
MATLAB Examples: Linear Block Codes

Henry D. P�ster

ECE Department

Texas A&M University

1 The Galois Field Fp for Prime p

Currently this document just gives snippets of example code which should help you get started. If you

need help, keep the �help� and �lookfor� commands in mind.

1.1 A Few Commands

>> help eye

EYE Identity matrix.

EYE(N) is the N-by-N identity matrix.

EYE(M,N) or EYE([M,N]) is an M-by-N matrix with 1's on

the diagonal and zeros elsewhere.

EYE(SIZE(A)) is the same size as A.

EYE with no arguments is the scalar 1.

EYE(M,N,CLASSNAME) or EYE([M,N],CLASSNAME) is an M-by-N matrix with 1's

of class CLASSNAME on the diagonal and zeros elsewhere.

Example:

x = eye(2,3,'int8');

See also SPEYE, ONES, ZEROS, RAND, RANDN.

>> help mod

MOD Modulus after division.

MOD(x,y) is x - n.*y where n = floor(x./y) if y ~= 0. If y is not an

integer and the quotient x./y is within roundoff error of an integer,

then n is that integer. The inputs x and y must be real arrays of the

same size, or real scalars.

The statement "x and y are congruent mod m" means mod(x,m) == mod(y,m).

By convention:

MOD(x,0) is x.

MOD(x,x) is 0.

MOD(x,y), for x~=y and y~=0, has the same sign as y.

Note: REM(x,y), for x~=y and y~=0, has the same sign as x.

MOD(x,y) and REM(x,y) are equal if x and y have the same sign, but

differ by y if x and y have different signs.

See also REM.

1



Overloaded functions or methods (ones with the same name in other directories)

help sym/mod.m

>> help de2bi

DE2BI Convert decimal numbers to binary numbers.

B = DE2BI(D) converts a nonnegative integer decimal vector D to a binary

matrix B. Each row of the binary matrix B corresponds to one element of D.

The default orientation of the of the binary output is Right-MSB; the first

element in B represents the lowest bit.

In addition to the vector input, three optional parameters can be given:

B = DE2BI(...,N) uses N to define how many digits (columns) are output.

B = DE2BI(...,N,P) uses P to define which base to convert the decimal

elements to.

B = DE2BI(...,FLAG) uses FLAG to determine the output orientation. FLAG

has two possible values, 'right-msb' and 'left-msb'. Giving a 'right-msb'

FLAG does not change the function's default behavior. Giving a 'left-msb'

FLAG flips the output orientation to display the MSB to the left.

Examples:

D = [12; 5];

B = de2bi(D) B = de2bi(D,5)

B = B =

0 0 1 1 0 0 1 1 0

1 0 1 0 1 0 1 0 0

T = de2bi(D,[],3) B = de2bi(D,5,'left-msb')

T = B =

0 1 1 0 1 1 0 0

2 1 0 0 0 1 0 1

See also BI2DE.

>> help dec2base

DEC2BASE Convert decimal integer to base B string.

DEC2BASE(D,B) returns the representation of D as a string in

base B. D must be a non-negative integer array smaller than 2^52

and B must be an integer between 2 and 36.

DEC2BASE(D,B,N) produces a representation with at least N digits.

Examples

dec2base(23,3) returns '212'

dec2base(23,3,5) returns '00212'

See also BASE2DEC, DEC2HEX, DEC2BIN.

>> help nchoosek

NCHOOSEK Binomial coefficient or all combinations.

NCHOOSEK(N,K) where N and K are non-negative integers returns N!/K!(N-K)!.

This is the number of combinations of N things taken K at a time.

When a coefficient is greater than 10^15, a warning will be produced

indicating possible inexact results. In such cases, the result is good

2



to 15 digits.

NCHOOSEK(V,K) where V is a vector of length N, produces a matrix

with N!/K!(N-K)! rows and K columns. Each row of the result has K of

the elements in the vector V. This syntax is only practical for

situations where N is less than about 15.

Class support for inputs N,K,V:

float: double, single

See also PERMS.

1.2 Now For Some Coding

>> n = 6;

>> k = 3;

>> p = 2;

>> In = eye(n);

>> Ik = eye(k);

>> Ink = eye(n-k);

>> P = [1 1 0;0 1 1;1 0 1]

P =

1 1 0

0 1 1

1 0 1

>> G = [Ik P];

>> H = mod([-P' Ink],p)

H =

1 0 1 1 0 0

1 1 0 0 1 0

0 1 1 0 0 1

>> mod(G*H',p) % Test G and H construction

ans =

0 0 0

0 0 0

0 0 0

1.3 Encoding and Listing Codewords

We note that �u = dec2base(0:(p^k - 1),p,k)-'0'� can be used instead of �de2bi� for p > 2.

>> u = de2bi(0:(2^k - 1),k) % List all binary input vectors

u =

0 0 0

1 0 0

3



0 1 0

1 1 0

0 0 1

1 0 1

0 1 1

1 1 1

>> C = mod(u*G,p) % List all codewords

C =

0 0 0 0 0 0

1 0 0 1 1 0

0 1 0 0 1 1

1 1 0 1 0 1

0 0 1 1 0 1

1 0 1 0 1 1

0 1 1 1 1 0

1 1 1 0 0 0

1.4 Syndromes

>> N2 = nchoosek(1:n,2)

ans =

1 2

1 3

1 4

1 5

1 6

2 3

2 4

2 5

2 6

3 4

3 5

3 6

4 5

4 6

5 6

>> E2 = zeros(length(N2),n);

>> for i=1:length(N2); E2(i,N2(i,:)) = 1; end % All weight 2 error patterns

>> E2

E2 =

1 1 0 0 0 0

1 0 1 0 0 0

1 0 0 1 0 0

1 0 0 0 1 0

1 0 0 0 0 1

0 1 1 0 0 0

0 1 0 1 0 0

4



0 1 0 0 1 0

0 1 0 0 0 1

0 0 1 1 0 0

0 0 1 0 1 0

0 0 1 0 0 1

0 0 0 1 1 0

0 0 0 1 0 1

0 0 0 0 1 1

>> S2 = mod(E2*H',2) % List syndromes of weight 2 patterns

S2 =

1 0 1

0 1 1

0 1 0

1 0 0

1 1 1

1 1 0

1 1 1

0 0 1

0 1 0

0 0 1

1 1 1

1 0 0

1 1 0

1 0 1

0 1 1

>> S2int = bi2de(S2); % Assign each syndrome to an integer between 0 and 2^(n-k) - 1

1.5 Simulation

>> M = 5; % Handle M transmissions at once

>> msg = floor(rand(M,1)*2^k) % Generate uniform random message numbers

msg =

4

6

7

5

1

>> u = de2bi(msg,k) % Map message number to bit vector

u =

0 0 1

0 1 1

1 1 1

1 0 1

1 0 0

>> c = mod(u*G,p); % Encode each message

>> noise = rand(M,n)<0.1 % Generate BSC noise with error prob. 0.1

5



noise =

0 0 0 0 1 0

0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 0 1 0

1 0 1 0 0 0

>> recv = mod(c+noise,p);

1.6 Matrix Tricks

The following tricks MATLAB into performing matrix inverses over prime �elds. It uses the fact that

det(A)A−1 is an integer matrix if A is an integer matrix and it uses the fact that ap−2 = a−1 for

all a ∈ GF (p). Due to the �nite precision of IEEE doubles, the �rst trick may fail if any element of

det(A)A−1 is greater than 1016. Likewise, the second may fail if (p− 1)p−2 > 1016.

>> A = floor(2*rand(5,5)) % Generate random 5 by 5 binary matrix

A =

1 0 1 0 1

0 0 1 0 1

0 1 0 0 1

0 0 0 1 0

0 0 0 1 1

>> det(A)

ans =

-1

>> invA = mod(inv(A)*det(A),2) % Modulo 2 inverse trick (det(A) must be odd)

invA =

1 1 0 0 0

0 0 1 1 1

0 1 0 1 1

0 0 0 1 0

0 0 0 1 1

>> mod(invA*A,2) % Verify that it works

ans =

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

>> A = floor(7*rand(5,5)) % Generate random 5 by 5 matrix over GF(7)

A =

6



5 6 1 2 6

1 6 0 1 4

6 2 3 6 1

0 3 5 4 4

3 3 2 1 4

>> det(A)/7 % Check determinant not divisible by 7

ans =

66.4286

>> invA = round(mod(mod(round(inv(A)*det(A)),7)*mod(det(A),7)^5,7))

invA =

6 0 4 3 1

5 6 0 5 6

5 5 3 1 5

1 2 1 0 5

3 3 4 4 0

>> mod(invA*A,7) % Test inverse

ans =

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

2 Extension Fields F2m

2.1 A Few Commands

Matlab has built in routines that work for extension �elds of characteristic 2. These commands can be

listed by typing �help gfhelp�.

GF Create a Galois field array.

X_GF = GF(X,M) creates a Galois field array from X

in the field GF(2^M), for 1<=M<=16. The elements of X must be

integers between 0 and 2^M-1. X_GF behaves like

a MATLAB array, and you can use standard indexing and

arithmetic operations (+, *, .*, .^, \, etc.) on it.

For a complete list of operations you can perform on

X_GF, type "GFHELP".

X_GF = GF(X,M,PRIM_POLY) creates a Galois field array from X

and uses the primitive polynomial PRIM_POLY to define

the field. PRIM_POLY must be a primitive polynomial in

decimal representation. For example, the polynomial D^3+D^2+1

is represented by the number 13, because 1 1 0 1 is the binary

form of 13.

X_GF = GF(X) uses a default value of M = 1.

7



Example:

A = gf(randint(4,4,8,873),3); % 4x4 matrix in GF(2^3)

B = gf(1:4,3)'; % A 4x1 vector

C = A*B

C = GF(2^3) array. Primitive polynomial = 1+D+D^3 (11 decimal)

Array elements =

3

3

6

7

See also GFHELP, GFTABLE.

2.2 Standard Codes

>> n = 5;

>> k = 3;

>> m = 2;

>> In = gf(eye(n),m);

>> Ik = gf(eye(k),m);

>> Ink = gf(eye(n-k),m);

>> P = gf([1 1;1 2;1 3],m) % (5,3) Hamming code over GF(4)

P = GF(2^2) array. Primitive polynomial = D^2+D+1 (7 decimal)

Array elements =

1 1

1 2

1 3

>> G = [Ik P];

>> H = [P' Ink];

H = GF(2^2) array. Primitive polynomial = D^2+D+1 (7 decimal)

Array elements =

1 1 1 1 0

1 2 3 0 1

>> G*H' % Test G and H construction

ans = GF(2^2) array. Primitive polynomial = D^2+D+1 (7 decimal)

Array elements =

0 0

0 0

0 0

8



2.3 Reed-Solomon Codes via FFTs

% Reed-Solomon code over GF(256)

m = 8;

q = 2^m;

n = q-1;

r = 6;

k = n-r;

% Encode message using FFT

u = gf([floor(rand(1,k)*q) zeros(1,n-k)],m);

x = fft(u);

% Construct random error pattern of weight "ne"

ne = 4;

e = gf(zeros(1,n),m);

loc = randperm(n);

mag = gf(floor(rand(1,ne)*(q-1))+1,m);

e(loc(1:ne)) = mag;

% Add errors and compute syndrome via IFFT

y = x+e;

syn = ifft(y);

syn = syn((k+1):n);

9


