
Chapter 3

Discrete-Time Communication

Most digital communication systems operate by converting digital data into

continuous waveforms that can be conveyed through some physical medium to

a receiver. For example, digital communication through wires (e.g., Ethernet

or USB) is based on moving electrons back and forth in the wire. In con-

trast, underwater wireless communication uses acoustic transmission through

the water. While radio communication relies on the propagation of electro-

magnetic waves through air.

The process by which a string of bits is converted into a waveform suit-

able for transmission is known as modulation. The reverse operation, called

demodulation, is performed at the destination and involves extracting the

information symbols from the received signal. The mapping between the trans-

mitted waveform and the received waveform is known as the channel.

Precise models of the physical channel can be very complicated and many

of the key ideas in digital communication do not depend on the exact details.

For this reason, one can model and design communication systems based a

simplified model that separates the communication problem from the physical

models. In this chapter, we develop some basic concepts of digital communi-

cation using this simplified model. The goal is to build some intuition about

how things work without getting lost in the mathematical details.
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Figure 3.1: The block diagram of a digital communication system where the

blocks comprising the discrete-time channel are shaded.

3.1 A Simple Channel Model

In this section, we introduce the discrete-time channel model for digi-

tal communication systems. We will see later that, for some communication

systems, this model is exactly equivalent to the more complicated waveform

model. The first channel model we discuss is where the nth output of the

channel, Yn, is equal to the nth input to the channel, xn, corrupted by an

additive noise term Zn so that

Yn = xn + Zn.

For this model, it is typical to assume that the noise sequence Z1, Z2, . . . con-

sists of independent identically distributed (i.i.d.) zero-mean Gaussian random

variables with variance σ2. This implies that each Yn is a Gaussian random

variable with mean xn and variance σ2, so that

fYn
(yn) =

1√
2πσ2

e−(yn−xn)2/(2σ2).

This model is commonly referred to as discrete-time communication in addi-

tive white Gaussian noise (AWGN) noise.

As an example, consider a system where the transmitter sets the voltage

on end of a wire and the receiver measures the voltage on the other end of

the wire. It turns out that the thermal agitation of electrons causes voltage

fluctuations known as Johnson noise. So, the receiver ends up measuring the
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transmitted voltage corrupted by noise fluctuations. In fact, Johnson noise

is quite well approximated by AWGN. So, the simple model described above

already gives a relatively accurate picture of reality.

3.2 A Simple Modulation Scheme

Once a channel model has been defined, the next step is choosing how to

transmit digital data through the channel. A common approach is to choose

a small set U of information symbols and represent each one by a distinct

channel input in the set X . This is the discrete-time model of a scheme known

as pulse-amplitude modulation (PAM). Let un ∈ U be the information

symbol transmitted during the nth time interval and xn = M(un) be the nth

input to the channel, whereM : U → X is called the symbol mapping function.

For example, one can transmit binary information symbols by mapping “0”

to +1V and “1” to −1V; mathematically, this is done by choosing U = {0, 1},
X = {−1, 1}, and M(u) = 1 − 2u. This particular type of PAM is called

binary phase-shift keying (BPSK) or 2-PAM.

Suppose a BPSK signal is transmitted through our discrete-time AWGN

channel model. The detector must measure the voltage and decide whether a

0 or 1 one was transmitted. A natural choice is to define a decoder function

that associates positive voltages with 0 and negative voltages with 1. Let

Ûn = D(Yn) be the output of the detector function

D(y) =




0 if y ≥ 0

1 if y < 0
.

This detector is optimal if 0’s and 1’s are transmitted with equal probability.

One of the main challenges in communication systems is providing reliable

data transmission. In this example, the noise variance σ2 is proportional to

the power of the thermal noise in the wire. Notice that, if a 1 is transmitted,

the detector described above will make an incorrect decision with probability

Pr (Yn ≥ 0|xn = 1) = Pr (Zn ≥ 1) =

∫ ∞

1

1√
2πσ2

e−y2/(2σ2)dy = Q

(
1

σ

)
.

This probability can be reduced by increasing the transmitted voltage, which

increases the power dissipated due to resistive losses, or by reducing the ther-
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Figure 3.2: The symbol set X for 4-PAM with gray coded binary labels.

mal noise. For this reason, receivers used for large satellite dish receivers often

use liquid nitrogen to cool the first-stage amplifier to reduce this thermal noise.

On the other hand, the maximum transmitted power is typically limited by

physical constraints (e.g., the wire thickness) or FCC regulations.

To send more information per channel use, one can use larger sets of PAM

symbols. For example, 4-PAM uses the 4 symbols X = {−3,−1, 1, 3} while

8-PAM uses the 8 symbols X = {−7,−5,−3,−1, 1, 3, 5, 7}. Notice that these

two sets of symbols are centered around 0 to minimize the transmitted energy.

The mapping function M(·) determines the information symbol associated

with each channel input value. In general, sets of input values with 2m elements

are associated with binary strings. There are still some choices to be made,

however, because one can map the 4-PAM symbol set to binary strings in either

the standard binary order {00, 01, 10, 11} or with a Gray code {00, 01, 11, 10}.
For the 4-PAM symbol set with the mapping function M(·) that maps

{00, 01, 10, 11} (in order) to {−3,−1, 1, 3}, the natural decision function is

D(y) =





00 if y < −2

01 if − 2 ≤ y < 0

10 if 0 ≤ y < 2

11 if y ≥ 2

.

3.3 Quadrature Amplitude Modulation

In most communication systems, the baseband waveform is modulated onto

a high-frequency carrier to enable better propagation. This is because low-

frequency signals often do not propagate well through physical media. While

this process will be discussed later in more detail, the following key detail

affects the discrete-time model. High frequency modulation allows two inde-

pendent signals to be modulated onto the same carrier frequency; one onto

the sine wave and the other onto the cosine wave. This allows one to treat the



3.3. QUADRATURE AMPLITUDE MODULATION 37

Figure 3.3: The symbol constellations X for 16-QAM (left) and 8-PSK (right).

transmitted value xn and received value Yn as points in 2-dimensional space.

The set X of possible transmitted points in 2-dimensional space in called the

symbol constellation.

For mathematical convenience, points in these two-dimensional symbol

constellations are represented by complex numbers. The set of complex num-

bers is C and the constellation is a subset X ⊂ C. Likewise, the transmitted

symbol is xn ∈ C and the received value is Yn ∈ C. The noise term Zn now

consists of two i.i.d. Gaussian random variables (one in each direction). The

probabilistic observation model is formed by treating the real and imaginary

parts separately, and is given by

f
Y

(r)
n ,Y

(i)
n

(y(r)n , y(i)n ) =

(
1√
2πσ2

e
−
(

y
(r)
n −x

(r)
n

)2
/(2σ2)

)(
1√
2πσ2

e
−
(

y
(i)
n −x

(i)
n

)2
/(2σ2)

)

=
1

2πσ2
e−|yn−xn|

2/(2σ2).

Therefore, the probability of receiving a yn value is simply a function of its

Euclidean distance |yn − xn|2 from the actual transmitted symbol. This leads

to a nice geometric characterization of the optimal decision regions for the

detector.

The signal-to-noise ratio (SNR) of a communication system is typically

denoted by Es/N0 where Es is the average energy per channel input sym-

bol and N0 is the noise spectral density. For equiprobable signaling, one

finds that

Es =
1

|X |
∑

x∈X

|x|2.
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The noise spectral density measures how much the AWGN is affects the channel

and later we will see that N0 = 2σ2 for our discrete-time model.

Constellations are typically defined by first choosing the set of channel

input values X , and then choosing the mapping function M : U → X . This

second step is called labeling the constellation. While the labeling does not

affect the symbol error rate of the system, it generally does affect the bit

error rate. Therefore, one can optimize the mapping function for a particular

application.

Constellations can be chosen and optimized for a variety of reasons. Still,

there are a few very common choices:

• M -ary PAM (M -PAM) is M points equally spaced along a line or

X =
{
2a− (M − 1)

∣∣ a ∈ {0, 1, . . . ,M − 1}
}
⊂ C.

• M2-ary QAM (M2-QAM) is an M by M square grid of points or

X =
{
(2a− (M − 1)) + (2b− (M − 1)) i

∣∣ a, b ∈ {0, 1, . . . ,M − 1}
}
⊂ C.

• M -ary PSK (M -PSK) is M points equally spaced around a circle or

X =
{
e2πik/M

∣∣ k ∈ {0, 1, . . . ,M − 1}
}
⊂ C.

Example 3.3.1. The standard QAM constellation with 16 points (known as

16-QAM) is given by

X =
{
a+ bi

∣∣ a, b ∈ {−3,−1, 1, 3}
}
⊂ C.

The average energy of this constellation is given by

Es =
1

16

∑

a,b∈{−3,−1,1,3}

(a2 + b2) =
8

16

∑

a∈{−3,−1,1,3}

a2 = 10.

3.4 Optimal Symbol Detection

In this section, we consider the problem of designing a symbol detector that

minimizes the probability of error. This is known as an optimal detection

problem and has an elegant solution that is related to the classical problem of

hypothesis testing in statistics.
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3.4.1 Hypothesis Testing

Sir Ronald Fisher, one of the founders of statistical decision theory, was at a

tea party when Ms. Bristol mentioned that she preferred tea poured into milk

over milk poured into tea. Fisher commented that surely she could not tell

the difference, but his colleague William Roach suggested that they design an

experiment. At that point, they prepared eight cups of tea: four milk-into-

tea and four tea-into-milk. The cups were presented in a random order and

she correctly identified enough (all eight cups by some accounts) to prove her

point.

The mathematics behind this type of hypothesis test is based on defining a

null hypothesis, which states that the difference in preparation has no effect

on the outcome. In this example, the null hypothesis is H0 =“the order of

pouring the tea and milk does not affect Ms. Bristol’s answer”. Notice that

there are
(
8
4

)
= 70 ways that Ms. Bristol can divide the cups of tea into two

categories, but that only one identifies all of them correctly. Since the cups

are presented in a random order, we can compute

Pr(she identifies all cups correctly|H0) =
1

70
.

This number is small enough so that it is reasonable to conclude that H0 is

false and the order does influence Ms. Bristol’s decisions.

There are more subtle issues, however, than the case where Ms. Bristol

succeeds due to luck. What is more problematic is listing all other hypotheses

that can lead to the same observation. For example, variations in the temper-

ature or composition of the tea could help Ms. Bristol guess correctly. Fisher,

in his essay on this experiment, argues that proper use of randomization can

eliminate the effect of these variations. On the other hand, Ms. Bristol may

pass by cheating but still be unable to distinguish between the two drinks. If

all possible hypotheses are not explicitly considered, then one can come to an

incorrect conclusion. For this reason, it commonly understood that a scientific

test of an hypothesis can only disprove that hypothesis.
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3.4.2 Multiple Hypothesis Testing

Hypothesis testing in communication theory often has the luxury that one of

the hypotheses must be true. This leads to the more well-defined problem of

multiple hypothesis testing. Instead of testing a single hypothesis to see if

it is false, one can compare multiple hypothesis to see which is most supported

by the observation.

Let H0, H1, . . . , Hm−1 be m different hypotheses that affect a random ob-

servation Y . The probability of a hypothesis before the observation, Pr(Hi),

is called the a priori probability. For each hypothesis, the connection with

Y is defined by the observation probability Pr(Y = y |Hi).

The goal is to choose a decision function D(y) which, for any observation,

minimizes the decision error probability. Of course, this is equivalent to max-

imizing the probability that the decision is correct. Notice that, if Y = y,

then the probability that hypothesis Hi is correct is given by its a posteriori

probability Pr(Hi |Y = y). Therefore, one finds that the optimal choice is

the maximum a posteriori probability (MAP) decision rule

D(y) = argmax
i∈{0,...,m−1}

Pr(Hi |Y = y).

In practice, these probabilities can be computed with Bayes’ rule using

only the a priori probabilities and observation probabilities. This gives

Pr (Hi|Y = y) =
Pr(Hi) Pr(Y = y|Hi)∑m−1

j=0 Pr(Hj) Pr(Y = y|Hj)
.

Since the denominator of this expression is the same for all i, the MAP rule

can be simplified to

D(y) = argmax
i∈{0,...,m−1}

Pr(Hi) Pr(Y = y|Hi).

Example 3.4.1. Consider a system which transmits BPSK over an AWGN

channel. Let H0 be the hypothesis that a zero (i.e., +1) was sent and H1 be

the hypothesis that a one (i.e., −1) was sent. For binary hypothesis problems,

the MAP decision rule can be written as

Pr(H0) Pr(Y = y|H0)
H0

≷
H1

Pr(H0) Pr(Y = y|H0,
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where this notation implies that one should pick H0 if the LHS is greater than

the RHS and H1 otherwise. If Pr(H0) = 1− p and Pr(H1) = p, then one can

substitute formulae to rewrite this as

(1− p)
1√
2πσ2

e−(y−1)2/(2σ2)
H0

≷
H1

p
1√
2πσ2

e−(y+1)2/(2σ2).

After a little algebra, taking the logarithm of both sides simplifies this to

y
H0

≷
H1

σ2

2
ln

p

1− p
.

Another popular rule is the maximum likelihood (ML) decision rule

D(y) = argmax
i∈{0,...,m−1}

Pr(Y = y|Hi),

which ignores the a priori probability. When all the hypotheses have the same

a priori probability, these two rules are identical. In communication systems,

this is often the case.

Example 3.4.2. Consider a system which transmits 4-PAM (i.e, X = {−3,−1, 1, 3})
over an AWGN channel. If all channel inputs are equiprobable, then the opti-

mum detector is

D(y) = argmax
x∈{−3,−1,1,3}

(
1√
2πσ2

e−(y−x)2/(2σ2)

)

= argmax
x∈{−3,−1,1,3}

(
−1

2
ln(2πσ2)− 1

2σ2
(y − x)2

)

= argmin
x∈{−3,−1,1,3}

(y − x)2.

Therefore, the optimum detector chooses the constellation point closest to the

channel observation. Moreover, this statement remains true for any signal

constellation with equiprobable signalling and AWGN.
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