
Chapter 4

Fourier Analysis and Sampling

Fourier analysis refers to a collection of tools that can be applied to express

a function in terms of complex sinusoids, called basis elements, of different

frequencies. The result of the decomposition is the amplitude and the phase

to be imparted to each basis element in the reconstruction. This decomposition

is termed the frequency domain representation of the original signal.

Fourier analysis is extremely useful in engineering, with a myriad of appli-

cations. Part of its appeal lies in the fact that basis elements are characteristic

functions of linear time-invariant systems. This property, which may seem neb-

ulous at this point, is instrumental in solving many challenging problems, and

makes Fourier analysis a powerful methodology for the design of communica-

tion systems. We assume that the reader is familiar with basic Fourier analysis,

and only review details that are pertinent to our treatment of communication

systems. This is not intended to be a comprehensive treatment of the subject.

4.1 Fourier Series

Fourier series can be employed to express, as weighted sums of sinusoidal com-

ponents, either periodic functions or functions that are time-limited. Suppose

that the signal s(t) is zero for all |t| ≥ T
2
, is integrable and satisfies

∫

R

|s(t)|2dt =
∫ T

2

−T

2

|s(t)|2dt < ∞.
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Then, s(t) possesses a Fourier series representation, which is defined by

s(t) =





∑∞
k=−∞ ŝke

2πi k
T
t, if |t| ≤ T

2

0, otherwise
(4.1)

where the Fourier series coefficients {ŝk : k ∈ Z} are given by

ŝk =
1

T

∫ T

2

−T

2

s(t)e−2πi k
T
tdt.

We can use the standard rectangular function rect(·), defined by

rect(t) =




1, if |t| < 0.5

0, otherwise
(4.2)

to simplify (4.1), and rewrite the Fourier representation of s(t) as

s(t) =
∞∑

k=−∞

ŝke
2πi k

T
trect

(
t

T

)
. (4.3)

If s(t) is periodic with s(t+ T ) = s(t), instead of being zero for |t| > T
2
, then

the same result holds without the rectangular window function.

From a vector space perspective, (4.3) asserts that s(t) can be expressed

as a linear combination of basis elements {θk(t) : k ∈ Z}, where

θk(t) = e2πi
k

T
trect

(
t

T

)
.

Furthermore, note that the collection of functions {θk(t) : k ∈ Z} forms an

orthogonal set under the standard inner product; that is,

〈θk(t), θn(t)〉 =
∫ ∞

−∞

θk(t)θ
∗
n(t)dt =

∫ T

2

−T

2

e2πi
k

T
te−2πi n

T
tdt

=

∫ T

2

−T

2

e2πi
(k−n)

T
tdt = 0

for all k 6= n. An interesting and important aspect of Fourier series is that

time-limited functions can be characterized using a discrete set of coefficients.

This fact provides insight into the sampling theorem, which we will review

shortly.
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4.2 Fourier Transforms

The Fourier transform applies to functions that are not necessarily time-

limited. A signal x(t) is square integrable (or an energy-type signal)

if

‖x(t)‖2 ,
∫

R

|x(t)|2dt < ∞. (4.4)

Then, we can express x(t) using its frequency domain representation. The

Fourier transform of x(t), which we denote by x̂(f) or F [x(t)], is defined by

x̂(f) = F [x(t)] ,
∫

R

x(t)e−2πiftdt. (4.5)

Using the inverse Fourier transform, the original function can also be expressed

in terms of its decomposition with

x(t) = F−1[x(t)] ,
∫

R

x̂(f)e2πiftdf. (4.6)

It is interesting to point out the duality between the Fourier transform and

its inverse, F [x̂(t)] = x(−f). This relation is rooted in the striking similarity

between (4.5) and (4.6).

Definition 4.2.1. The sinc function is defined by

sinc(t) ,
sin(πt)

πt
.

Example 4.2.2 (Rectangular Pulse). The rectangular pulse rect(·), defined in

(4.2), can be used to constrain various signals in time or frequency. For α > 0,

one has ‖rect(αt)‖2 = 1/α < ∞, which guarantees that Fourier analysis can

be applied to this function. The Fourier transform of rect(αt) can be computed

as follows,

F [rect(αt)] =

∫

R

rect(αt)e−2πiftdt =

∫ 1
2α

− 1
2α

e−2πiftdt

=
1

πf

(
eπif/α − e−πif/α

2i

)
=

sin(πf/α)

πf

=
1

α
sinc

(
f

α

)
.

Thus, the Fourier transform of rect(t) is the aforementioned sinc(f) function,

which plays a central role in the sampling and reconstruction of information

signals.
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The Fourier transform x̂(f) of a square-integrable signal x(t) also allows

one to pose the question: how much signal energy is contained in the spectral

band between frequencies f0 and f1? The answer, for f0 ≤ f1, is given by the

integral
∫ f1

f0

|x̂(f)|2 df.

This integral allows us to interpret the quantity |x̂(f)|2 as the energy spectral

density of x(t). For technical reasons, we actually define the energy spectral

density later in more detail. In practice, the answer to the above question also

depends on whether the signal is real or complex. For real signals, the integral

is typically computed over the range f0 < |f | < f1.

When condition (4.4) is not satisfied, it may be hazardous to use Fourier

analysis and frequency domain representations. Strictly speaking, the Fourier

transform of a function may not exist if the function behaves wildly. Casually

taking the Fourier transforms of arbitrary signals should be avoided. Having

said that, there will be instances where we discuss the Fourier transforms

of functions that do not fulfill (4.4). In such circumstances, the argument

to the Fourier transform is carefully selected to remain meaningful from an

engineering viewpoint; one such example appears below.

4.2.1 The Dirac Delta Function

The Dirac delta function δ(t) can be defined in a naive fashion with the

operational rule

x(t) =

∫

R

δ(t− τ)x(τ)dτ. (4.7)

A more rigorous approach, based on generalized functions, is out of the scope

of this class. So, these notes adopt a somewhat cavalier attitude towards the

Fourier transform of δ(t) and rely on experience to avoid pitfalls. The benefit of

this approach to Fourier analysis is that it rapidly leads to valuable engineering

insight. On the downside, the reader is left with the burden of deciding whether

a signal has a proper spectral representation, or if the definition of the Fourier

transform is being applied loosely.
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Starting with signal x(t), we can write

x(t) =

∫

R

x̂(f)e2πiftdf =

∫

R

[∫

R

x(τ)e−2πifτdτ

]
e2πiftdf

=

∫

R

[∫

R

e2πif(t−τ)df

]
x(τ)dτ,

(4.8)

where the second equality follows from (4.5) and the third equality is obtained

by changing the order of integration. Since (4.8) holds for any time t, it follows

from (4.7) that

δ(t) =

∫

R

e2πiftdf

is one representation of δ(t) and hence the (cavalier) Fourier transform of the

δ-function is F [δ(t)] = 1.

4.2.2 Periodic Signals

We can develop (cavalier) Fourier transform representations for periodic sig-

nals as well, thereby providing a unified treatment of periodic and aperiodic

functions. Indeed, we can construct the Fourier transform of a periodic sig-

nal directly from its Fourier series representation. Let x(t) be a signal with

Fourier transform x̂(f) = δ(f − f0). To recover the signal x(t), we can apply

the inverse Fourier transform

x(t) = F−1[δ(f − f0)] =

∫

R

δ(f − f0)e
2πiftdf = e2πif0t.

More generally, if x̂(f) is a linear combination of impulses equally spaced in

frequency

x̂(f) =
∞∑

k=−∞

ŝkδ(f − kf0), (4.9)

then its inverse Fourier transform becomes

x(t) =
∞∑

k=−∞

ŝke
2πikf0t. (4.10)

Note that (4.10) corresponds to the Fourier series representation of a periodic

signal. Thus, the Fourier transform of a periodic signal with Fourier series

coefficients {ŝk : k ∈ Z} can be interpreted as a train of impulses in the

frequency domain.
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A signal that will be useful in our analysis of sampling is the impulse train

(or Dirac comb)

x(t) =
∞∑

k=−∞

δ(t− kT ).

This is a special case of a periodic function, with period T . We can therefore

apply a methodology similar to the one derived above to compute its Fourier

transform. The Fourier series coefficients for the impulse train are obtained as

ŝk =
1

T

∫ T

2

−T

2

x(t)e−2πi k
T
tdt =

1

T
.

Using (4.9), we get

x̂(f) =
1

T

∞∑

k=−∞

δ

(
f − k

T

)
. (4.11)

Surprisingly, an impulse train in the time domain can be regarded as an im-

pulse train in the frequency domain. A second representation for x(t) is given

by (4.10),

x(t) =
∞∑

k=−∞

δ(t− kT ) =
1

T

∞∑

k=−∞

e2πi
k

T
t. (4.12)

Which representation to use depends on the problem at hand.

4.2.3 Spectral Density

The energy of a deterministic signal x(t) is given by (4.4). If the energy of

x(t) is finite, i.e. ‖x(t)‖2 < ∞, then we define its autocorrelation function

by

Rx(τ) ,
∫

R

x(t)x∗(t− τ)dt.

Using this notation, we see that the energy of x(t) is also given by Rx(0).

Definition 4.2.3. The energy spectral density of an energy-type signal

x(t), denoted by Gx(f), is defined to be the Fourier transform of its autocorre-

lation function,

Gx(f) = F [Rx(τ)] = |x̂(f)|2.

Intuitively, the energy spectral density captures the frequency content of a

signal and helps identify how its energy is distributed across frequencies.
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A signal x(t) is a power-type signal if the limit

Px = lim
T→∞

1

T

∫ T

2

−T

2

|x(t)|2dt

exists and 0 < Px < ∞. The autocorrelation function of a power-type signal

is defined accordingly as

Rx(τ) , lim
T→∞

1

T

∫ T

2

−T

2

x(t)x∗(t− τ)dt.

We note that the Fourier transform of a power-type signal x(t) need not

exist because it may fail to satisfy condition (4.4). Nevertheless, if truncated

versions of x(t), defined by

xT (t) , x(t)rect

(
t

T

)
,

are energy-type signals, then we can define the Fourier transforms

x̂T (f) , F
[
x(t)rect

(
t

T

)]
.

From this, the power spectral density, which represents the power (per unit

of bandwidth) present at each frequency of the signal, can be defined by

Sx(f) , lim
T→∞

1

T
|x̂T (f)|2.

Intuitively, the power spectral density captures the frequency content of a

signal and helps identify how its power is distributed across frequencies.

Notice how the truncated signal is used to overcome the difficulty of dealing

with infinite-energy signals. This is a common and valuable trick.

Definition 4.2.4. The power spectral density of a power-type signal x(t) is

also given by the Fourier transform of its autocorrelation function,

Sx(f) = F [Rx(τ)].

These two definitions of power spectral density are equivalent under mild

conditions on x(t).

The spectral bandwidth of a signal x(t) is the smallest value of W such

that its spectral density is zero for all |f | > W . An energy-type signal x(t)
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is bandwidth-limited to W if it can be obtained as the inverse Fourier

transform of a function x̂(f), where x̂(f) is identically zero for all |f | > W .

Likewise, a power-type signal is bandwidth-limited to W if its power-spectral

density Sx(f) is identically zero for all |f | > W .

4.2.4 Linear Time-Invariant Filters

The importance of the Fourier transform comes, partly, from its ability to cap-

ture the effects of linear time-invariant filters on deterministic signals. Suppose

that the input to a linear time-invariant filter is x(t), then its output is given

by

y(t) = x(t) ∗ h(t),

where h(t) is the impulse response of the linear filter and ∗ denotes the convo-

lution operator. If we use ĥ(f) to represent the Fourier transform of impulse

response h(t), then the output signal in the frequency domain becomes

ŷ(f) = x̂(f)ĥ(f).

That is, convolution in the time domain becomes multiplication in the fre-

quency domain, a much simpler operation. The output signal can then be

recovered by taking the inverse Fourier transform of ŷ(f),

y(t) = F−1[ŷ(f)] = F−1[x̂(f)ĥ(f)].

This also implies that the spectral density, Gy(f), of y(t) satisfies

Gy(f) = Gx(f)Gh(f).

4.3 Sampling Deterministic Signals

A great deal of inuition about sampling can be gained using the Fourier trans-

form representation for periodic signals developed in Section 4.2.2. Let xs(t)

denote the result of sampling x(t) by impulses at times {nT : n ∈ Z},

xs(t) = x(t)
∞∑

n=−∞

δ(t− nT ) =
∞∑

n=−∞

x(nT )δ(t− nT ).
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Looking at the sampled signal in the frequency domain, we get

x̂s(f) = x̂(f) ∗ F
[

∞∑

n=−∞

δ(t− nT )

]
= x̂(f) ∗ 1

T

∞∑

n=−∞

δ
(
f − n

T

)

=
1

T

∞∑

n=−∞

x̂(f) ∗ δ
(
f − n

T

)
=

1

T

∞∑

n=−∞

∫

R

x̂(ξ) ∗ δ
(
f − ξ − n

T

)
dξ

=
1

T

∞∑

n=−∞

x̂
(
f − n

T

)
,

where we have used (4.11) to express the Fourier transform of an impulse

train. When the sampling rate is fast enough, the translated copies of x̂(f)

contained in the transform x̂s(f) do not overlap, and the original signal can be

recovered using an ideal lowpass filter. However, when the sampling period T

is too small, the various copies of x̂(f) overlap and the content of the original

is partially destroyed. This is know as aliasing.

Figure 4.1: The sampling and reconstruction of a bandwidth-limited signal.

When the sampling rate exceeds twice the bandwidth of the original signal,

this signal can be reconstituted from its sampled values.

A succession of power spectral densities can be found in Figure 4.1. The

top component shows the power spectral density of the original signal. The
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density of the sampled signal appears below. Finally, the reconstruction op-

eration where a lowpass filter is employed to recovered the original function is

illustrated at the bottom of the figure. In contrast, Figure 4.2 exhibits a case

where the sampling frequency is too low. Aliasing in the frequency domain

Figure 4.2: A low sampling frequency leads to aliasing, thereby preventing

reconstruction of the original signal.

prevents the original signal from being retrieved.

Sampling and aliasing are also important in film and video. The illusion

of a moving image in video is achieved by displaying a rapid succession of still

pictures over time. Films are typically shot at a rate of twenty-four frames per

second, whereas the minimum frame rate required to create the appearance

of a moving image is about fifteen frames per second. The human eye acts

as a lowpass filter and transforms the succession of images into a live video.

High-speed cameras are used to record slow-motion playback movies. As a

consequence, they must run at much higher frame-rates than normal cameras.

4.3.1 The Sampling Theorem

The sampling theorem is one of the most significant results in digital commu-

nication and signal processing. Many digital communication systems rely on
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the validity of this theorem and on the design insights it provides for proper

operation.

The basic idea behind the sampling theorem can be summarized in a few

words. If a signal x(t) is bandwidth-limited to W , then this signal can be

reconstructed from a collection of samples so long as the samples are taken

at periodic intervals of T ≤ 1
2W

. A formal version of the sampling theorem

appears below.

Theorem 4.3.1 (Sampling Theorem). Let signal x(t) be a bandwidth-limited

function with bandwidth W . If x(t) is sampled at times {nT : n ∈ Z} where

T ≤ 1
2W

, then it is possible to reconstruct the original signal x(t) from its

sampled points {x(nT ) : n ∈ Z}. Specifically, if T ≤ 1
2W

then

x(t) =
∞∑

n=−∞

x(nT )sinc

(
t

T
− n

)
. (4.13)

Proof. The signal x(t) is bandwidth-limited with bandwidth W . It follows

that x(t) is the inverse Fourier transform of a function x̂(f), where x̂(f) = 0

for all frequencies such that |f | > W . For convenience, we define F = 1
T
and

we stress that W ≤ 1
2T

= F
2
. Thus, x̂(f) = 0 whenever |f | > F

2
. We can apply

the theory of Fourier series introduced in Section 4.1 to express x̂(f) as

x̂(f) =
∞∑

k=−∞

ske
2πi k

F
f rect

(
f

F

)

where the coefficients {sk : k ∈ Z} are equal to

sk =
1

F

∫ F

2

−F

2

x̂(f)e−2πi k

F
fdf.

Special care should be taken when reading these equations because we are

applying Fourier series analysis to a function in the frequency domain. This

can get confusing.
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We can then write x(t) in terms of basis elements,

x(t) = F−1 [x̂(f)] = F−1

[
∞∑

k=−∞

ske
2πi k

F
f rect

(
f

F

)]

=
∞∑

k=−∞

skF−1

[
e2πi

k

F
f rect

(
f

F

)]

=
∞∑

k=−∞

sk
T
sinc

(
t

T
+ k

)
.

Above, we have successively used the scaling and time-shift properties of the

Fourier transform. We can obtain the values of {sk : k ∈ Z} explicitly by

exploiting the characteristics of the sinc(·) function,

x(nT ) =
∞∑

k=−∞

sk
T
sinc

(
nT

T
+ k

)
=

∞∑

k=−∞

sk
T
sinc(n+ k) =

s−n

T
.

Thus, we have sn = Tx(−nT ) and formula (4.13) follows. The sampling rate

F = 2W associated with the sampling period T = 1
2W

is the minimum rate

at which perfect reconstruction is possible. It is called the Nyquist rate in

honor of Swedish-American engineer Harry Nyquist.

4.3.2 Imperfect Sampling and Reconstruction

In practice, it is impossible to measure (i.e., sample) a signal x(t) instanta-

neously. A more realistic model is to assume that the sample value is obtained

through the integral

u(t) =

∫

R

x(τ)p(τ − t)dτ,

for some sampling waveform p(t). In this case, the resulting samples are iden-

tical to the perfect sampling of the filtered waveform u(t) = x(t)∗p(−t). That

is, the sample values are given by

u(nT ) =

∫

R

x(τ)p(τ − nT )dτ.

It also follows that, if no aliasing occurs, this degradation can be eliminated

completely using a discrete-time filter to equalize the resulting samples.
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A similar imperfection occurs during reconstruction. In practice, it is not

possible to weight each sample by the exact sinc interpolation waveform. In-

stead, the samples x(nT ) are weighted by a pulse shape q(t). In this case, the

reconstruction output is given by

y(t) =
∞∑

n=−∞

x(nT )q(t− nT ).

Since q(t − nT ) = δ(t − nT ) ∗ q(t), we can see this instead as perfect recon-

struction followed by filtering and write

y(t) =

(
∞∑

n=−∞

x(nT )δ(t− nT )

)
∗ q(t) = x(t) ∗ q(t).

Again, it follows that this imperfection can be eliminated completely by post-

filtering. In practice, the main advantage of this observation is that one can

jointly optimize p(t), q(t) and the post-filter to provide good performance while

using inexpensive components.

4.4 Sampling Bandlimited Processes*

We know from Theorem 4.3.1 that a bandwidth-limited signal can be perfectly

reconstructed from its samples provided that the sampling rate exceeds twice

the bandwidth of the original signal. At this point, one may wonder whether

it is possible to extend the sampling theorem to bandwidth-limited stochastic

processes. This question is answered in the affirmative below.

Theorem 4.4.1. Suppose that X(t) is a wide-sense stationary bandwidth-

limited process with bandwidth W and power spectral density SX(f). Let X̃(t)

be an approximation for X(t) built from the sampled values {X(nT ) : n ∈ Z},

X̃(t) =
∞∑

n=−∞

X(nT )sinc(2W (t− nT )),

where T = 1
2W

denotes the sampling interval. Then the mean-squared error

between the original random process and the reconstructed version vanishes,

∥∥∥X(t)− X̃(t)
∥∥∥
2

= E



∣∣∣∣∣X(t)−

∞∑

n=−∞

X(nT )sinc(2W (t− nT ))

∣∣∣∣∣

2

 = 0.

(4.14)
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The expectation in (4.14) is over all possible realizations of X(t).

Proof. To establish this result, we expand the mean-squared error of (4.14),

∥∥∥X(t)− X̃(t)
∥∥∥
2

= E



∣∣∣∣∣X(t)−

∞∑

n=−∞

X(nT )sinc(2W (t− nT ))

∣∣∣∣∣

2



= RX(0)−
∞∑

n=−∞

[RX(t− nT ) +RX(t− nT )]sinc(2W (t− nT ))

+
∞∑

n=−∞

∞∑

m=−∞

RX((m− n)T )sinc(2W (t−mT ))sinc(2W (t− nT )).

The double summation above can be rewritten as

∞∑

n=−∞

∞∑

k=−∞

RX(kT )sinc(2W (t− kT − nT ))sinc(2W (t− nT ))

∞∑

n=−∞

(
∞∑

k=−∞

RX(kT )sinc(2W (t− kT − nT ))

)
sinc(2W (t− nT ))

=
∞∑

n=−∞

RX(t− nT )sinc(2W (t− nT )),

where the last equality follows from the sampling theorem for deterministic

signals (Theorem 4.3.1). Putting these results together, we get

∥∥∥X(t)− X̃(t)
∥∥∥
2

= RX(0)−
∞∑

n=−∞

R∗
X(t− nT )sinc(2W (t− nT )).

Applying Theorem 4.3.1 one more time and noticing that RX(0) = R∗
X(0), we

obtain ‖X(t)− X̃(t)‖2 = 0, as desired.

Theorem 4.4.1 is important because it confirms that the design insights

gained from analyzing deterministic signals hold for random signals as well.

4.5 Bandpass Signals and Processes*

One possible application of sampling is to take a continuous-time signal and to

transform it into a discrete-time signal. For instance, this operation gives the
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information coming out of a source a format more suitable for digital commu-

nications. This prime application of sampling served as the original motivation

for our study of the subject. A second possible application of sampling is the

processing of received waveforms at the output of communication channels. In

digital communications, the data often assumes the form of an analog carrier

signal modulated by a digital bit stream. Mathematically, this situation is

captured by the equation

y(t) = x(t) cos(2πfct).

The signal y(t) is a special form of a bandpass signal. Its Fourier transform

ŷ(f) is non-zero only for frequencies contained in a small neighborhood of

carrier frequency fc. That is, ŷ(f) = 0 for all frequencies such that |f − fc| ≥
W . To apply the sampling tools derived above to the information bearing

signal x(t), we need to shift the corresponding spectrum to the origin.

The Fourier transform of y(t) is given by

ŷ(f) =
1

2
x̂(f + fc) +

1

2
x̂(f − fc).

Our strategy is to first eliminate 1
2
x̂(f + fc) from ŷ(f), and then to scale and

shift 1
2
x̂(f + fc) back to the origin. Define the step function by

step(t) =
1

2
+

1

2
sign(t).

Taking the (cavalier) Fourier transform of step(t), we get

F [step(t)] = F
[
1

2
+

1

2
sign(t)

]

=
1

2
δ(f)− 1

2

∫ 0

−∞

e−2πiftdt+
1

2

∫ ∞

0

e−2πiftdt

=
1

2
δ(f) +

1

2πif
.

Using the duality property of the Fourier transform, we get

F−1[step(f)] =
1

2
δ(t) +

i

2πt
.

And, by construction, we obtain x̂(f − fc) = 2step(f)ŷ(f). We can therefore

recover the original lowpass signal x(t) using the frequency-shift property of
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the Fourier transform,

x(t) =

[
y(t) ∗

(
δ(t) +

i

πt

)]
e−2πifct =

[
y(t) + i

(
y(t) ∗ 1

πt

)]
e−2πifct.

The second component of this signal,

y(t) ∗ 1

πt
,

is called the Hilbert transform of y(t). Once x(t) is brought back to base-

band, the standard sampling theorem applies and a discrete-time version of

the signal can be produced.

4.6 Stochastic Signals

A random process (or stochastic process) is an extension of the concept

of random variable to the situation where the values of a signal are not known

beforehand. Mathematically, a stochastic process can be viewed in two differ-

ent ways. First, the process can be thought of as an instantiation of a random

experiment where the outcome is selected from a collection of time functions.

Alternatively, a stochastic process can be viewed as a collection of random

variables indexed by time. If the index set corresponds to the real numbers,

then the process is a continuous-time random process. Whereas if the

index set is discrete, then it is a discrete-time random process. The view-

point where a stochastic process is regarded as a collection of random variables

tends to prevail in the study of digital communications.

Random processes are frequently employed in the design of communication

systems. For example, they can be used to model the data originating from

a source, channel variations, noise and interference. Their importance will

become evident as we progress through these notes. In general, it is difficult

to provide a complete mathematical description for a random process. For

now, we restrict our attention to stationary and ergodic random processes.

Definition 4.6.1 (Stationarity). A random process X(t) is wide-sense sta-

tionary (WSS) if its mean

mX(t) , E[X(t)]



4.6. STOCHASTIC SIGNALS 59

A
m
p
li
tu
d
e

A
m
p
li
tu
d
e

Time

Time

t0 t1

Figure 4.3: Two distinct abstractions of a random process. It can be viewed

as the output of an experiment where a function is selected at random. Alter-

natively, a random process may be taken as a set of random variables indexed

by time.

is independent of time, and its autocorrelation function, defined by

RX(t1, t2) , E[X(t1)X
∗(t2)],

only depends on the difference between t1 and t2. With a slight abuse of no-

tation, we can denote the mean and autocorrelation of a stationary process

respectively by mX and RX(τ), where τ = t1 − t2.

Definition 4.6.2 (Ergodic). An ergodic theorem asserts that, under certain

conditions, the time average of a random process

〈g(X(t))〉 , lim
T→∞

1

T

∫ T

2

−T

2

g(X(t))dt

exists and is equal to the ensemble average E[g(X(t))] for almost all trajectories

of the random process. When a stochastic process fulfills these conditions, it

is called ergodic.

One of the important characteristics of an ergodic process is that it suf-

fices to look at one realization of the process to infer many of its statistical
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Figure 4.4: For ergodic processes, the time average of a function along a

trajectory is equal to the ensemble average.

attributes. Ergodicity is a very strong property, and it is hard to test and

validate. Rather, it is frequently taken as a premise in the design of commu-

nication systems. For instance, most information sources are assumed to be

stationary and ergodic. Such a postulate appears reasonable, especially con-

sidering the many successful communication systems implemented based on

this assumption.

4.6.1 Power Spectral Density

For a stochastic signal, the definition of the power spectral density is some-

what more intricate because it must account for uncertainty in the process.

Let X(t) be a wide-sense stationary random process with RX(0) < ∞. Then,

we can define

X̂T (f) , F
[
X(t)rect

(
t

T

)]

and

SX(f) , lim
T→∞

1

T
E
[
|X̂T (f)|2

]
.
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As we will soon see, the power spectral density plays an instrumental role

in the sampling theorem for random signals. First, we provide a means to

compute SX(f) from its statistical attributes.

Theorem 4.6.3 (Wiener-Khinchin). The power spectral density SX(f) of a

wide-sense stationary random process X(t) is equal to the Fourier transform

of its autocorrelation function, SX(f) = F [RX(τ)].

Proof. For a wide-sense stationary process, we have

SX(f) = lim
T→∞

1

T
E
[
|X̂T (f)|2

]
= lim

T→∞

1

T
E
[
X̂T (f)X̂

∗
T (f)

]

= lim
T→∞

1

T
E

[∫ T

2

−T

2

X(t1)e
−2πift1dt1

∫ T

2

−T

2

X∗(t2)e
2πift2dt2

]

= lim
T→∞

1

T

∫ T

2

−T

2

∫ T

2

−T

2

E [X(t1)X
∗(t2)] e

−2πif(t1−t2)dt1dt2

=

∫

R

RX(τ)e
−2πifτdτ = F [RX(τ)].

The fourth equality is obtained by interchanging the expectation and the inte-

grals, while the sixth equality follows from a change of variables and the fact

that X(t) is wide-sense stationary. To guarantee that the former operation is

legitimate, τRX(τ) must remain finite for all τ .

In some cases, it may be possible to estimate the power spectral density

from a single realization of X(t). For example, the autocorrelation of X(t) is

ergodic if it satisfies

〈X(t)X∗(t− τ)〉 , lim
T→∞

1

T

∫ T

2

−T

2

X(t)X∗(t− τ)dt = E [X(t)X∗(t− τ)] .

In this case, the expectation in the theorem above can be replaced by a time

average and the result can be computed from a single realization.

4.6.2 Filtering Stochastic Processes

We discussed in Section 4.2.4 how the Fourier transform can simplify the anal-

ysis of the effects of linear time-invariant filters on deterministic signals. In

this section, we consider the operation of such filters in the context of random

processes.
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Theorem 4.6.4. If a wide-sense stationary process X(t) with mean mX and

autocorrelation function RX(τ) is passed through a linear time-invariant filter

with impulse response h(t), then the output process Y (t) has mean

mY = mX

∫

R

h(t)dt

and its autocorrelation is equal to

RY (τ) = RX(τ) ∗ h(τ) ∗ h∗(−τ).

Proof. The output process at time t is given by Y (t) =
∫
R
X(t− ξ)h(ξ)dξ. We

can therefore obtain the expectation of Y (t) as follows,

mY (t) = E

[∫

R

X(t− ξ)h(ξ)dξ

]
=

∫

R

E [X(t− ξ)]h(ξ)dξ

= mX

∫

R

h(ξ)dξ.

We emphasize that mY is independent of time.

To derive the autocorrelation function for Y (t), we first compute the cross-

correlation between X(t) and Y (t),

E[X(t1)Y
∗(t2)] = E

[
X(t1)

∫

R

X∗(ξ)h∗(t2 − ξ)dξ

]

=

∫

R

E [X(t1)X
∗(ξ)]h∗(t2 − ξ)dξ

=

∫

R

RX(t1 − ξ)h∗(t2 − ξ)dξ

= RX(τ) ∗ h∗(−τ).

(4.15)

This shows that the cross-correlation between X(t) and Y (t) depends only on

τ ; we can therefore express it as RXY (τ). We are now ready to compute the

autocorrelation function for Y (t).

E[Y (t1)Y
∗(t2)] = E

[∫

R

X(ξ)h(t1 − ξ)dξY ∗(t2)

]

=

∫

R

E [X(ξ)Y ∗(t2)]h(t1 − ξ)dξ

=

∫

R

RXY (ξ − t2)h(t1 − ξ)dξ

= RXY (τ) ∗ h(τ).

(4.16)
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Substituting RXY (τ) by the equivalent expression RX(τ)∗h∗(−τ) from (4.15),

we get the desired result. We observe that the autocorrelation of the process

Y (t) only depends on the difference between t1 and t2, and hence Y (t) is also

wide-sense stationary.

Obtaining an expression for the autocorrelation function corresponding to

the output of a linear time-invariant filter allows us to characterize the power

spectral density of the output process. In terms of the frequency representa-

tion, we get mY = mX ĥ(0) and

SY (f) = F [RY (τ)]

= F [RX(τ) ∗ h(τ) ∗ h∗(−τ)]

= SX(f)|ĥ(f)|2.

A linear time-invariant filter can be employed to shape the spectrum of a

stochastic process, and to constrain its bandwidth. This is an important result,

as linear filters can be used to reduce the bandwidth of a random signal before

sampling or to reconstruct a random signal from its samples.

4.6.3 Gaussian Processes

A stochastic process X(t) is a Gaussian process if, for any finite set of sam-

pling times t1, t2, . . . , tn, the resulting random variablesX(t1), X(t2), . . . , X(tn)

are jointly Gaussian random variables. The distribution of jointly Gaussian

random variables is completely determined by their mean vector and correla-

tion matrix. Therefore, a Gaussian process is completely determined by its

mean function mX(t) and its autocorrelation function RXX(t1, t2). Of course,

if the process is also wide-sense stationary, then this reduces to its mean value

mX and its autocorrelation function RX(τ).

More generally, one finds that, for any finite set of energy-type signals

s1(t), s2(t), . . . , sn(t), the random variables

Zi =

∫ ∞

−∞

s(t)X(t)dt

are jointly Gaussian. The intuition behind this is that each integral is de-

fined as the limit of a sequence of Riemann sums. Since each Riemann sum
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is simply the sum of Gaussian random variables, it is also Gaussian. This ar-

gument can be extended to show that the mean vector and correlation matrix

of the vector (Z1, Z2, . . . , Zn) is also jointly Gaussian. In fact, combining this

with Theorem 4.6.4, implies that the output of linear time-invariant system,

whose input is a wide-sense stationary Gaussian process, is also a wide-sense

stationary Gaussian process.

The most common random process in signal processing and communica-

tions is the Gaussian white-noise process N(t). This process is defined to

be a zero-mean wide-sense stationary Gaussian process whose power spectral

density SN(f) is constant (e.g., 1). Since this process has infinite power, it

is not particularly well-defined mathematically. Still, we can use the cavalier

Fourier transform F [1] = δ(t) to argue that the autocorrelation function of

N(t) should be RN(τ) = δ(τ). In practice, this is not a problem because N(t)

is only used as the input to a linear filter whose output process is guaranteed

to have finite power.


