probability of the next symbol depends on the

previously observed symbols. To model these sources, we use the mathematical

concept of a discrete-time random process.

A discrete-time random process is an infinite sequence . . . , X−1, X0, X1, . . .

of random variables defined on a common sample space Ω. This approach

treats each random variable Xn as a mapping Xn : Ω → R. Using this, each

ω ∈ Ω defines a realization . . . , X−1(ω), X0(ω), X1(ω), . . . of the random pro-

cess. While random processes can be quite complicated in their full generality,

the random processes used in this class have relatively simple descriptions.

For example, the discrete memoryless source introduced earlier in this chapter

defines a very simple random process.

In this section, we introduce a simple random process with memory known

as a Markov chain. A Markov chain assumes that the probability of the n-th

symbol depends only on the value of the previous symbol. Mathematically,

this condition can be written as

PXn|Xn−1,Xn−2,...,X0(xn|xn−1, xn−2, . . . , x0) = PXn|Xn−1(xn|xn−1).

If the conditional probability is time-invariant (i.e., it doesn’t depend on n),

then the Markov chain is called stationary. Mathematically, stationarity

implies that

PXn|Xn−1(xn|xn−1) = PX1|X0(xn|xn−1).

For a stationary Markov chain, the probability simplifies to

PXn,Xn−1,...,X0(xn, xn−1, . . . , x0) = PX0(x0)
n∏

i=1

PX1|X0(xi|xi−1).

2.6 Universal Source-Coding Algorithms

Huffman coding has two important drawbacks. First, the source statistics are

used to design a Huffman code. If one only has access to the source outputs,

the design procedure requires two passes through the data, one to estimate

2.6. UNIVERSAL SOURCE-CODING ALGORITHMS 27

the statistics of the source, and a second one for encoding. To overcome this,

one can use adaptive Huffman codes where the code is updated dynamically to

match the statistics of the sequence as it is observed. This is a problem because

The second problem is that one must jointly encode multiple symbols to take

advantage of source memory and reduce length rounding loss. In this case, one

finds that the complexity increases exponentially with the number of symbols

that are encoded together. To provide a partial solution to these drawbacks, we

study an example of a universal source-coding algorithm, namely the Lempel-

Ziv algorithm. This type of universal data compression is the basis for

standard file compression algorithms (e.g., winzip, gzip).

The basic idea behind the Lempel-Ziv algorithm is to parse the input

sequence into non-overlapping strings of different lengths while constructing

a dictionary of the strings seen thus far. There are many versions of this

algorithm and we discuss the variant known as LZ78 that was described in

a 1978 paper by Lempel and Ziv. The encoding algorithm works as follows.

First, initialize the dictionary to contain all strings of length one and set the

input pointer to the beginning of the string. Then, apply the following iterative

procedure.

1. Starting at the input pointer, find the longest substring w that is already

in the dictionary.

2. Concatenate w with the next symbol y in the string and add wy to the

first empty location in the dictionary.

3. Encode the pair by sending the dictionary index of w and the value of y.

4. Set the input pointer to the symbol after y.

There are a number of practical variants of this algorithm that improve per-

formance and/or reduce the implementation complexity.

Decompression works in the reverse fashion. Each received index and sym-

bol can be immediately decoded and used to build a copy of the dictionary at

the receiver. In this fashion, one can resolve the input without ambiguity.

Example 2.6.1. Suppose that we are to use a Lempel-Ziv algorithm with dic-

tionary size 23 = 8. The dictionary is initialized to contain 0 and 1 in the first

28 CHAPTER 2. SOURCES OF DIGITAL INFORMATION

two positions. Then, the source sequence is sequentially parsed into strings

that have not appeared so far. For example,

10110101000101 . . . → 10, 11, 01, 010, 00, 101 . . .

The dictionary table at this point has eight elements.

Index Dictionary String Encoded Index Added Bit

000 0 N/A N/A

001 1 N/A N/A

010 10 001 0

011 11 001 1

100 01 000 1

101 010 100 0

110 00 000 0

111 101 010 1

Each phrase (the bit string contained between two commas) is coded by

giving the location of its prefix in the dictionary table, and the value of the

additional bit. This results in the coded sequence

10, 11, 01, 010, 00, 101 → (001, 0)(001, 1)(000, 1)(100, 0)(000, 0)(010, 1),

where the first number of each pair gives the index of the prefix in the table

and the second number gives the last bit of the new phrase. When applied

to sequences generated by any stationary ergodic source, the Lempel-Ziv cod-

ing algorithm asymptotically achieves the optimal encoding rate (known as the

entropy rate).

Most readers will notice that this algorithm, as stated, requires prior knowl-

edge of the total number of phrases in the dictionary. In fact, this problem

can be solved easily and the solution actually requires fewer transmitted bits.

The key point is that both the transmitter and receiver know the number of

phrases currently in the dictionary. Let M be the current number of phrases

in the dictionary. Then, the transmitter can be simply send the ⌈log2 M⌉ least
significant bits of the index. Since the receiver also knows M , there will be no

confusion. In this case, the encoded sequence will be

10, 11, 01, 010, 00, 101 → (1, 0)(01, 1)(00, 1)(100, 0)(000, 0)(010, 1).

2.7. FIXED-LENGTH COMPRESSION CODES* 29

2.7 Fixed-Length Compression Codes*

In the previous sections, the joint encoding of multiple source symbols was

shown to perform well, with the average number of bits per symbol produced

by a source approaching H[X]. Below, we explore how the joint encoding of

symbols together with fixed-length codes can be used to produce good com-

pression ratios. Fixed-length compression codes have several advantages. They

are simple to encode and easy to decode, yielding unambiguous messages.

Furthermore, all fixed-length codes are prefix-free, and encoded symbols can

therefore be recovered instantaneously. However, fixed-length codes cannot

be used to compress data by assigning short descriptions to most frequent

symbols and longer descriptions to the less likely ones. Data compression in

fixed-length coding methods is only possible for large blocks of data, and any

compression beyond the logarithm of the total number of possibilities comes

with a finite, though perhaps small, probability of decoding failure.

The minimum number of binary strings in lossless fixed-length symbol-by-

symbol encoding is ⌈log2(|X |)⌉, where |X | is the size of the source alphabet

and ⌈·⌉ is the ceiling function, which returns the smallest integer greater than

or equal to its argument. More generally, the minimum number of binary

strings necessary to encode a group of n symbols is ⌈n log2(|X |)⌉. This strategy
alone, encoding multiple source symbols at a time, is not powerful enough

to compress data using fixed-length codes. To design effective fixed-length

codes, two components are necessary. First, we need to relax the assumption

that the data compression scheme should be lossless, rather we allow a small

probability of encoding failure. In particular, we assume that the probability

of encoding failure, where data cannot be decoded properly, is δ > 0, where δ

is implicitly very small. The second ingredient to fixed-length compression is

the asymptotic equipartition property, which we review next.

2.7.1 Asymptotic Equipartition Property

The asymptotic equipartition property (AEP) is a general property of

the output samples of discrete memoryless sources. This property implies

that, given a very long sequence of n source symbols, the probability that

30 CHAPTER 2. SOURCES OF DIGITAL INFORMATION

(X1, . . . , Xn) belongs to a set of typical sample strings is almost one. It takes

a few steps to make this statement precise.

Theorem 2.7.1. Let (X , pX) be a discrete memoryless source, which produces

a sequence of symbols X1, X2, . . . Furthermore, assume that the output alphabet

X is finite. The asymptotic equipartition probability asserts that

lim
n→∞

− 1

n
log2 (pXn(X1, . . . Xn)) = H[X].

Proof. We can proof this theorem through an application of the weak law of

large numbers. First, we observe that

log2 (pXn(X1, . . . Xn)) = log2

(
n∏

k=1

pX(Xk)

)

=
n∑

k=1

log2 pX(Xk).

That is, log2 (pXn(X1, . . . Xn)) is a sum of independent and identically dis-

tributed random variables, with bounded second moment. It follows, by the

law of large numbers, that

− 1

n
log2 (pXn(X1, . . . Xn))

converges in probability to E [− log2(pX(X))] = H[X]. In particular, we have

Pr

(∣∣∣∣
− log2 (pXn(X1, . . . Xn))

n
− H[X]

∣∣∣∣ ≥ ǫ

)
≤ σ2

nǫ2

where σ2 is the variance of random variable − log2(pX(X)).

Drawing intuition from the proof of Theorem 2.7.1, we define the typical

set T
(n)
ǫ as

T (n)
ǫ =

{
x ∈ X n :

∣∣∣∣
− log2 (pXn(x))

n
− H[X]

∣∣∣∣ < ǫ

}
.

The probability that the first n source symbols belongs to the typical set T
(n)
ǫ

is bounded below by

Pr
(
(X1, . . . , Xn) ∈ T (n)

ǫ

)
≥ 1− σ2

nǫ2
. (2.5)

2.7. FIXED-LENGTH COMPRESSION CODES* 31

Thus, as n increases, the probability that the source produces a typical se-

quence approaches one. We note that an equivalent definition of typical set

is

T (n)
ǫ =

{
x ∈ X n : 2−n(H[X]+ǫ) < pXn(x) < 2−n(H[X]−ǫ)

}
.

Using the second definition of T
(n)
ǫ , we can bound the number of elements

contained in a typical set. First, recall that the sum of the probability of

disjoint events cannot exceed one. As a consequence, the number of elements

in T
(n)
ǫ is bounded by ∣∣T (n)

ǫ

∣∣ < 2n(H[X]+ǫ).

Similarly, using (2.5) and the second definition of T
(n)
ǫ , we get

∣∣T (n)
ǫ

∣∣ >
(
1− σ2

nǫ2

)
2n(H[X]−ǫ).

We collect these results in the following theorem.

Theorem 2.7.2 (Asymptotic Equipartition Property). Let (X , pX) be a dis-

crete memoryless source with finite alphabet X and output sequence X1, X2, . . .,

each with entropy H[X]. For any δ > 0 and all n sufficiently large, we have

Pr
(
(X1, . . . , Xn) ∈ T (n)

ǫ

)
≥ 1− δ

and the size of the typical set T
(n)
ǫ is bounded by

(1− δ)2n(H[X]−ǫ) <
∣∣T (n)

ǫ

∣∣ < 2n(H[X]+ǫ).

The intuition behind the asymptotic equipartition property is that a com-

pression scheme can focus on encoding only the symbol strings that belong

to T
(n)
ǫ . Under such a strategy, at most ⌈n(H[X] + ǫ)⌉ codewords are needed.

Although not lossless, this fixed-length coding scheme results in a decoding

failure with a probability no greater than δ.

Theorem 2.7.3 (Source Coding Theorem). Let (X , pX) be a discrete memo-

ryless source with finite alphabet X and entropy H[X]. For any δ > 0, ǫ > 0

and n sufficiently large, there exists a fixed-length compression scheme such

that the probability of failure is less than δ and the expected number of bits per

symbol is
E[ℓc(X1, . . . , Xn)]

n
≤ H[X] + ǫ+

1

n
.

32 CHAPTER 2. SOURCES OF DIGITAL INFORMATION

