
Appendix A

Optional Topics

A.1 Dealing with Infinity*

A.1.1 The Axiom of Choice

The axiom of choice, formulated by Zermelo in 1904, is innocent-looking. How-

ever, one can prove theorems with its aid that some mathematicians were originally

reluctant to accept in the past.

Definition A.1.1 (The Axiom of Choice). Given a collectionX of disjoint nonempty

sets, there exists a set C having exactly one element in common with each element

of X . That is, for each X ∈ X the set C ∩X contains a single element.

Most mathematicians today accept the axiom of choice as part of the set theory

on which they base their mathematics. A straightforward consequence of the axiom

of choice is the existence of a choice function.

Lemma A.1.2 (Existence of a Choice Function). Given a collection Y of non-empty

sets, there exists a function

c : Y →
⋃
Y ∈Y

Y

satisfying c(Y ) ∈ Y for every Y ∈ Y .

Proof. The difference between the axiom of choice and the lemma is that in the

latter statement the sets of the collection Y need not be disjoint. Given an element

Y ∈ Y , define the set Y ′ by

Y ′ = {(Y, y) |y ∈ Y } .
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That is, Y ′ is the collection of all ordered pairs where the first coordinate of the

ordered pair is the set Y , and the second coordinate is an element of Y . Because Y

contains at least one element, the set Y ′ is nonempty. Furthermore, Y ′ is a subset

of the cartesian product

Y ×
⋃
Y ∈Y

Y.

If Y1 and Y2 are two different sets in Y , then the sets Y ′1 and Y ′2 are disjoint; specif-

ically, the elements of Y ′1 and Y ′2 differ at least in their first coordinates.

Consider the collection

Z = {Y ′|Y ∈ Y} .

This is a collection of disjoint nonempty subsets of

Y ×
⋃
Y ∈Y

Y.

By the axiom of choice, there exists a set Z having exactly one element in common

with each element of Z . Define the function

c : Z → Y ×
⋃
Y ∈Y

Y

by c (Y ′) = Y ′ ∩Z. This function c implicitly provides the rule for a function from

Y to the set
⋃
Y ∈Y Y such that y belongs to Y whenever (Y, y) ∈ Z. This rule is the

desired choice function.

A.1.2 Well-Ordered Sets

A simple order < on a set X is a relation such that, for all x, y, z ∈ X ,

1. if x 6= y then either x < y or y < x

2. if x < y then x 6= y

3. if x < y and y < z then x < z.

Definition A.1.3. A set X with an order relation < is said to be well-ordered if

every nonempty subset of X has a smallest element.

The set of natural numbers, for example, is well-ordered. On the other hand, the

set of integers is not well-ordered.
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Fact A.1.4 (Well-ordering theorem). If X is a set, there exists an order relation on

X that is a well-ordering.

This theorem was proved by Zermelo using the axiom of choice. It startled the

mathematical community in 1904 and spurred much controversy about the axiom

of choice. It is given here without a proof.

Corollary A.1.5. There exists an uncountable well-ordered set.

Definition A.1.6. Let X be an ordered set. Given x ∈ X , the set

Yx = {y ∈ Y |y < x}

is called the section of X by x.

Corollary A.1.7. There exists an uncountable well-ordered set, every section of

which is countable.

The well-ordering principle is a necessary tool in proofs by induction when

the set over which the induction process is applied is not a segment of the natural

numbers; this is the so-called transfinite induction.

A.1.3 The Maximum Principle

A strict partial order ≺ on a set X is a relation such that for all x, y, z ∈ X

1. if x ≺ y then x 6= y

2. if x ≺ y and y ≺ z then x ≺ z.

A strict partial order is similar to a simple order, except that it need not be true

that for every distinct x, y ∈ X , either x ≺ y or y ≺ x.

Fact A.1.8 (The maximum principle). Let X be a set and suppose that ≺ is a strict

partial order on X . If Y is a subset of X that is simply ordered by ≺, then there

exists a maximal simply ordered subset Z of X containing Y .

The maximum principle is given here without a proof. It is interesting to note

that the well-ordering theorem and the maximum principle are equivalent; either of
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them implies the other. Furthermore, each of them is equivalent to the axiom of

choice.

Let ≺ be a strict partial order on X . For x, y ∈ X , the relation x � y holds if

x ≺ y or x = y. The relation � so defined is called a partial order on X . For

example, the inclusion relation ⊂ on a collection of sets is a partial order, whereas

proper inclusion is a strict partial order.


