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1 Performance of Codes

1.1 Notation
• X ,Y,S Sets are denoted by calligraphic letters

• X,Y, Z Random variables are denoted by capital letters

• Xi, xi Single elements of vectors are denoted by a subscript index

• Xj
i , x

j
i The interval subvectors (i.e., Xi, Xi+1, . . . , Xj) of a vector

• X,x Complete vectors are denoted by underlines

1.2 Optimal Decoding Rules
Let X be an arbitrary alphabet and C ⊂ Xn be a length-n code. Assume a random codeword Xn

1 ∈ C
is chosen with probability p (Xn

1 ) and transmitted through a DMC with transition probability W (y|x).
For sequences, the conditional probability of the observed sequence Y n1 ∈ Yn is given by

Pr (Y n1 = yn1 |Xn
1 = xn1 ) ,W (yn1 |xn1 ) =

n∏
i=1

W (yi|xi) .

Choosing the codeword xn1 ∈ C which maximizes Pr(Xn
1 = xn1 |Y n1 = yn1 ) is known as maximum a

posteriori (MAP) decoding and this minimizes the probability of block error. Using Bayes’s rule, we
find that

Pr (Xn
1 = xn1 |Y n1 = yn1 ) =

p (xn1 )W (yn1 |xn1 )∑
x̃n1∈C

p (x̃n1 )W (yn1 |x̃n1 )
.

Since the denominator is a constant for all xn1 , we find that

DMAP (yn1 ) = arg max
xn1∈C

p (xn1 )W (yn1 |xn1 ) .

The maximum likelihood (ML) decoding rule is defined as

DML (yn1 ) = arg max
xn1∈C

W (yn1 |xn1 ) .

Notice that DMAP (yn1 ) = DMAP (yn1 ) if p (xn1 ) =
1
|C| is a constant for all xn1 ∈ C. Therefore, ML decoding

is optimal for equiprobable transmission.
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1.3 Maximum Likelihood Decoding
The ML decoding rule implicitly divides the received vectors into decoding regions known as Voronoi
regions. The Voronoi region (i.e., decision region) for the codeword xn1 ∈ C is the subset of Yn defined
by

V (xn1 ) , {yn1 ∈ Yn|W (yn1 |xn1 ) > W (yn1 |x̃n1 ) ∀ x̃n1 ∈ C, x̃n1 6= xn1} .
In this case, the average probability of block error is given by

PB = 1−
∑
xn1∈C

1

|C|
∑

yn1 ∈V (xn1 )

W (yn1 |xn1 ) .

It is worth noting that this formula breaks down if ties may occur. This can be rectified by directing
the ML decoder to choose a codeword randomly in this case. In this case, the above expression for PB
only gives an upper bound.

1.4 Channel Symmetry and Linear Codes
In many cases, the channel satisfies a symmetry condition that allows us to simplify things. For simplicity,
we will assume that X forms an Abelian group under “+” and that the channel symmetry is defined
by W (y|x + z) = W (πz(y)|x) for a set of Y-permutations πx indexed by x ∈ X . Each permutation is
a one-to-one mapping πx : Y → Y that satisfies πx+z(y) = πx(πz(y)) = πz(πx(y)) and therefore the
set of permutations forms a group which is isomorphic to X . This type of channel is known as output
symmetric. We extend this symmetry to length-n sequences by defining

W (yn1 |xn1 + zn1 ) =W
(
πzn1 (yn1 ) |xn1

)
,

n∏
i=1

W (πzi (yi) |xi)

with πzn1 (y
n
1 ) , (πz1(y1), πz2(y2), . . . , πzn(yn)). It is worth noting that this symmetry condition is suffi-

cient to imply that a uniform input distribution achieves the capacity of this DMC.

Example. Consider the BSC where X = {0, 1}, Y = {0, 1}, and

W (y|x) =

{
p if x 6= y

1− p if x = y.

Then, π0(y) = y and π1(y) = y defines the natural symmetry of the channel.

Example. Consider the binary-input AWGN channel where X = {0, 1}, Y = R, and Y ∼ N
(
(−1)x, σ2

)
.

Although this is not a DMC, similar results hold when sums are replaced by integrals. In this case,
π0(y) = y and π1(y) = −y defines the natural symmetry of the channel.

If the code is also a group code (i.e., sum of any two codewords is a codeword), then the Voronoi
region of any codeword can be written as a transformation of V (0) with

V (0+ xn1 ) = {yn1 ∈ Yn|W (yn1 |0 + xn1 ) > W (yn1 |x̃n1 ) ∀ x̃n1 ∈ C, x̃n1 6= 0+ xn1}
=
{
yn1 ∈ Yn|W

(
πxn1 (yn1 ) |0

)
> W

(
πxn1 (yn1 ) |x̃n1 − xn1

)
∀ x̃n1 ∈ C, x̃n1 6= 0+ xn1

}
=
{
yn1 ∈ Yn|W

(
πxn1 (yn1 ) |0

)
> W

(
πxn1 (yn1 ) |0

)
∀ zn1 ∈ C, zn1 6= 0

}
.

= π−1xn1 (V (0)) .

The last step follows from the fact that yn1 ∈ V (xn1 ) implies that πxn1 (yn1 ) ∈ V (0). We can also use this
to simplify the probability of block error to

PB = 1−
∑
xn1∈C

1

|C|
∑

yn1 ∈V (xn1 )

W (yn1 |xn1 )

= 1−
∑
xn1∈C

1

|C|
∑

yn1 ∈π
−1
xn1

(V (0))

W
(
πxn1 (yn1 ) |0

)
= 1−

∑
yn1 ∈V (0)

W (yn1 |0) .
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This shows that the probability of ML decoding error for a group code over an output-symmetric channel
is independent of the transmitted codeword.

1.5 The Pairwise Error Probability (PEP)
1.5.1 Discrete Memoryless Channels

Since computing the exact probability of error requires extensive knowledge of the code, it is often useful
to have bounds that are easier to compute. The basis of many of these bounds is the pairwise error
probability (PEP) between any two codewords. The PEP, denoted P (xn1 → x̃n1 ), is the probability that
the ML decoder chooses x̃n1 when xn1 was transmitted. This probability can be written as

P (xn1 → x̃n1 ) =
∑

yn1 ∈Yn
W (yn1 |xn1 ) I (W (yn1 |xn1 ) ≤W (yn1 |x̃n1 )) ,

where I(E) is the indicator function for the event E (i.e., it equals 1 if the argument is true and 0
otherwise). The indicator function is upper bounded by

I (W (yn1 |xn1 ) ≤W (yn1 |x̃n1 )) ≤
(
W (yn1 |x̃n1 )
W (yn1 |xn1 )

)s
,

for any s ∈ [0, 1], because the LHS is zero if the RHS is less than one and the LHS is one when the
RHS is greater than one. In general, the best bound is found by minimizing over s. For binary-input
symmetric-output channels, the minimum occurs at s = 1/2 and the implied bound is

P (xn1 → x̃n1 ) =
∑

yn1 ∈Yn
W (yn1 |xn1 )

(
W (yn1 |x̃n1 )
W (yn1 |xn1 )

)1/2

=

n∏
i=1

∑
yi∈Y

√
W (yi|xi)W (yi|x̃i)

=

dH(xn1 ,x̃
n
1 )∏

i=1

∑
y∈Y

√
W (y|0)W (y|1),

because the sum is one if xi = x̃i. This bound is known as the Bhattacharyya bound and is typically
written as

P (xn1 → x̃n1 ) ≤ γdH(xn1 ,x̃
n
1 ),

where γ =
∑
y∈Y

√
W (y|0)W (y|1) is the Bhattacharyya constant of the channel. For the BSC channel,

this gives γBSC = 2
√
p(1− p). For the binary-input AWGN (BIAWGN) channel with energy per symbol

Es and noise spectral density N0, we have

W (y|x) = (πN0)
−1/2e−(y−

√
Es(−1)x)2/N0

and

γBIAWGN =

∫ ∞
−∞

(πN0)
−1/2

[
e−(y−

√
Es)

2/N0e−(y+
√
Es)

2/N0

]1/2
dy

=

∫ ∞
−∞

(πN0)
−1/2e−(y

2+Es)/N0dy = e−Es/N0 .

It is also known that γ is the best possible constant for bounds of the form γdH .

1.5.2 The AWGN Channel

If the channel consists of a modulator M (xn1 ) → Rn and zero-mean AWGN with variance σ2 per-
dimension, then the PEP can be computed exactly. In this case, the memoryless channel (it is no longer
discrete) is defined by the conditional p.d.f.

W (yn1 |xn1 ) =
(
2πσ2

)−n/2
e−

1
2σ2
‖yn1−M(xn1 )‖

2

.
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Since the p.d.f. depends only on the distance between the received and transmitted vectors, we find
that the ML decoder picks the codeword whose transmitted vector is closest to the received vector. To
analyze this, we can project the received vector yn1 onto the difference vector wn1 =M (x̃n1 )−M (xn1 ) to
get the decision variable

Z =

∑n
i=1 wiYi√∑n
i=1 w

2
i

.

One can verify that Z is a zero-mean Gaussian random variable with variance σ2. Furthermore, the
decoder will make an error if an only if Z ≥ ‖wn1 ‖ /2 (i.e., the received vector is closer to x̃n1 than xn1 ).
This allows us to rewrite the PEP as

P (xn1 → x̃n1 ) =

∫ ∞
−∞

dy1

∫ ∞
−∞

dy2 · · ·
∫ ∞
−∞

dynW (yn1 |xn1 ) I (W (yn1 |xn1 ) ≤W (yn1 |x̃n1 ))

=

∫ ∞
−∞

dy1

∫ ∞
−∞

dy2 · · ·
∫ ∞
−∞

dynW (yn1 |xn1 ) I (‖yn1 −M (xn1 )‖ ≥ ‖yn1 −M (x̃n1 )‖)

=

∫ ∞
−∞

fZ(z) I

(
z ≥ 1

2
‖M (x̃n1 )−M (xn1 )‖

)
dz

=
1√
2πσ2

∫ ∞
‖M(x̃n1 )−M(xn1 )‖/2

e−z
2/(2σ2)dz.

A change of variables shows that this integral is equal to

P (xn1 → x̃n1 ) = Q

(
1

2σ
‖M (x̃n1 )−M (xn1 )‖

)
,

where Q(α) = 1√
2π

∫∞
α
e−z

2/2dz is the tail probability of zero-mean unit-variance Gaussian.
Recall that the binary-input AWGN channel with M(x) =

√
Es(−1)x has energy per transmitted

symbol Es and noise spectral densityN0 = 2σ2. Therefore, the Euclidean distance is‖M (x̃n1 )−M (xn1 )‖
2
=

4EsdH (xn1 , x̃
n
1 ). Substituting these into our expression gives

P (xn1 → x̃n1 ) = Q

(√
2 dH (xn1 , x̃

n
1 ) Es/N0

)
.

Applying the standard bound, Q(α) ≤ e−α
2/2, to the Q-function gives an alternate proof of the Bhat-

tacharyya bound for AWGN.

1.6 The Union Bound
Since every decoding error is caused a by pairwise error, we find that

PB ≤
∑
xn1∈C

1

|C|
∑

x̃n1∈C, x̃n1 6=xn1

P (xn1 → x̃n1 ) .

This is only an upper bound because the received vector may be closer to two other codewords than it is
to the transmitted codeword, and this causes “overcounting” of the error probability. If we assume that
the code is linear and that the PEP is a function f(h) of the Hamming distance h, then we get

PB ≤
∑
xn1∈C

1

|C|
∑

x̃n1∈C, x̃n1 6=xn1

f (dH (xn1 , x̃
n
1 ))

=
∑
xn1∈C

1

|C|
∑

x̃n1∈C, x̃n1 6=0

f (dH (0, x̃n1 ))

=
∑

x̃n1∈C, x̃n1 6=0

f (dH (0, x̃n1 ))

=

n∑
h=1

Ahf(h),
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where Ah is the number of codewords of weight h. For binary codes, the function f is either chosen
to be Q

(√
2hEs/N0

)
(for the AWGN channel) or γh (for an arbitrary DMC with γ equal to the

Bhattacharyya constant). In this case, the weight enumerator (WE) is often given in the polynomial
form, A(H) =

∑
h≥0AhH

h, and we can use the Bhattacharyya bound (i.e., f(h) ≤ γh) to write

PB ≤ A(γ)− 1.

Example. The [7,4,3] Hamming code has the WE A(H) = 1+7H3 +7H4 +H7. This implies that ML
decoding of this code on the BIAWGN channel has a block error probability which satisfies

PB ≤ 7e−3Es/N0 + 7e−4Es/N0 + e−7Es/N0 .

1.7 Bit Error Probability
In many cases, we are interested not only in the probability of block error PB but also in the probability
of bit error Pb (or symbol error Ps for non-binary codes). To compute Pb we need to compute the average
number of message bit (or symbol) errors that occur as the result of a block error. Let E : Uk → Xn be
an encoder which maps any length k input sequence to a length n output sequence. Consider any two
input-output pairs, xn1 = E

(
uk1
)
and x̃n1 = E

(
ũk1
)
, and notice that the pairwise error xn1 → x̃n1 implies

the message error un1 → ũn1 and produces dH
(
ũk1 , u

k
1

)
symbol errors in the decoded message. Using the

union bound, we can bound Ps with

Ps ≤
∑
uk1∈Uk

1

|U|k
∑

ũk1∈Uk, ũk1 6=uk1

P (E(un1 )→ E(ũn1 ))
dH
(
ũk1 , u

k
1

)
k

.

While this quantity can be computed or bounded for any code, it can be simplified for codes with
linear encoders. Now, we will assume that U has a field structure and that E is linear so that, for
α, β ∈ U ,

E
(
αuk1 + βũk1

)
= αE

(
uk1
)
+ β E

(
ũk1
)
.

In this case, the linearity implies that x̃n1 − xn1 = E
(
ũk1 − uk1

)
and that the pairwise error xn1 → x̃n1

produces wH
(
ũk1 − uk1

)
symbol errors in the decoded message. If we also assume that the PEP is a

function f(h) of the Hamming distance h, then we can write

Ps ≤
∑
uk1∈Uk

1

|U|k
∑

ũk1∈Uk, ũk1 6=uk1

f
(
wH

(
E(uk1)− E(ũk1)

)) wH (ũk1 − uk1)
k

=
∑

ũk1∈Uk, ũk1 6=0

f
(
wH

(
E(ũk1)

)) wH (ũk1)
k

=

k∑
w=1

n∑
h=1

Aw,hf(h)
w

k
,

where the input-ouput weight-enumerator (IOWE), Aw,h, is the number of codewords with input weight
w and output weight h. The IOWE of a linear code is often given in polynomial form as A(W,H) =∑k
w=1

∑n
h=1Aw,hW

wHh. For binary codes, we can therefore use the Bhattacharyya bound (i.e., f(h) ≤
γh) to write

Pb ≤
1

k

[
d

dW
A(W,γ)

]
W=1

.

Example. One encoder for the [7,4,3] Hamming code has the IOWE A(W,H) = 1 + (3W + 3W 2 +
W 3)H3 + (W +3W 2 +3W 3)H4 +W 4H7. This implies that ML decoding of this code on the BIAWGN
channel has a block error probability which satisfies

Pb ≤
12

4
e−3Es/N0 +

16

4
e−4Es/N0 +

4

4
e−7Es/N0 .
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