
Chapter 3

Basic Concepts of Probability

The theory of probability provides the mathematical tools necessary to study

and analyze uncertain phenomena that occur in nature. It establishes a formal

framework to understand and predict the outcome of a random experiment. It

can be used to model complex systems and characterize stochastic processes.

This is instrumental in designing efficient solutions to many engineering prob-

lems. Two components define a probabilistic model, a sample space and a

probability law.

3.1 Sample Spaces and Events

In the context of probability, an experiment is a random occurrence that pro-

duces one of several outcomes. The set of all possible outcomes is called the

sample space of the experiment, and it is denoted by Ω. An admissible subset

of the sample space is called an event.

Example 17. The rolling of a die forms a common experiment. A sample

space Ω corresponding to this experiment is given by the six faces of a die.

The set of prime numbers less than or equal to six, namely {2, 3, 5}, is one of

many possible events. The actual number observed after rolling the die is the

outcome of the experiment.

There is essentially no restriction on what constitutes an experiment. The

flipping of a coin, the flipping of n coins, and the tossing of an infinite sequence

of coins are all random experiments. Also, two similar experiments may have
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Figure 3.1: A sample space contains all the possible outcomes; an admissible

subset of the sample space is called an event.

Figure 3.2: A possible sample space for the rolling of a die is Ω = {1, 2, . . . , 6},
and the subset {2, 3, 5} forms a specific event.

different sample spaces. A sample space Ω for observing the number of heads

in n tosses of a coin is {0, 1, . . . , n}; however, when describing the complete

history of the n coin tosses, the sample space becomes much larger with 2n

distinct sequences of heads and tails. Ultimately, the choice of a particular

sample space depends on the properties one wishes to analyze. Yet some rules

must be followed in selecting a sample space.

1. The elements of a sample space should be distinct andmutually exclusive.

This ensures that the outcome of an experiment is unique.

2. A sample space must be collectively exhaustive. That is, every possible

outcome of the experiment must be accounted for in the sample space.

In general, a sample space should be precise enough to distinguish between all

outcomes of interest, while avoiding frivolous details.
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Example 18. Consider the space composed of the odd integers located between

one and six, the even integers contained between one and six, and the prime

numbers less than or equal to six. This collection cannot be a sample space

for the rolling of a die because its elements are not mutually exclusive. In

particular, the numbers three and five are both odd and prime, while the number

two is prime and even. This violates the uniqueness criterion.

Figure 3.3: This collection of objects cannot be a sample space as the three

proposed outcomes (even, odd and prime) are not mutually exclusive.

Alternatively, the elements of the space composed of the odd numbers be-

tween one and six, and the even numbers between one and six, are distinct and

mutually exclusive; an integer cannot be simultaneously odd and even. More-

over, this space is collectively exhaustive because every integer is either odd or

even. This latter description forms a possible sample space for the rolling of a

die.

Figure 3.4: A candidate sample space for the rolling of a die is composed of

two objects, the odd numbers and the even numbers between one and six.
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3.2 Probability Laws

A probability law specifies the likelihood of events related to an experiment.

Formally, a probability law assigns to every event A a number Pr(A), called

the probability of event A, such that the following axioms are satisfied.

1. (Nonnegativity) Pr(A) ≥ 0, for every event A.

2. (Normalization) The probability of the sample space Ω is equal to one,

Pr(Ω) = 1.

3. (Countable Additivity) If A and B are disjoint events, A ∩ B = ∅,
then the probability of their union satisfies

Pr(A ∪ B) = Pr(A) + Pr(B).

More generally, if A1, A2, . . . is a sequence of disjoint events and
⋃∞

k=1Ak

is itself an admissible event then

Pr

( ∞
⋃

k=1

Ak

)

=
∞
∑

k=1

Pr(Ak).

A number of important properties can be deduced from the three axioms of

probability. We prove two such properties below. The first statement describes

the relation between inclusion and probabilities.

Proposition 1. If A ⊂ B, then Pr(A) ≤ Pr(B).

Proof. Since A ⊂ B, we have B = A∪ (B−A). Noting that A and B−A are

disjoint sets, we get

Pr(B) = Pr(A) + Pr(B −A) ≥ Pr(A),

where the inequality follows from the nonnegativity of probability laws.

Our second result specifies the probability of the union of two events that

are not necessarily mutually exclusive.

Proposition 2. Pr(A ∪B) = Pr(A) + Pr(B)− Pr(A ∩B).
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Figure 3.5: If event A is a subset of event B, then the probability of A is less

than or equal to the probability of B.

Proof. Using the third axiom of probability on the disjoint sets A and (A ∪
B)− A, we can write

Pr(A ∪B) = Pr(A) + Pr((A ∪ B)− A) = Pr(A) + Pr(B − A).

Similarly, applying the third axiom to A ∩ B and B − (A ∩ B), we obtain

Pr(B) = Pr(A ∩ B) + Pr(B − (A ∩ B)) = Pr(A ∩B) + Pr(B − A).

Combining these two equations yields the desired result.

A B

A ∩B

Figure 3.6: The probability of the union of A and B is equal to the probability

of A plus the probability of B minus the probability of their intersection.

The statement of Proposition 2 can be extended to finite unions of events.

Specifically, we can write

Pr

(

n
⋃

k=1

Ak

)

=

n
∑

k=1

(−1)k−1
∑

I⊂{1,...,n},|I|=k

Pr

(

⋂

i∈I
Ai

)

where the rightmost sum runs over all subsets I of {1, . . . , n} that contain

exactly k elements. This more encompassing result is known as the inclusion-

exclusion principle.
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We can use Proposition 2 recursively to derive a bound on the probabilities

of unions. This theorem, which is sometimes called the Boole inequality, asserts

that the probability of at least one event occurring is no greater than the sum

of the probabilities of the individual events.

Theorem 1 (Union Bound). Let A1, A2, . . . , An be a collection of events, then

Pr

(

n
⋃

k=1

Ak

)

≤
n
∑

k=1

Pr(Ak). (3.1)

Proof. We show this result using induction. First, we note that the claim is

trivially true for n = 1. As an inductive hypothesis, assume that (3.1) holds

for some n ≥ 1. Then, we have

Pr

(

n+1
⋃

k=1

Ak

)

= Pr

(

An+1 ∪
(

n
⋃

k=1

Ak

))

= Pr(An+1) + Pr

(

n
⋃

k=1

Ak

)

− Pr

(

An+1 ∩
(

n
⋃

k=1

Ak

))

≤ Pr(An+1) + Pr

(

n
⋃

k=1

Ak

)

≤
n+1
∑

k=1

Pr(Ak).

Therefore, by the principle of mathematical induction, (3.1) is valid for all

positive integers.

The union bound is often employed in situations where finding the joint

probability of multiple rare events is difficult, but computing the probabilities

of the individual components is straightforward.

Example 19. An urn contains 990 blue balls and 10 red balls. Five people

each pick a ball at random, without replacement. We wish to compute the

probability that at least one person picks a red ball. Let Bk denote the event

that person k draws a red ball. We note that the probability of interest can be

written as Pr
(
⋃5

k=1Bk

)

.

First, let us approximate this probability using the union bound. Clearly, the

probability that the first person picks a red ball, Pr(B1), is equal to 1/100. As

we will see later, it turns out that Pr(Bk) = 1/100 for k = 1, . . . , 5. Applying
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(3.1), we get a bound on the probability that at least one person picks a red

ball,

Pr

(

5
⋃

k=1

Bk

)

≤
5
∑

k=1

Pr(Bk) =
5
∑

k=1

1

100
=

1

20
.

We can also compute this probability exactly. The probability that no red balls

are selected is given by
(

990
5

)

/
(

1000
5

)

. Hence, the probability that a least one

person draws a red ball becomes

Pr

(

5
⋃

k=1

Bk

)

= 1−
(

990
5

)

(

1000
5

) ≈ 0.0491.

As a second application, consider the problem where the five people each

draw two balls from the urn, without replacement. This time, we wish to

approximate the probability that at least one person gets two red balls. Using

the same steps as before, we get

Pr

(

5
⋃

k=1

Ck

)

≤
5
∑

k=1

Pr(Ck) =
5
∑

k=1

(

10
2

)

(

1000
2

) =
1

2220
,

where Ck represents the event that person k draws two red balls. In this latter

scenario, computing the exact probability is much more challenging.

3.2.1 Finite Sample Spaces

If a sample space Ω contains a finite number of elements, then a probability law

on Ω is completely determined by the probabilities of its individual outcomes.

Denote a sample space containing n elements by Ω = {s1, s2, . . . , sn}. Any

event in Ω is of the form A = {si ∈ Ω|i ∈ I}, where I is a subset of the

integers one through n. The probability of event A is therefore given by the

third axiom of probability,

Pr(A) = Pr({si ∈ Ω|i ∈ I}) =
∑

i∈I
Pr(si).

We emphasize that, by definition, distinct outcomes are always disjoint events.

If in addition the elements of Ω are equally likely with

Pr(s1) = Pr(s2) = · · · = Pr(sn) =
1

n
,
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then the probability of an event A becomes

Pr(A) =
|A|
n

(3.2)

where |A| denotes the number of elements in A.

Example 20. The rolling of a fair die is an experiment with a finite number

of equally likely outcomes. The probability of observing any of the faces labeled

one through six is therefore equal to 1/6. The probability of any event can

easily be computed by counting the number of distinct outcomes included in the

event. For instance, the probability of rolling a prime number is

Pr({2, 3, 5}) = Pr(2) + Pr(3) + Pr(5) =
3

6
.

3.2.2 Countably Infinite Models

Consider a sample space that consists of a countably infinite number of el-

ements, Ω = {s1, s2, . . .}. Again, a probability law on Ω is specified by

the probabilities of individual outcomes. An event in Ω can be written as

A = {sj ∈ Ω|j ∈ J}, where J is a subset of the positive integers. Using the

third axiom of probability, Pr(A) can be written as

Pr(A) = Pr({sj ∈ Ω|j ∈ J}) =
∑

j∈J
Pr(sj).

The possibly infinite sum
∑

j∈JPr(sj) always converges since the summands

are nonnegative and the sum is bounded above by one; it is consequently well

defined.

1 2 3 4 5 6 7

Figure 3.7: A countable set is a collection of elements with the same cardinality

as some subset of the natural numbers.

Example 21. Suppose that a fair coin is tossed repetitively until heads is

observed. The number of coin tosses is recorded as the outcome of this ex-

periment. A natural sample space for this experiment is Ω = {1, 2, . . .}, a

countably infinite set.
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The probability of observing heads on the first trial is 1/2, and the proba-

bility of observing heads for the first time on trial k is 2−k. The probability of

the entire sample space is therefore equal to

Pr(Ω) =

∞
∑

k=1

Pr(k) =

∞
∑

k=1

1

2k
= 1,

as expected. Similarly, the probability of the number of coin tosses being even

can be computed as

Pr({2, 4, 6, . . .}) =
∞
∑

k=1

Pr(2k) =
∞
∑

k=1

1

22k
=

1

4

1
(

1− 1
4

) =
1

3
.

3.2.3 Uncountably Infinite Models

Probabilistic models with uncountably infinite sample spaces differ from the

finite and countable cases in that a probability law may not necessarily be

specified by the probabilities of single-element outcomes. This difficulty arises

from the large number of elements contained in the sample space when the

latter is uncountable. Many subsets of Ω do not have a finite or countable

representation, and as such the third axiom of probability cannot be applied

to relate the probabilities of these events to the probabilities of individual

outcomes. Despite these apparent difficulties, probabilistic models with un-

countably infinite sample spaces are quite useful in practice. To develop an

understanding of uncountable probabilistic models, we consider the unit inter-

val [0, 1].

0 1

Figure 3.8: The unit interval [0, 1], composed of all real numbers between zero

and one, is an example of an uncountable set.

Suppose that an element is chosen at random from this interval, with uni-

form weighting. By the first axiom of probability, the probability that this

element belongs to the interval [0, 1] is given by Pr ([0, 1]) = 1. Furthermore,

if two intervals have the same length, the probabilities of the outcome falling
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in either interval should be identical. For instance, it is natural to anticipate

that Pr ((0, 0.25)) = Pr ((0.75, 1)).

0 0.25 0.75 1

Figure 3.9: If the outcome of an experiment is uniformly distributed over [0, 1],

then two subintervals of equal lengths should have the same probabilities.

In an extension of the previous observation, we take the probability of an

open interval (a, b) where 0 ≤ a < b ≤ 1 to equal

Pr((a, b)) = b− a. (3.3)

Using the third axiom of probability, it is then possible to find the probability

of a finite or countable union of disjoint open intervals.

0 1

Figure 3.10: The probabilities of events that are formed through the union of

disjoint intervals can be computed in a straightforward manner.

Specifically, for constants 0 ≤ a1 < b1 < a2 < b2 < · · · ≤ 1, we get

Pr

( ∞
⋃

k=1

(ak, bk)

)

=

∞
∑

k=1

(bk − ak) .

The probabilities of more complex events can be obtained by applying ad-

ditional elementary set operations. However, it suffices to say for now that

specifying the probability of the outcome falling in (a, b) for every possible

open interval is enough to define a probability law on Ω. In the example at

hand, (3.3) completely determines the probability law on [0, 1].
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Note that we can give an alternative means of computing the probability

of an interval. Again, consider the open interval (a, b) where 0 ≤ a < b ≤ 1.

The probability of the outcome falling in this interval is equal to

Pr((a, b)) = b− a =

∫ b

a

dx =

∫

(a,b)

dx.

Moreover, for 0 ≤ a1 < b1 < a2 < b2 < · · · ≤ 1, we can write

Pr

( ∞
⋃

k=1

(ak, bk)

)

=

∞
∑

k=1

(bk − ak) =

∫

⋃∞
k=1(ak ,bk)

dx.

For this carefully crafted example, it appears that the probability of an ad-

missible event A is given by the integral

Pr(A) =

∫

A

dx.

This is indeed accurate for the current scenario. In fact, the class of admissible

events for this experiment is simply the collection of all sets for which the

integral
∫

A
dx can be computed. In other words, if a number is chosen at

random from [0, 1], then the probability of this number falling in set A ⊂ [0, 1]

is

Pr(A) =

∫

A

dx.

This method of computing probabilities can be extended to more complicated

problems. In these notes, we will see many probabilistic models with uncount-

ably infinite sample spaces. The mathematical tools required to handle such

models will be treated alongside.

Example 22. Suppose that a participant at a game-show is required to spin

the wheel of serendipity, a perfect circle with unit radius. When subjected to a

vigorous spin, the wheel is equally likely to stop anywhere along its perimeter.

A sampling space for this experiment is the collection of all angles from 0

to 2π, an uncountable set. The probability of Ω is invariably equal to one,

Pr([0, 2π)) = 1.

The probability that the wheel stops in the first quadrant is given by

Pr
([

0,
π

2

))

=

∫ π
2

0

1

2π
dθ =

1

4
.
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Figure 3.11: The wheel of serendipity forms an example of a random experi-

ment for which the sample space is uncountable.

More generally, the probability that the wheel stops in an interval (a, b) where

0 ≤ a ≤ b < 2π can be written as

Pr((a, b)) =
b− a

2π
.

If B ⊂ [0, 2π) is a set representing all winning outcomes, then the probability

of success at the wheel becomes

Pr(B) =

∫

B

1

2π
dθ.

3.2.4 Probability and Measure Theory*

A thorough treatment of probability involves advanced mathematical concepts,

especially when it comes to infinite sample spaces. The basis of our intuition

for the infinite is the set of natural numbers,

N = {1, 2, . . .}.

Two sets are said to have the same cardinality if their elements can be put

in one-to-one correspondence. A set with the same cardinality as a subset

of the natural numbers is said to be countable. That is, the elements of a

countable set can always be listed in sequence, s1, s2, . . .; although the order

may have nothing to do with any relation between the elements. The integers

and the rational numbers are examples of countably infinite sets. It may be

surprising at first to learn that there exist uncountable sets. To escape beyond

the countable, one needs set theoretic tools such as power sets. The set of real

numbers is uncountably infinite; it cannot be put in one-to-one correspondence
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with the natural numbers. A typical progression in analysis consists of using

the finite to gain intuition about the countably infinite, and then to employ

the countably infinite to get at the uncountable.

It is tempting to try to assign probabilities to every subset of a sample

space Ω. However, for uncountably infinite sample spaces, this leads to serious

difficulties that cannot be resolved. In general, it is necessary to work with

special subclasses of the class of all subsets of a sample space Ω. The collections

of the appropriate kinds are called fields and σ-fields, and they are studied in

measure theory. This leads to measure-theoretic probability, and to its unified

treatment of the discrete and the continuous.

Fortunately, it is possible to develop a working understanding of probabil-

ity without worrying excessively about these issues. At some point in your

academic career, you may wish to study analysis and measure theory more

carefully and in greater details. However, it is not our current purpose to

initiate the rigorous treatment of these topics.
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