
Chapter 5

Discrete Random Variables

Suppose that an experiment and a sample space are given. A random variable

is a real-valued function of the outcome of the experiment. In other words,

the random variable assigns a specific number to every possible outcome of

the experiment. The numerical value of a particular outcome is simply called

the value of the random variable. Because of the structure of real numbers, it

is possible to define pertinent statistical properties on random variables that

otherwise do not apply to probability spaces in general.
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Figure 5.1: The sample space in this example has seven possible outcomes. A

random variable maps each of these outcomes to a real number.

Example 34. There are six possible outcomes to the rolling of a fair die,

namely each of the six faces. These faces map naturally to the integers one

53



54 CHAPTER 5. DISCRETE RANDOM VARIABLES

through six. The value of the random variable, in this case, is simply the

number of dots that appear on the top face of the die.

1 2 3 4 5 6

Figure 5.2: This random variable takes its input from the rolling of a die and

assigns to each outcome a real number that corresponds to the number of dots

that appear on the top face of the die.

A simple class of random variables is the collection of discrete random

variables. A variable is called discrete if its range is finite or countably infinite;

that is, it can only take a finite or countable number of values.

Example 35. Consider the experiment where a coin is tossed repetitively un-

til heads is observed. The corresponding function, which maps the number

of tosses to an integer, is a discrete random variable that takes a countable

number of values. The range of this random variable is given by the positive

integers {1, 2, . . .}.

5.1 Probability Mass Functions

A discrete random variable X is characterized by the probability of each of

the elements in its range. We identify the probabilities of individual elements

in the range of X using the probability mass function (PMF) of X , which we

denote by pX(·). If x is a possible value of X then the probability mass of x,
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written pX(x), is defined by

pX(x) = Pr({X = x}) = Pr(X = x). (5.1)

Equivalently, we can think of pX(x) as the probability of the set of all outcomes

in Ω for which X is equal to x,

pX(x) = Pr(X−1(x)) = Pr({ω ∈ Ω|X(ω) = x}).

Here, X−1(x) denotes the preimage of x defined by {ω ∈ Ω|X(ω) = x}. This

is not to be confused with the inverse of a bijection.
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Figure 5.3: The probability mass of x is given by the probability of the set of

all outcomes which X maps to x.

Let X(Ω) denote the collection of all the possible numerical values X can

take; this set is known as the range of X . Using this notation, we can write
∑

x∈X(Ω)

pX(x) = 1. (5.2)

We emphasize that the sets defined by {ω ∈ Ω|X(ω) = x} are disjoint and

form a partition of the sample space Ω, as x ranges over all the possible values

in X(Ω). Thus, (5.2) follows immediately from the countable additivity axiom

and the normalization axiom of probability laws. In general, if X is a discrete

random variable and S is a subset of X(Ω), we can write

Pr(S) = Pr ({ω ∈ Ω|X(ω) ∈ S}) =
∑

x∈S
pX(x). (5.3)

This equation offers an explicit formula to compute the probability of any

subset of X(Ω), provided that X is discrete.
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Example 36. An urn contains three balls numbered one, two and three. Two

balls are drawn from the urn without replacement. We wish to find the proba-

bility that the sum of the two selected numbers is odd.

Let Ω be the set of ordered pairs corresponding to the possible outcomes of

the experiment, Ω = {(1, 2), (1, 3), (2, 1), (2, 3), (3, 1), (3, 2)}. Note that these

outcomes are equiprobable. We employ X to represent the sum of the two

selected numbers. The PMF of random variable X is given by

pX(3) = pX(4) = pX(5) =
1

3
.

If S denotes the event that the sum of the two numbers is odd, then the prob-

ability of the sum being odd can be computed as follows,

Pr(S) = Pr({3, 5}) = pX(3) + pX(5) =
2

3
.

5.2 Important Discrete Random Variables

A number of discrete random variables appears frequently in problems related

to probability. These random variables arise in many different contexts, and

they are worth getting acquainted with. In general, discrete random variables

occur primarily in situations where counting is involved.

5.2.1 Bernoulli Random Variables

The first and simplest random variable is the Bernoulli random variable. Let

X be a random variable that takes on only two possible numerical values,

X(Ω) = {0, 1}. Then, X is a Bernoulli random variable and its PMF is given

by

pX(x) =

{

1− p, if x = 0

p, if x = 1

where p ∈ [0, 1].

Example 37. Consider the flipping of a biased coin, for which heads is ob-

tained with probability p and tails is obtained with probability 1−p. A random

variable that maps heads to one and tails to zero is a Bernoulli random vari-

able with parameter p. In fact, every Bernoulli random variable is equivalent

to the tossing of a coin.
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Figure 5.4: The PMF of a Bernoulli random variable appears above for pa-

rameter p = 0.25.

5.2.2 Binomial Random Variables

Multiple independent Bernoulli random variables can be combined to construct

more sophisticated random variables. Suppose X is the sum of n independent

and identically distributed Bernoulli random variables. Then X is called a

binomial random variable with parameters n and p. The PMF of X is given

by

pX(k) = Pr(X = k) =

(

n

k

)

pk(1− p)n−k,

where k = 0, 1, . . . n. We can easily verify that X fulfills the normalization

axiom,
n
∑

k=0

(

n

k

)

pk(1− p)n−k = (p+ (1− p))n = 1.

Example 38. The Brazos Soda Company creates an “Under the Caps” pro-

motion whereby a customer can win an instant cash prize of $1 by looking

under a bottle cap. The likelihood to win is one in four, and it is independent

from bottle to bottle. A customer buys eight bottles of soda from this company.

We wish to find the PMF of the number of winning bottles, which we denote

by X. Also, we want to compute the probability of winning more than $4.

The random variable X is binomial with parameters n = 8 and p = 1/4.
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Figure 5.5: This figure shows a binomial random variable with parameters

n = 8 and p = 0.25.

Its PMF is given by

pX(k) =

(

8

k

)(

1

4

)k (
3

4

)8−k

=

(

8

k

)

38−k

48
,

where k = 0, 1, . . . , 8. The probability of winning more than $4 is

Pr(X > 4) =

8
∑

k=5

(

8

k

)

38−k

48
.

5.2.3 Poisson Random Variables

The probability mass function of a Poisson random variable is given by

pX(k) =
λk

k!
e−λ, k = 0, 1, . . .

where λ is a positive number. Note that, using Taylor series expansion, we

have ∞
∑

k=0

pX(k) =

∞
∑

k=0

λk

k!
e−λ = e−λ

∞
∑

k=0

λk

k!
= e−λeλ = 1,

which shows that this PMF fulfills the normalization axiom of probability laws.

The Poisson random variable is of fundamental importance when counting the

number of occurrences of a phenomenon within a certain time period. It finds

extensive use in networking, inventory management and queueing applications.
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Figure 5.6: This figure shows the PMF of a Poisson random variable with

parameter λ = 2. Note that the values of the PMF are only present for

k = 0, 1, . . . , 8.

Example 39. Requests at an Internet server arrive at a rate of λ connections

per second. The number of service requests per second is modeled as a random

variable with a Poisson distribution. We wish to find the probability that no

service requests arrive during a time interval of one second.

Let N be a random variable that represents the number of requests that

arrives within a span of one second. By assumption, N is a Poisson random

variable with PMF

pN (k) =
λk

k!
e−λ.

The probability that no service requests arrive in one second is simply given by

pN(0) = e−λ.

It is possible to obtain a Poisson random variable as the limit of a sequence

of binomial random variables. Fix λ and let pn = λ/n. For k = 1, 2, . . . n, we

define the PMF of the random variable Xn as

pXn
(k) = Pr(Xn = k) =

(

n

k

)

pkn(1− pn)
n−k

=
n!

k!(n− k)!

(

λ

n

)k (

1− λ

n

)n−k

=
n!

nk(n− k)!

λk

k!

(

1− λ

n

)n−k

.
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In the limit, as n approaches infinity, we get

lim
n→∞

pXn
(k) = lim

n→∞

n!

nk(n− k)!

λk

k!

(

1− λ

n

)n−k

=
λk

k!
e−λ.

Thus, the sequence of binomial random variables {Xn} converges in distribu-

tion to the Poisson random variable X .
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Figure 5.7: The levels of a binomial PMF with parameter p = λ/n converge to

the probabilities of a Poisson PMF with parameter λ as n increases to infinity.

This discussion suggests that the Poisson PMF can be employed to ap-

proximate the PMF of a binomial random variable in certain circumstances.

Suppose that Y is a binomial random variable with parameters n and p. If n is

large and p is small then the probability that Y equals k can be approximated

by

pY (k) =
n!

nk(n− k)!

λk

k!

(

1− λ

n

)n−k

≈ λk

k!
e−λ,

where λ = np. The latter expression can be computed numerically in a

straightforward manner.

Example 40. The probability of a bit error on a communication channel is

equal to 10−2. We wish to approximate the probability that a block of 1000 bits

has four or more errors.

Assume that the probability of individual errors is independent from bit to

bit. The transmission of each bit can be modeled as a Bernoulli trial, with a
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zero indicating a correct transmission and a one representing a bit error. The

total number of errors in 1000 transmissions then corresponds to a binomial

random variable with parameters n = 1000 and p = 10−2. The probability

of making four or more errors can be approximated using a Poisson random

variable with constant λ = np = 10. Thus, we can approximate the probability

that a block of 1000 bits has four or more errors by

Pr(N ≥ 4) = 1− Pr(N < 4) ≈ 1−
3
∑

k=0

λk

k!
e−λ

= 1− e−10

(

1 + 10 + 50 +
500

3

)

≈ 0.9897.

This is in contrast to the exact answer, which can be written as 0.9899 when

truncated to four decimal places.

5.2.4 Geometric Random Variables

Consider a random experiment where a Bernoulli trial is repeated multiple

times until a one is observed. At each time step, the probability of getting a

one is equal to p and the probability of getting a zero is 1− p. The number of

trials carried out before completion, which we denote by X , is recorded as the

outcome of this experiment. The random variable X is a geometric random

variable, and its PMF is given by

pX(k) = (1− p)k−1p, k = 1, 2, . . .

We stress that (1 − p)k−1p simply represents the probability of obtaining a

sequence of k − 1 zero immediately followed by a one.

Example 41. The Brazos Soda Company introduces another “Under the Caps”

promotion. This time, a customer can win an additional bottle of soda by look-

ing under the cap of her bottle. The probability to win is 1/5, and it is inde-

pendent from bottle to bottle. A customer purchases one bottle of soda from the

Brazos Soda Company and thereby enters the contest. For every extra bottle

of soda won by looking under the cap, the customer gets an additional chance
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Figure 5.8: The PMF of a geometric random variable is a decreasing function

of k. It is plotted above for p = 0.25. The values of the PMF are only present

for k = 1, 2, . . . , 12.

to play. We wish to find the PMF of the number of bottles obtained by this

customer.

Let X denote the total number of bottles obtained by the customer. The

random variable X is geometric and its PMF is

pX(k) =

(

1

5

)k−1
4

5
,

where k = 1, 2, . . .

Memoryless Property: A remarkable aspect of the geometric random vari-

able is that it satisfies the memoryless property,

Pr(X = k + j|X > k) = Pr(X = j).

This can be established using the definition of conditional probability. Let X

be a geometric random variable with parameter p, and assume that k and j

are positive integers. We can write the conditional probability of X as

Pr(X = k + j|X > k) =
Pr({X = k + j} ∩ {X > k})

Pr(X > k)

=
Pr(X = k + j)

Pr(X > k)
=

(1− p)k+j−1p

(1− p)k

= (1− p)j−1p = Pr(X = j).
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In words, the probability that the number of trials carried out before com-

pletion is k + j, given k unsuccessful trials, is equal to the unconditioned

probability that the total number of trials is j. It can be shown that the ge-

ometric random variable is the only discrete random variable that possesses

the memoryless property.

5.2.5 Discrete Uniform Random Variables

A finite random variable where all the possible outcomes are equally likely

is called a discrete uniform random variable. Let X be a uniform random

variable taking value over X(Ω) = {1, 2, . . . , n}. Its PMF is therefore given by

pX(k) =

{

1/n, if k = 1, 2, . . . , n

0, otherwise.

We encountered specific cases of this random variable before. The tossing of a

fair coin and the rolling of a die can both be used to construct uniform random

variables.

 0
 0.02
 0.04
 0.06
 0.08

 0.1
 0.12
 0.14
 0.16

 0  1  2  3  4  5  6  7  8  9P
ro

ba
bi

lit
y 

M
as

s 
F

un
ct

io
n

Value

Uniform Random Variable

n = 8

Figure 5.9: A uniform random variable corresponds to the situation where all

the possible values of the random variable are equally likely. It is shown above

for the case where n = 8.
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5.3 Functions of Random Variables

Recall that a random variable is a function of the outcome of an experiment.

Given a random variable X , it is possible to create a new random variable

Y by applying a real-valued function g(·) to X . If X is a random variable

then Y = g(X) is also a random variable since it associates a numerical value

to every outcome of the experiment. In particular, if ω ∈ Ω is the outcome

of the experiment, then X takes on value x = X(ω) and Y takes on value

Y (ω) = g(x).
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Sample Space

X

Y = g(X)

Figure 5.10: A real-valued function of a random variable is a random variable

itself. In this figure, Y is obtained by passing random variable X through a

function g(·).

Furthermore, if X is a discrete random variable, then so is Y . The set of

possible values Y can take is denoted by g(X(Ω)), and the number of elements

in g(X(Ω)) is no greater than the number of elements in X(Ω). The PMF of

Y , which we represent by pY (·), is obtained as follows. If y ∈ g(X(Ω)) then

pY (y) =
∑

{x∈X(Ω)|g(x)=y}
pX(x); (5.4)

otherwise, pY (y) = 0. In particular, pY (y) is non-zero only if there exists an

x ∈ X(Ω) such that g(x) = y and pX(x) > 0.

Example 42. Let X be a random variable and let Y = g(X) = aX + b, where

a and b are constant. That is, Y is an affine function of X. Suppose that
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a 6= 0, then the probability of Y being equal to value y is given by

pY (y) = pX

(

y − b

a

)

.

Linear and affine functions of random variables are commonplace in applied

probability and engineering.

Example 43. A taxi driver works in New York City. The distance of a ride

with a typical client is a discrete uniform random variable taking value over

X(Ω) = {1, 2, . . . , 10}. The metered rate of fare, according to city rules, is

$2.50 upon entry and $0.40 for each additional unit (one-fifth of a mile). We

wish to find the PMF of Y , the value of a typical fare.

Traveling one mile is five units and costs an extra $2.00. The smallest

possible fare is therefore $4.50, with probability 1/10. Similarly, a ride of X

miles will generate a revenue of Y = 2.5 + 2X dollars for the cab driver. The

PMF of Y is thus given by

pY (2.5 + 2k) =
1

10

for k = 1, 2, . . . , 10; and it is necessarily zero for any other argument.
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