
            

On exponential error bounds for random codes on the BSC

G. David Forney, Jr.

1 Introduction

In this note we will revisit the development of exponential error bounds for random codes on
the binary symmetric channel (BSC).

This is a very old problem, whose solution has been well known since the classic work of
Shannon [S48], Elias [E55, E56], Fano [F61] and Gallager [G63, G65, G68]. However, some
features of this solution that were doubtless known to these early researchers do not appear in
standard texts such as [G68], [B87] or [CT91], and appear to be little known today. As the
development of “random-like” capacity-approaching codes has reawakened interest in this topic,
our aim is to provide a clean, modern development that would not be inappropriate in a first
course on information theory and coding.

1.1 Random code ensembles and typical codes

In this section we introduce the appropriate random code ensemble (RCE) for the BSC, and also
the random linear code ensemble (LCE). We then discuss the properties of the typical linear
code (TRC) from the RCE, and the typical linear code (TLC) from the LCE. In particular, we
note that whereas the distance distributions of the RCE or LCE and the TLC are exponentially
identical for distances above the Gilbert-Varshamov (GV) distance, they are radically different
below the GV distance.

Shannon [S48] introduced the idea of a random code ensemble in which every symbol in every
codeword is chosen independently at random according to some input distribution p(x).

On the BSC, the input alphabet is binary, and by symmetry the optimum input distribution
is equiprobable. A binary code of length N and rate R is a set of M = eNR binary N -tuples.
In a binary equiprobable random code ensemble of length N and rate R, the variables are the

NM binary symbols {x(i)
k , 1 ≤ i ≤ N} of the M = eNR codewords {x(i), 0 ≤ i ≤ M − 1},

which are independent and identically distributed (iid) random variables chosen according to an
equiprobable {1

2 ,
1
2} distribution.

In this case the probability that a given random codeword x of length N will be at Hamming
distance d = Nδ from an arbitrary binary N -tuple b is

Pr{dH(x,b) = d} =

(
N

d

)(
1

2

)d(1

2

)N−d
≈ e−ND(δ|| 1

2
),

where the exponent D(δ||12) is the Kullback-Leibler (KL) divergence

D(δ||1
2

) = δ log
δ
1
2

+ (1− δ) log
1− δ

1
2

,

logarithms are natural, and the symbol “≈” denotes exponential equality; i.e.,

lim
N→∞

− 1

N
log Pr{dH(x,b) = d} = D(δ||1

2
).
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By the general properties of divergences, the exponent D(δ||12) is strictly convex and has a
minimum of 0 at δ = 1

2 . It may alternatively be written as

D(δ||1
2

) = log 2−H(δ),

where H(δ) = −δ log δ − (1− δ) log(1− δ) is the entropy of a binary variable with probabilities
{δ, 1− δ}.

Let x be an arbitrary codeword, and let N (δ) denote the average number of the remaining
M − 1 ≈ eNR codewords x′ such that dH(x′,x) = Nδ. Then

N (δ) = (M − 1) Pr{dH(x′,x) = Nδ} ≈ eN(R−D(δ|| 1
2

)). (1.1)

The exponent R−D(δ||12) of N (δ) is plotted in Figure 1. It is strictly concave and symmetrical
about δ = 1

2 . It is nonnegative for δGV(R) ≤ δ ≤ 1
2 , where the (relative) Gilbert-Varshamov

distance δGV(R) is defined as the δ ≤ 1
2 at which the exponent is 0; i.e., as the solution of

D(δGV(R)||1
2

) = R. (1.2)

It is negative for 0 ≤ δ < δGV(R).

0 δGV(R) 1
2 1

R

tlcrce

Figure 1. Exponents of average distance distribution N (δ) for random code ensemble (RCE)
and of typical distance distribution Ntyp(δ) for typical linear code (TLC).

If we choose a code at random from the random code ensemble, then for δGV(R) ≤ δ ≤ 1
2 it is

highly likely that there will be Ntyp(δ) ≈ N (δ) codewords x′ at distance Nδ from an arbitrary
codeword x. On the other hand, for 0 ≤ δ < δGV(R), it is highly likely that there will be no
codewords at distance Nδ from an arbitrary codeword x; i.e., Ntyp(δ) = 0. Therefore in Figure
1 we indicate that the exponent of Ntyp(δ) goes to −∞ below δGV(R). In short, it is highly
likely that in a typical random code the minimum distance between an arbitrary codeword and
all other codewords will be NδGV(R). For δGV(R) ≤ δ ≤ 1

2 , there will almost certainly be
exponentially many codewords at distance Nδ.

Notice that the distribution considered here is not the usual distance distribution of a code,
but rather the distance distribution from a given codeword (or from any random binary word) to
all other codewords. For our development of RCE bounds, this will actually be the distribution
of interest. For random linear codes, we get the same distribution, and moreover the distance
distribution from a given codeword is also the distance distribution from every codeword.

For our typical code bounds, we will restrict consideration to linear codes in order to ensure
that the typical distance distribution Ntyp(δ) is the same for all codewords. Typical random
codes do not have this property. In fact, as Barg has recently shown [B01b], whereas the typical
minimum distance from a given codeword in a random code is NδGV(R), as shown in Figure 1,
the typical minimum distance of the whole random code is much less than NδGV(R).
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In our subsequent development, we will find the correct error exponents ERCE(R) and ETLC(R)
for the random code ensemble and typical linear code, respectively. We will find that the
difference in distance distribution exponents illustrated in Figure 1 is reflected in a difference
between ERCE(R) and ETLC(R), but only at low rates.

1.2 Summary of results and remarks

For the benefit of the reader who may be wondering what of interest can possibly be said at
this date about this old problem, we now summarize our main results and remarks. We do
not believe that any of them are new, but on the other hand we believe that most experts in
information theory and coding will not have previously appreciated at least some of these points.

1. It is easy to find the correct error exponent ERCE(R) of the RCE via an output-centered
analysis that does not explicitly involve the distance distribution N (δ). The correct exponent
is given by

ERCE(R) =

{
R0 −R, 0 ≤ R ≤ Rcrit;
Esp(R), Rcrit ≤ R ≤ C, (1.3)

where R0 = log 2− log(1 + 2
√
p(1− p)) is the pairwise error exponent of a BSC with crossover

probability p, Rcrit is the rate at which δGV(Rcrit) = τcrit(p) (given below in (1.8)), Esp(R)
denotes the so-called sphere-packing exponent,

Esp(R) = D(δGV(R)||p), (1.4)

and C (the channel capacity) is the rate at which δGV(C) = p and thus Esp(C) = 0.

The main points here are:

• The simplicity of the development.

• The fact that the resulting exponent, which is usually characterized as a lower bound on
the error exponent of the best possible code (the “reliability function” of the BSC), is in
fact the correct error exponent for the RCE. This fact was pointed out by Gallager in
[G73], but not in his classic text [G68].

• The breakpoint at Rcrit. For Rcrit ≤ R ≤ C, the error probability is dominated by the
probability that the number Nτ of channel errors equals or exceeds NδGV(R), in which
case the number of incorrect codewords at no greater distance from the received codeword
becomes exponentially large. For 0 ≤ R ≤ Rcrit, on the other hand, the error probability is
dominated by the probability that there will be Nτcrit(p) channel errors and that a single
incorrect codeword will be at the same distance from the received word.

2. The correct error exponent ETLC(R) of the TLC may be found by an input-centered
analysis that involves the typical distance distribution Ntyp(δ), combined with a demonstration
that ETLC(R) = ERCE(R) at rates R ≥ Rx. The correct exponent is given by

ETLC(R) =





Ex(R), 0 ≤ R ≤ Rx,
R0 −R, Rx ≤ R ≤ Rcrit;
Esp(R), Rcrit ≤ R ≤ C,

(1.5)

where Ex(R) is the so-called expurgated exponent given by Ex(R) = δGV(R)D(1
2 ||p), Rx is the

rate at which δGV(Rx) = δcrit(p) (given below in (1.11)), and the rest is as before.

The main points here are:
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• The exponent is correct for the TLC and not just a bound;

• The development is best based on the output-centered RCE development when R > Rx;

• The only rate interval for which the improved distance distribution of the TLC improves
the bound is 0 ≤ R < Rx. We will elaborate on this point below.

The exponents ERCE(R) and ETLC(R) are illustrated in Figure 2.

@
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@
@

@
@@

0 Rx Rcrit C

ETLC(R)

ERCE(R)

R0 −R

Esp(R)

Figure 2. Exponents ERCE(R) and ETLC(R).

3. For both the RCE and the TLC, given that a decoding error event occurs, we compute
the typical distances between the transmitted (correct) codeword x, the received word y, and
the decoded (incorrect) codeword x′. The typical distance d(x,x′) is denoted by Nδtyp, and
the typical distance d(x,y) = d(x′,y) (or, equivalently, the typical number of channel errors) is
denoted by Nτtyp. The relative distances δtyp and τtyp are illustrated in Figure 3.
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Figure 3. Typical relative distances, given a decoding error, between transmitted (correct)
codeword x, received word y, and decoded (incorrect) codeword x′.

For the RCE, we find from the output-centered analysis that

τtyp =

{
τcrit(p), 0 ≤ R ≤ Rcrit;
δGV(R), Rcrit ≤ R ≤ C;

(1.6)

δtyp = 2τtyp(1− τtyp), (1.7)

where

τcrit(p) =

√
p

√
p+
√

1− p, (1.8)

and Rcrit is again the rate at which δGV(Rcrit) = τcrit(p).

For the TLC, we find from the input-centered analysis that for 0 ≤ R ≤ Rcrit we have

δtyp =

{
δGV(R), 0 ≤ R ≤ Rx;
δcrit(p), Rx ≤ R ≤ Rcrit;

(1.9)

τtyp =
δtyp

2
+ p(1− δtyp), (1.10)
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where

δcrit(p) =
2
√
p(1− p)

1 + 2
√
p(1− p)

, (1.11)

and Rx is again the rate at which δGV(Rx) = δcrit(p). For Rx ≤ R ≤ Rcrit, these are actually
the same as the results for the RCE, although they look quite different. For Rcrit ≤ R ≤ C, the
results are also the same as the results for the RCE.

The typical relative distances τtyp and δtyp are illustrated in Figure 4 as a function of R for
both the RCE and the TLC, along with the Gilbert-Varshamov relative distance δGV(R).

0 Rx Rcrit C

δcrit

τcrit

δGV δtyp
τtyp

δtyp,TLC

τtyp,TLC

Figure 4. Typical relative distances τtyp and δtyp for the RCE and the TLC, with
Gilbert-Varshamov relative distance δGV(R).

It is interesting to note that the two expressions δcrit(p) = 2τcrit(p)(1− τcrit(p)) and τcrit(p) =
δcrit(p)/2 + p(1− δcrit(p)), which from (1.7) and (1.10) hold simultaneously in the rate interval
Rx ≤ R ≤ Rcrit, suffice to determine both τcrit(p) and δcrit(p) via a simple quadratic equation.

A typical linear code has a minimum distance of NδGV(R) between the transmitted codeword
and all other codewords. Notice that decoding errors are typically made to minimum-distance
codewords only at rates R ≤ Rx. In other words, the improved minimum distance of the TLC
over the RCE has an effect only at rates R ≤ Rx; this is why their error exponents differ only
in this low-rate region. For rates R > Rx, typical decoding errors are to incorrect codewords
at relative distances δtyp > δGV(R). The fact that the minimum distance is important only for
rates R ≤ Rx, also noted recently by Barg [B01a], does not seem to be widely known; indeed,
the literature generally suggests that minimum distance may be important for rates R ≤ Rcrit,
the interval over which the usual union bound gives the correct RCE error exponent.1

4. We also find the correct error exponent ERCE,L(R) of the RCE with list-of-L decoding via
a similar analysis. The correct exponent is given by

ERCE,L(R) =

{
R0,L − LR, 0 ≤ R ≤ Rcrit,L;
Esp(R), Rcrit,L ≤ R ≤ C, (1.12)

where R0,L is an exponent to be defined later, Rcrit,L is the rate at which

δGV(Rcrit,L) = τcrit,L(p) =
p1/(1+L)

p1/(1+L) + (1− p)1/(1+L)
,

1For instance, in his 1987 information theory text [B87, pp. 186-187], Blahut says:

Speaking very loosely, and only from the nature of these bounds [on the reliability function], it
appears that the performance of good codes of large blocklength has a different cause above Rcrit

than below. Below Rcrit, the average probability of error of a code is dominated by the fact that a
typical codeword has a few neighboring codewords with which it is often confused. Then it seems
important to design the code so that all codewords are far apart in the sense of a distance known
as Bhattacharyya distance [which is equivalent to Hamming distance for the BSC].
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and Esp(R) is again the sphere-packing exponent of (1.4).

The main points here are:

• Again, the resulting exponent is in fact the correct list-of-L exponent for the RCE.

• The breakpoint Rcrit,L decreases monotonically with increasing L, and approaches 0 for
large L. Thus with list-of-L decoding we can follow the sphere-packing exponent down to
as low a rate as we like. (In practice, the list size L does not need to become very large.)

• The fact that list-of-2 decoding improves the exponent for rates 0 ≤ R < Rcrit proves that
in this rate interval, given an ordinary decoding error event, it is highly likely that there
is only one incorrect codeword closer to the received word than the correct codeword.

• On the other hand, no matter how large L is, the list-of-L error exponent is no better
than that of ordinary decoding for rates Rcrit ≤ R ≤ C. This confirms that in this rate
interval, given an ordinary decoding error event, it becomes highly likely as N →∞ that
the number of incorrect codewords closer to the received word than to the correct codeword
will be larger than any finite L.

5. Finally, we connect these bounds with the well-known parametric bounds of Gallager [G65],
[G68]. In particular, we characterize Gallager’s parameter ρ as a Lagrange multiplier, and
show that the sphere-packing exponent of (1.4) may be written as a dual convex maximization
problem, as follows:

Esp(R) = max
ρ>0

E0(ρ)− ρR, (1.13)

where

E0(ρ) = ρ log 2− log
(
p1/(1+ρ) + (1− p)1/(1+ρ)

)1+ρ
(1.14)

is Gallager’s function for a BSC with crossover probability p. Similarly,

ERCE(R) = max
0<ρ≤1

E0(ρ)− ρR; (1.15)

ERCE,L(R) = max
0<ρ≤L

E0(ρ)− ρR. (1.16)

The main point here is that the parameter ρ appears naturally as a Lagrange multiplier, as it
often does in convex optimization problems, whereas Gallager introduces ρ without motivation.

2 Analysis of random codes on the BSC

A binary code C of length N and rate R nats per symbol is a set of M = eNR codewords
{x(i) ∈ (F2)N , 0 ≤ i ≤M − 1}.

In Shannon’s random code ensemble (RCE), each symbol of each codeword x(i) ∈ C is chosen
independently at random according to an equiprobable {1

2 ,
1
2} distribution. It is helpful to think

of first choosing the codeword x(0) which is to be transmitted, which we will call the correct
codeword, and then choosing the other codewords x(1),x(2), . . . ,x(M−1), which we will call the
incorrect codewords. The receiver will be informed of the code C, but not of which word is
transmitted.
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The correct codeword x(0) is transmitted over a binary symmetric channel (BSC) with error
probability p. If the number of channel errors is t = Nτ , then the received word y will be at
Hamming distance Nτ from the correct codeword x(0).

The receiver decodes the received word y to the unique closest codeword x(i) ∈ C, if there is one.
A minimum-distance decoding error E occurs if the correct codeword x(0) is not the unique closest
codeword to y; i.e., if the minimum distance d = Nδ between y and any incorrect codeword
x(i) is less than or equal to Nτ . In other words, the decoding error event is E = {δ ≤ τ}.

2.1 Finding the correct exponent

We will start with an elementary analysis of the probability of error Pr(E) for this simple
RCE/BSC model. We will be interested in the case in which N is large, we will ignore integer
constraints, and we will be interested only in determining the correct exponent of quantities that
increase or decrease exponentially with N . The exponent of a quantity Q(N) that decreases
exponentially with N is defined as

EQ = lim
N→∞

− logQ(N)

N
,

where “log” denotes a natural logarithm. We express such an asymptotic equality by the notation

Q(N) ≈ e−NEQ .

For the RCE/BSC model, using an output-centered analysis, we need only two well-known
lemmas to find the correct exponent:

Lemma 2.1 (Chernoff exponent) The correct exponent for the probability that the sum of N
iid binary {0, 1}-valued {1 − p, p}-distributed random variables xi equals or exceeds a threshold
t = Nτ ≥ Np is the Kullback-Leibler (KL) divergence

D(τ ||p) = τ log
τ

p
+ (1− τ) log

1− τ
1− p ; (2.17)

i.e., if w(x) =
∑

i xi is the Hamming weight of x = (x1, . . . , xN ), then

Pr{w(x) ≥ Nτ} ≈ e−ND(τ ||p).

Similarly, if τ ≤ p, then
Pr{w(x) ≤ Nτ} ≈ e−ND(τ ||p).

As a function of τ in the range 0 < τ < 1, D(τ ||p) is analytic, strictly convex, and attains its
minimum of 0 at τ = p.

Lemma 2.2 (Union bound exponent) The correct exponent for the probability that any of
M ≈ eNR independent events occurs, each event having probability p ≈ e−NE with E > 0, is

EUB(R,E) = max{E −R, 0}. (2.18)

In other words,

1− (1− p)M ≈ e−NEUB(R,E) =

{
e−N(E−R), if E ≥ R;
1, if E ≤ R.
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2.2 Output-centered analysis

The RCE/BSC model is a system consisting of one correct codeword x(0), a received word y,
and a set of M − 1 ≈ eNR incorrect codewords x(i). The probability distribution of the whole
system factors as follows:

p(x(0),y, {x(i)}) = p(x(0),y)
∏

i

p(x(i));

i.e., the correct codeword x(0) and the received word y are dependent, but the incorrect code-
words are independent of x(0) and y.

Because we are concerned only with the distances of the codewords from y, it makes sense to
translate all codewords by y. We will call this an “output-centered analysis.”

The translated correct codeword is the channel noise word n = x(0) ⊕ y. The noise word n is
independent of y, and

p(n) = pw(n)(1− p)N−w(n),

where w(n) is the Hamming weight of n (the number t = Nτ of channel errors). All received
words y ∈ (F2)N are equiprobable: p(y) = 2−N .

The translated incorrect codewords z(i) = x(i)⊕y are still independent of y and equiprobable;
i.e., the statistics of the output-translated incorrect codeword set are identical to those of the
incorrect codeword set.

It therefore makes sense to think of the whole system as consisting of two independent subsys-
tems, one comprising the noise word n, and the other the output-translated incorrect codeword
set {z(i)}.

In summary, we now have one subsystem consisting of the noise word n, and a second inde-
pendent subsystem consisting of M − 1 ≈ eNR translated incorrect codewords z(i). A decoding
error event E = {δ ≤ τ} occurs if the weight Nτ of n is greater than or equal to the minimum
weight Nδ of the z(i). We can thus compute Pr{E} by computing the distributions of τ and δ
independently, and then comparing them.

2.3 The subsystem exponents

In the correct subsystem, the Hamming weight w(n) is the sum of N independent, identically
distributed (iid) random variables X with alphabet {0, 1} and probabilities {1− p, p}. Thus by
the Chernoff exponent lemma, for γ > p we have

Pr{w(n) = Nτ ≥ Nγ} ≈ e−ND(γ||p). (2.19)

where the exponent D(γ||p) is a strictly convex continuous function of γ whose value and deriva-
tive at γ = p are both equal to zero. Therefore for γ > p, D(γ||p) is strictly positive and has
strictly positive first and second derivatives.

The incorrect subsystem has M − 1 ≈ eNR independent translated incorrect codewords, each
of which has 2N equiprobable configurations z(i) ∈ (F2)N .

By the Chernoff exponent lemma, for γ < 1
2 , the probability that the Hamming weight w(z(i))

of a given translated incorrect codeword z(i) is less than or equal to Nγ is

Pr{w(z(i)) ≤ Nγ} ≈ e−ND(γ|| 1
2

).
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where the exponent D(γ||12) is a strictly convex function of γ whose value and derivative at
γ = 1

2 are both equal to zero. Therefore for γ < 1
2 , D(γ||12) is strictly positive and has a strictly

negative first derivative and a strictly positive second derivative.

The probability that the minimum translated incorrect codeword weight d = Nδ is less than
Nγ is the probability that any of the M − 1 ≈ eNR independent translated incorrect codewords
has weight less than Nγ. Therefore, by the union bound exponent lemma, the exponent of this
probability is

EUB(R, γ) =

{
D(γ||12)−R, D(γ||12) ≥ R,
0, D(γ||12) ≤ R. (2.20)

The breakpoint occurs at the γ for which D(γ||12) = R, which is called the (relative) Gilbert-
Varshamov distance δGV(R); i.e., D(δGV(R)||12) = R. Thus δGV(0) = 1

2 , and δGV(R) is strictly
decreasing and strictly convex as a function of R.

In summary,

Pr{min
i
w(z(i)) ≤ Nγ} ≈

{
e−N(D(γ|| 1

2
)−R), γ ≤ δGV(R),

1, γ ≥ δGV(R).
(2.21)

2.3.1 Weight distribution of translated incorrect codewords

It is instructive to consider also the average number N (γ) of translated incorrect codewords
with relative weight γ < 1

2 . Since there are M − 1 ≈ eNR incorrect codewords,

N (γ) ≈ eNRe−ND(γ|| 1
2

) = e−N(D(γ|| 1
2

)−R).

ThusN (γ) is exponentially large forR > D(γ||12), or equivalently γ > δGV(R), and exponentially
small when γ > δGV(R). (In fact, this is the same distribution as shown in Figure 1 for the
distance between the correct codeword and the incorrect codewords with the RCE.) Therefore
the minimum weight Nγ of the translated incorrect codewords is almost certain to be NδGV(R).

2.4 Channel capacity

We have now shown that the probability that the number w(n) = Nτ of channel errors is
greater than Nγ is exponentially small for γ > p, whereas it is almost 1 for γ < p. Similarly,
the probability that the minimum translated incorrect codeword weight miniw(z(i)) = Nδ is
less than Nγ is exponentially small for γ < δGV(R), whereas it is almost 1 for γ > δGV(R).

Consequently, if p < δGV(R), the probability of decoding error Pr(E) is exponentially small.
Indeed, let us take some γ such that p < γ < δGV(R), and use the following suboptimum
“typical-set” decoding rule: if there is a single codeword within distance Nγ of y, then decode
to it; otherwise decoding fails. Since the probability that w(n) ≥ Nγ is exponentially small and
the probability that miniw(z(i)) ≤ Nγ is also exponentially small, it is clear that the probability
of decoding error even with this suboptimal rule decreases exponentially with N .

On the other hand, if p > δGV(R), then for any γ such that p > γ > δGV(R), we have
Pr{w(n) ≥ Nγ} ≈ 1 and Pr{miniw(z(i)) ≤ Nγ} ≈ 1, so it is clear that Pr(E) ≈ 1.

The rate C at which p = δGV(C), namely C = log 2 − H(p), is called the channel capacity
of the BSC. We have thus shown that Pr(E) is exponentially small for R < C and Pr(E) ≈ 1
for R > C. Our next goal is the find the correct exponent when R < C, or equivalently when
δGV(R) > p.
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2.5 The correct exponent for the RCE/BSC model

Assuming that p < δGV(R), we wish to find the correct error exponent for Pr(E) = Pr{τ ≥ δ}.
We shall say that an error event Eγ of type γ occurs if τ ≥ γ and δ ≤ γ. Since these two
events are independent with exponents given in (2.19) and (2.21), respectively, the joint error
probability for Eγ has the joint exponent

Eγ = D(γ||p) + Ei(γ) =

{
D(γ||p) +D(γ||12)−R, p < γ ≤ δGV(R);
D(γ||p), γ ≥ δGV(R).

The dominating exponent will therefore be

ERCE(R) = min
p<γ≤δGV(R)

D(γ||p) +D(γ||1
2

)−R.

and we will then have
Pr(E) ≈ e−NERCE(R).

In the range p < γ ≤ δGV(R) ≤ 1
2 , we know that D(γ||p) is strictly convex, positive, and

strictly increasing as a function of γ, whereas D(γ||12) is strictly convex, positive, and strictly
decreasing as a function of γ. The minimum of Eγ therefore occurs either at the γ for which
D(γ||p) + D(γ||12) is minimum, which we will call τcrit, or at the breakpoint γ = δGV(R), if
τcrit ≥ δGV(R). We can evaluate τcrit by solving D′(τcrit||p) = −D′(τcrit||12), which yields (1.8):

τcrit =

√
p

√
p+
√

1− p.

Finally, we define Rcrit as the rate that satisfies τcrit = δGV(Rcrit).

To illustrate this minimization, we plot in Figure 1 the two exponents

EI(γ) = D(γ||p);
EII(γ) = D(γ||p) +D(γ||1

2
)−R,

versus γ for R > Rcrit, R = Rcrit, and R < Rcrit. These two exponents are equal at γ = δGV(R),
and Eγ is equal to their maximum.

τcritδGV(R)

EI(γ) EII(γ)

R > Rcrit

τcrit =

δGV(Rcrit)

EI(γ) EII(γ)

R = Rcrit

τcrit δGV(R)

EI(γ)

EII(γ)

R < Rcrit

Figure 1. EI(γ) and EII(γ) as functions of γ for R > Rcrit, R = Rcrit and R < Rcrit.

For R > Rcrit, the minimum of Eγ occurs at γ = δGV(R), and equals ERCE(R) = D(δGV(R)||p).
Alternatively, since δGV(R) satisfies R = D(δGV(R)||12), the exponent-rate curve ERCE(R) may
be expressed parametrically in this range by

ERCE(γ) = D(γ||p);
R(γ) = D(γ||1

2
), (2.22)

for p < γ < τcrit.
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For R < Rcrit, the minimum of Eγ occurs at γ = τcrit, and equals ERCE(R) = R0 −R, where

R0 = D(τcrit||p) +D(τcrit||
1

2
) = log 2− log(1 + 2

√
p(1− p)). (2.23)

At R = Rcrit, these two curves coincide, since τcrit = δGV(Rcrit) and D(δGV(Rcrit)||12) = Rcrit.

2.6 Discussion

We conclude that the dominant error mechanisms differ in the low-rate regime 0 ≤ R < Rcrit

and the high-rate regime Rcrit < R < C.

In the high-rate regime, the error probability is dominated by the probability that the number
Nτ of channel errors reaches the Gilbert-Varshamov distance, τ ≥ δGV(R). We call this a Type
I error event. Conditioned on this event, the error probability is ≈ 1, and with high probability
there will be an exponentially large number of translated incorrect codewords with weights ≤ τ .
The probability of a Type I error event is thus simply

Pr(EI) ≈ e−ND(δGV(R)||p).

In the low-rate regime, the error probability is dominated by the probability that the relative
weight of the translated correct codeword is τ ≈ τcrit, and that the minimum relative weight of
the M ≈ eNR translated incorrect codewords is also δ ≈ τcrit. We call this a Type II error event.

The probability of a Type II error event is

Pr(EII) ≈Me−NR0 ,

where R0 is defined by (2.23). This is just M times the pairwise error probability e−NR0 that
the relative weight of the translated correct codeword is τ ≈ τcrit, and that the relative weight
of a single output-translated incorrect codeword is ≈ τcrit. Therefore in this regime the error
exponent is correctly given by a pairwise error analysis with the usual union bound.

Finally, we note that the breakpoint Rcrit is the rate at which the union bound on the minimum
incorrect weight

Pr{min
i
w(z(i)) ≤ Nγ} ≈ e−N(D(γ|| 1

2
)−R)

blows up for τcrit, namely the dominating γ for the joint exponent D(γ||p) + D(γ||12). This is
why the usual union bound analysis gives the incorrect exponent for R > Rcrit.

2.7 Minimum distance

We note that the arguments above do not directly involve the minimum distance dmin(C) of the
random code C; rather, they compare the distance Nτ between the correct codeword x(0) and
the received word y to the minimum distance Nδ between the incorrect codewords {x(i)} and
y.

To consider distances between the correct and incorrect codewords, it is preferable to use an
input-centered model in which all words are translated by the correct codeword x. The correct
codeword translates to 0, the received word y translates to the noise word n, and the incorrect
codewords translate to the input-translated incorrect codewords w(i) = x(i) ⊕ x, whose weights
are the distances w(w(i)) = dH(x(i),x).
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Since the statistics of the input-translated incorrect codewords {w(i)} are identical to those
of the output-translated incorrect codewords {z(i)}, we can conclude by the same arguments as
in our analysis of the incorrect subsystem that mini{w(w(i))} is almost surely ≈ NδGV(R) as
N →∞.

The output-centered analysis shows that for rates R ≥ Rcrit, Type I errors predominate; i.e.,
the probability of error is approximately equal to the probability that the weight w(n) of the
noise word exceeds NδGV(R). Therefore we can think of a sphere of radius NδGV(R) around
the correct codeword x(0) in which errors rarely occur, even though the previous paragraph
shows that there are in fact exponentially many incorrect codewords at or beyond the surface
of this sphere. Each of these incorrect codewords x(i) cuts a spherical cap (the intersection of
the sphere with the half-space of words closer to x(i) than to x(0)) out of the sphere to form
the actual hard decoding region of x(0). However, our analysis shows that the probability of y
falling in this hard decoding region is exponentially equal to that of falling in the whole sphere.

If a decoding error occurs to an output-translated incorrect word z(i), how far is z(i) likely to
be from n, or equivalently x(i) from x(0), or equivalently w(i) from 0?

For R ≥ Rcrit, the most likely error events occur when w(n) ≈ NδGV(R) and w(z(i)) ≈
NδGV(R). By the triangle inequality, we have w(n ⊕ z(i) = x(0) ⊕ x(i) = w(i)) ≤ 2NδGV(R).
Moreover, by symmetry between coordinate positions, the typical distance in this case will be
w(w(i)) ≈ 2NδGV(R)(1− δGV(R)), the expected distance between two random binary N -tuples
chosen independently according to the distribution {p(0) = 1 − δGV(R), p(1) = δGV(R)}. This
typical distance 2NδGV(R)(1− δGV(R)) is sometimes called the Elias distance.

If on the other hand R ≤ Rcrit, then Type II errors predominate; i.e., the dominant errors
occur when w(n) ≈ τcrit and there is a single output-translated incorrect word z(i) such that
w(z(i)) ≈ τcrit, where for R < Rcrit we have τcrit < δGV(R). So in this case there is typically a
single incorrect word at distance Nτcrit from y, inside the sphere of radius NδGV(R) around y,
and the correct word is at the same distance.

The typical distance in this case will be w(w(i)) ≈ 2Nτcrit(1− τcrit) = δcrit, the expected dis-
tance between two random binary N -tuples chosen independently according to the distribution
{p(0) = 1− τcrit, p(1) = τcrit}. Explicitly, we obtain (1.11):

δcrit = 2τcrit(1− τcrit) =
2
√
p(1− p)

1 + 2
√
p(1− p)

.

Note that the critical distance δcrit does not depend on R, but only on p; i.e., the critical
distance remains constant for rates R ≤ Rcrit. Note further that this critical distance may still be
larger than δGV(R). Indeed, since τcrit = δGV(Rcrit), we have δcrit = 2δGV(Rcrit)(1− δGV(Rcrit)),
the Elias distance at rate Rcrit, which surely exceeds δGV(Rcrit). Thus for a range of rates R
less than Rcrit, decoding errors do not mainly occur to minimum-distance neighbors.

2.8 The typical linear code

Let us define Rx as the rate such that δcrit = δGV(Rx), or equivalently Rx = log 2−H(δcrit). Then
for R < Rx, errors in the RCE/BSC channel model are typically made to incorrect codewords
at distance δcrit < δGV(R), the typical minimum distance in the random linear code ensemble.

Therefore in this range it makes sense to replace the random code ensemble by a code with
an improved distance distribution. We will say that a typical code of rate R is a code that
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has a typical number Ntyp(δ) of incorrect codewords at distance Nδ from the correct codeword,
namely:

Ntyp(δ) ≈
{
e−N(D(δ|| 1

2
)−R), δ ≥ δGV(R);

0, δ < δGV(R).

The exponent of Ntyp(δ) approaches 0 as R ↓ Rcrit, and equals −∞ for R < Rcrit (see Figure 1).

The nicest way of showing that a code with such a distance distribution exists is to construct
a random linear code, by randomly choosing K = log2M binary N -tuples as generators. Any
input-translated incorrect word w(i) is then equally likely to be any binary N -tuple, so the
expected number of incorrect words at distance Nδ is again N (δ) ≈ eN(R−D(δ|| 1

2
)). Thus as

N → ∞ we will almost surely obtain a code with minimum distance NδGV(R), and with
a typical distance distribution for δ ≥ δGV(R). Moreover, this distance distribution will be
common to all codewords, not just the transmitted codeword. We call such a code a typical
linear code (TLC).

Alternatively, we may construct a code with a typical distance distribution from a random
code using the method of “expurgation.”

We now analyze the probability of decoding error for both the TLC and the RCE models in
the low-rate region R ≤ Rcrit, using an input-centered analysis and the usual union bound. We
say that an error Eδ of type δ occurs if an error is made to an incorrect codeword at distance Nδ.
The number of such codewords is given by N (δ) or N (δ), and the probability of decoding error
to a given such word is the probability of Nδ/2 or more channel errors in Nδ given positions,

which is ≈ e−NδD( 1
2
||p). Thus the exponent for the TLC will be

ETLC(R) = min
δ≥δGV(R)

D(δ||1
2

)−R+ δD(
1

2
||p),

while for the RCE it is simply

ERCE(R) = min
δ
D(δ||1

2
)−R+ δD(

1

2
||p).

Differentiating with respect to δ, we find that the unconstrained minimum is achieved for δ equal
to

δcrit =
2
√
p(1− p)

1 + 2
√
p(1− p)

,

which agrees with our previous result for the typical distance of RCE errors in the low-rate
regime. Moreover, we may verify that the two expressions for the pairwise exponent R0 are
equal:

D(δcrit||
1

2
) + δcritD(

1

2
||p) = D(τcrit||p) +D(τcrit||

1

2
) = R0.

Finally, from an input-centered perspective the typical noise word has Nδ/2 errors in the given
Nδ places and typically pN(1− δ) errors in the remaining places, so we find

τcrit =
1

2
δcrit + p(1− δcrit) =

√
p

√
p+
√

1− p,

consistent with our previous result.

Interestingly, the output-centered and input-centered relations

δcrit = 2τcrit(1− τcrit);

τcrit =
1

2
δcrit + p(1− δcrit),

13



         

actually suffice to specify both δcrit and τcrit via a simple quadratic equation, namely

τcrit = τcrit(1− τcrit) + p(τ2
crit + (1− τcrit)

2).

In summary, this input-centered union bound analysis gives the same result as our previous
output-centered analysis for the RCE, which we know to be exact, so the union bound does not
blow up for either the RCE or the TLC distribution.

When δcrit ≥ δGV(R), both the RCE and the TLC models have the same typical distance
N (δcrit) = N (δcrit), so the exponent is the same. However, when δcrit ≤ δGV(R), or equivalently
R ≤ Rx, the probability of decoding error with a typical linear code will dominated by the
probability of making an error to a minimum-distance codeword. The exponent of the number
of codewords at the minimum distance δGV(R) is 0, and the exponent of the event of ≥ δGV(R)/2
errors in a given δGV(R) places is

ETLC(R) = δGV(R)D(
1

2
||p) = −δGV(R) log 2

√
p(1− p), R ≤ Rx. (2.24)

Alternatively, since δGV(R) satisfies R = D(δGV(R)||12), the exponent-rate curve ETLC(R) may
be expressed parametrically in this range by

ETLC(γ) = γD(
1

2
||p);

R(γ) = D(γ||1
2

), (2.25)

for γ ≥ δcrit.

For R ≤ Rx, ETLC(R) is also called the expurgated exponent Ex(R). For R = Rx, the
expurgated exponent Ex(Rx) is equal to the RCE exponent ERCE(Rx) = R0 − Rx, while for
R < Rx, Ex(R) exceeds ERCE(R) = R0 −R.

2.9 Sphere-packing bound

The sphere-packing bound is a lower bound on decoding error probability that shows that the
exponent developed above is the best possible for R ≥ Rcrit.

Any decoding rule partitions the 2N possible received words into eNR disjoint subsets, namely
the decision regions corresponding to each codeword. To minimize the average error probability,
it is easy to see that the best case would be if all decoding regions were of equal size eN(log 2−R),
and as spherical as possible. In this case, since the size of a Hamming sphere of radius Nγ
is ≈ eNH(γ), where H(γ) = −γ log γ − (1 − γ) log(1 − γ), the radius of the sphere would be
approximately Nγ(R), where

H(γ(R)) = log 2−R.
Since D(γ||12) = log 2 −H(γ), this expression is equivalent to D(γ(R)||12) = R. It follows that
γ(R) = δGV(R). Thus in this best possible case, the decoding error probability would be

Pr(E) ≈ e−ND(δGV(R)||p).

Thus the sphere-packing exponent is

Esp(R) = D(δGV(R)||p) (2.26)
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for all rates 0 ≤ R < C, which is equal to ERCE(R) for Rcrit ≤ R < C. Since Esp(R) is an upper
bound on the error exponent for any code C, we conclude that no code can be exponentially
better than a random code for Rcrit ≤ R < C.

Alternatively, since D(δGV(R)||12) = R, the sphere-packing exponent may be expressed in the
parametric form

Esp(R) = D(γ||p);

R = D(γ||1
2

), (2.27)

for p < γ ≤ 1/2.

2.10 Gallager’s bounds

In this section we show that Gallager’s well-known bounding technique may be viewed as a
Lagrangian solution of the constrained maximization problems discussed above.

The sphere-packing exponent may be written as

Esp(R) = min
γ>p:D(γ|| 1

2
)=R

D(γ||p).

Rather than simply solving for γ, we may introduce a Lagrange multiplier ρ > 0 for the constraint
D(γ||12) = R, which gives the Lagrangian

E(γ, ρ,R) = D(γ||p) + ρ(D(γ||1
2

)−R).

E(γ, ρ,R) is strictly convex as a function of γ, and linear as a function of ρ.

We can then express Esp(R) as the solution to an unconstrained convex maximization problem

Esp(R) = max
ρ>0

min
γ>p

E(γ, ρ,R).

Because of the convexity of E(γ, ρ,R), this optimization problem has a unique solution at a
unique parameter pair (ρ, γ).

Minimizing E(γ, ρ,R) over γ for a given ρ by taking derivatives, we find that

γ(ρ) =
p1/(1+ρ)

p1/(1+ρ) + (1− p)1/(1+ρ)
.

Substituting this value into the exponent, we obtain

E(γ(ρ), ρ, R) = E0(ρ)− ρR,

where

E0(ρ) = ρ log 2− log
(
p1/(1+ρ) + (1− p)1/(1+ρ)

)1+ρ

is Gallager’s function for a BSC with parameter p. Then Esp(R) is the solution to the dual
convex optimization problem

Esp(R) = max
ρ>0

E0(ρ)− ρR.
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This expresses the sphere-packing exponent as the upper envelope of a set of straight lines
E0(ρ)− ρR of slope −ρ. From this we get the parametric equations

Esp(ρ) = E0(ρ)− ρE′0(ρ);

R(ρ) = E′0(ρ).

Similarly, the RCE exponent is

ERCE(R) = min
γ>p

D(γ||p) + max{D(γ||1
2

)−R, 0}.

We have already seen that the minimum occurs either at γ = τcrit or γ = δGV(R), implying that
D(γ||12) = R. But rather than simply solving for the minimizing γ, we may again introduce a
range-limited Lagrange multiplier ρ with the range 0 ≤ ρ ≤ 1. Since

max{D(γ||1
2

)−R, 0} = max
0≤ρ≤1

ρ(D(γ||1
2

)−R),

the RCE exponent may then be expressed as

ERCE(R) = min
γ>p

max
0≤ρ≤1

E(γ, ρ,R).

Again, because of the convexity of E(γ, ρ,R), we may optimize over γ at a given ρ to obtain

ERCE(R) = max
0≤ρ≤1

E0(ρ)− ρR.

This shows that ERCE(R) = Esp(R) whenever the optimizing ρ is less than or equal to 1, namely
when

R ≥ E′0(1).

It is straightforward to show that E′0(1) = Rcrit. For R < Rcrit, the optimizing ρ for Esp(R) is
greater than 1, so the optimizing ρ for ERCE(R) is 1, which yields

ERCE(R) = E0(1)−R, R ≤ Rcrit.

It is straightforward to show that E0(1) = R0.

2.11 List-of-L decoding

Analysis of list-of-L decoding is a sensitive tool for showing that, given a decoding error event,
the number of incorrect codewords that are closer to the received word y than the correct
codeword is almost surely 1 for R < Rcrit, but almost surely exponentially large for R > Rcrit.

In list-of-L decoding, the decoder puts out a list of the L closest codewords to the received
word rather than the single closest codeword. A list decoding error event EL occurs if the correct
codeword is not on the list.

Again using the RCE model and an output-centered perspective, let Nτ = w(n), and let NδL
be the Lth largest output-translated incorrect codeword weight w(z(i)). Then EL = {τ ≥ δL}.

Since there are
(
M
L

)
possible ways to select L incorrect codewords out of M and the probability

that all L have relative weight δ ≤ γ is ≈ (e−ND(γ|| 1
2

))L, the union bound gives

Pr(δL ≤ γ) ≤
(
M

L

)
e−NLD(γ|| 1

2
) ≈ 1

L!
e−NL(D(γ|| 1

2
)−R).

For small (non-exponential) values of L, we may ignore the constant L!.
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Again, it is straightforward to show that the union bound gives the correct exponent provided
that the exponent is nonnegative. Therefore

Pr(δL ≤ γ) ≈ e−NLEUB(γ);

i.e., the list-of-L exponent is L times that of (2.20) for list-of-1 decoding, namely

EUB(γ) = max{0, D(γ||1
2

)−R}.

We then proceed as before. We say that a list-of-L error event Eγ,L occurs if τ ≥ γ and δL ≤ γ.
Since these two events are independent, the joint error probability for Eγ,L is given by

Pr(Eγ,L) ≈ e−ND(γ||p)e−NLEUB(γ),

where we assume that δGV(R) > p. The dominating type of error event then corresponds to the
γ that minimizes the joint exponent

Eγ,L = D(γ||p) + LEUB(γ) =

{
D(γ||p) + LD(γ||12)− LR, p < γ ≤ δGV(R);
D(γ||p), γ ≥ δGV(R).

We thus have
Pr(EL) ≈ e−NEL(R),

where
EL(R) = min

p<γ≤ 1
2

Eγ,L.

The minimum of Eγ,L now occurs either at the γ for which D(γ||p) + LD(γ||12) is minimum,
which we will call τcrit,L, or at the breakpoint, γ = δGV(R). We can evaluate τcrit,L by solving
D′(γ||p) = −LD′(γ||12), which yields

τcrit,L =
p1/(1+L)

p1/(1+L) + (1− p)1/(1+L)
.

Thus τcrit,L increases with L and approaches 1
2 as L becomes large. We further define Rcrit,L as

the value of R for which τcrit,L = δGV(Rcrit,L); thus Rcrit,L decreases with L and approaches 0
as L becomes large.

The two exponents

EI,L(γ) = D(γ||p);

EII,L(γ) = D(γ||p) + LD(γ||1
2

)− LR,

are equal at γ = δGV(R), and Eγ,L is equal to their maximum.

ForR > Rcrit,L, the minimum of Eγ,L occurs at γ = δGV(R), and equals EL(R) = D(δGV(R)||p).
Thus EL(R) = Esp(R) for Rcrit,L ≤ R < C, which is a greater interval than for list-of-1 decoding.

For R < Rcrit,L, the minimum of Eγ,L occurs at γ = τcrit,L, and equals E(R) = R0,L − LR,
where

R0,L = D(τcrit,L||p) + LD(τcrit,L||
1

2
).

The exponent R0,L increases with L.
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At R = Rcrit,L, these exponents coincide, since τcrit,L = δGV(Rcrit,L) and D(δGV(Rcrit,L)||12) =
Rcrit,L.

We conclude that with a small (non-exponential) list size L, the list-of-L decoding exponent
EL(R) can follow the sphere-packing exponent Esp(R) down to arbitrarily low rates R > 0. This
improves on E(R) for R < Rcrit, where Type II error events predominate, but not for R ≥ Rcrit,
where Type I error events predominate. This conclusion agrees with our observation that given
an ordinary decoding error, for R ≥ Rcrit there are typically an exponentially large number of
incorrect codewords closer to y than the correct codeword, but for R < Rcrit it is unlikely that
there will be more than one incorrect codeword closer than the correct codeword. In the latter
case, list decoding can help greatly.
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Appendix A: The Chernoff bound and convex optimization

In the correct subsystem, the Hamming weight w(n) is the sum of N iid binary random vari-
ables w(nk) with a Bernoulli distribution {1 − p, p}. Similarly, in the incorrect subsystem, the
Hamming weight w(z(i)) of any translated incorrect codeword is the sum of N iid equiprobable
binary random variables. We are interested in the probability of large fluctuations of such sums.

The Chernoff bound of large deviation theory gives both an upper bound and the correct
exponent for such fluctuations, as we shall show by giving also a lower bound. The derivation
has much in common with the derivation of exponential error bounds in the main text. This is
not surprising, as both are instances of convex optimization.

A.1 The Chernoff exponent

Let S be the sum of N iid random variables Xk, each with the same alphabet X and probability
distribution {p(x), x ∈ X}. Since the indicator function Φ(S ≥ Nτ) of the event {S ≥ Nτ} is
bounded by

Φ(S ≥ Nτ) ≤ es(S−Nτ)

for any s ≥ 0, we have

Pr{S ≥ Nτ} = Φ(S ≥ Nτ) ≤ es(S−Nτ) = e−N(sτ−µ(s)), s ≥ 0,

where the overbar denotes expectation, and µ(s) denotes the semi-invariant moment-generating
function of X:

µ(s) = log esx = log
∑

x

p(x)esx, s ≥ 0.

The semi-invariant moment-generating function may be written as µ(s) = logZ(s), where

Z(s) = esx =
∑

x

p(x)esx, s ≥ 0.

The notation Z(s) is used because in the terminology of statistical physics, Z(s) is the partition
function for the tilted probability distribution q(x, s) ∝ p(x)esx; i.e.,

q(x, s) =
p(x)esx

Z(s)
.

In statistics, Z(s) is called the moment-generating function of the random variable X.

We may optimize the exponent over s ≥ 0 to obtain the Chernoff exponent

Ec(τ) = max
s≥0

sτ − µ(s);

then we have the Chernoff bound

Pr{S ≥ Nτ} ≤ e−NEc(τ).

We can show that this bound is tight by the following lower bound. Let q ∈ P be an arbitrary
probability distribution over X , where P = {q(x), x ∈ X} is the set of all probability distributions
over X . If X is discrete, we shall say that an N -tuple x = (x1, x2, . . . , xN ) of elements of X is
of type q if the number n(x) of appearances of x is equal to Nq(x) for all x ∈ X .
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For N large, the total number of sequences of type q is a multinomial coefficient Cq which is
exponentially equal to

Cq ≈ eNH(q),

where H(q) is the entropy of the distribution q. The total probability P (q|p) under p of all
sequences of type q is therefore equal to

P (q|p) = Cq

∏

x

p(x)Nq(x) ≈ e−ND(q||p),

where the exponent D(q||p) is the KL divergence

D(q||p) =
∑

x

q(x) log
q(x)

p(x)
= Eq[− log p(x)]−H(q).

Now let q be any probability distribution over X such that

Eq[x] =
∑

x

xq(x) ≥ τ.

Then the probability of the event {S ≥ Nτ} is lowerbounded by the probability of an N -tuple
of type q:

Pr{S ≥ Nτ} ≥ min
q∈P:Eq[x]≥τ

P (q|p).

Thus we obtain a lower bound involving the minimal type exponent

Et(τ) = min
q∈P:Eq[x]≥τ

D(q||p).

We now show that Ec(τ) = Et(τ) by showing that both are equal to

E(τ) = max
s≥0

min
q∈P

D(q||p)− s(Eq[x]− τ).

Since D(q||p) is a strictly convex function of q (since H(q) is strictly concave), and Eq[x] is
linear in q and s(Eq[x] − τ) is linear in s, this is a well-behaved convex optimization problem
over a convex region that has a solution at a unique (s,q).

For a given s, we can optimize q by differentiating with respect to each q(x) and imposing the
condition that q be a probability distribution. The result is that

q(x, s) =
p(x)esx

Z(s)
,

where Z(s) =
∑

x p(x)esx. That is, the optimum q(s) is a tilted probability distribution with
“tilt” esx. For such a tilted distribution q(s), we have

H(q(s)) = Eq(s)[− log q(s, x)] = µ(s) + Eq(s)[− log p(x)]− sEq(s)[x],

where we use µ(s) = logZ(s), and thus

D(q(s)||p)− s(Eq(s)[x]− τ) = sτ − µ(s).

It follows that
E(τ) = max

s≥0
sτ − µ(s) = Ec(τ).
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On the other hand, we can show that E(τ) = Et(τ) as follows. Since D(q||p) − s(Eq[x] − τ)
decreases with s if Eq[x] > τ and increases with s if Eq[x] < τ , the minimum can only occur
when Eq[x] = τ . Thus

E(τ) = min
q∈P:Eq[x]=τ

D(q||p) = Et(τ).

Thus the Chernoff bound exponent is the correct exponent for the probability that S ≥ Nτ ;
i.e.,

lim
N→∞

− log Pr{S ≥ Nτ}
N

= Ec(τ).

We write this as
Pr{S ≥ Nτ} ≈ e−NEc(τ).

The language of convex optimization theory sheds some light on this development. The primal
problem is to minimize D(q||p) subject to the constraint that q be a probability distribution such
that Eq[x] ≥ τ . To solve this problem, we introduce a Lagrange multiplier s and a Lagrangian
D(q||p) − s(Eq[x] − τ). This yields the dual problem of maximizing sτ − µ(s) over the dual
variable s. Since the primal problem was strictly convex, the solutions to the primal and dual
problems are the same.

A.2 Properties of the Chernoff exponent

Let X(s) be the random variable with the same alphabet as X but with the tilted probabil-
ity distribution q(x, s) = p(x)esx/Z(s); then X(0) = X. It is easy to see that Z(0) = 1,
Z ′(s)/Z(s) = X(s), the mean of X(s), and Z ′′(s)/Z(s) = X2(s), the second moment of X(s).
Consequently

µ(0) = 0;

µ′(s) =
Z ′(s)
Z(s)

= X(s);

µ′′(s) =
Z ′′(s)
Z(s)

−
(
Z ′(s)
Z(s)

)2

= X2(s)−X(s)
2
.

Thus the second derivative µ′′(s) is the variance of X(s), which is strictly positive unless X is
deterministic. We conclude that if X is a nondeterministic random variable with mean X, then
µ(s) is a strictly convex function of s that equals 0 at s = 0 and whose derivative at s = 0 is X.

It follows that the function sτ − µ(s) is a strictly concave function of s that equals 0 at s = 0
and whose derivative at s = 0 is τ − X. Thus if τ > X, the function sτ − µ(s) has a unique
maximum which is strictly positive, which occurs at the s(τ) for which

τ = µ′(s(τ)) = X(s(τ)),

and which equals
Ec(τ) = s(τ)τ − µ(s(τ)).

In other words, we tilt the probability distribution until the tilted mean X(s) is equal to τ ; this
determines s(τ) and thus Ec(τ).

In convex optimization theory, Ec(τ) and µ(s) are called conjugate functions. It is easy to
show from the properties of µ(s) that Ec(τ) is a strictly convex function of τ that equals 0 at
τ = X and whose derivative at τ = X is 0.
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Appendix B: The union bound exponent

In this appendix we prove the lemma given in the text:

Lemma 2.1 (Union bound exponent) The correct exponent for the probability that any of
M ≈ eNR independent events occurs, each event having probability p ≈ e−NE with E > 0, is

EUB(R,E) = max{E −R, 0}.

In other words,

1− (1− p)M ≈ e−NEUB(R,E) =

{
e−N(E−R), if E ≥ R;
1, if E ≤ R.

Given an event E which is a union of subevents Ei, the usual union bound is

Pr(E) ≤
∑

i

Pr(Ei).

If there are M subevents Ei and each has the same probability p, then Pr(E) ≤Mp.

If all subevents are independent, then we have the exact expression

Pr(E) = 1− (1− p)M = Mp−
(
M

2

)
p2 +

(
M

3

)
p3 − · · · ,

since E is the event that each of the subevents fails to occur. If Mp < 1, then this expression
may be crudely lowerbounded by

Pr(E) > Mp− (Mp)2 − (Mp)3 − · · · = Mp

(
1− 2Mp

1−Mp

)
.

Thus if M ≈ eNR and p ≈ e−NE with E > R, then we have

Mp ≈ e−N(E−R) ≥ Pr(E) > Mp

(
1− 2Mp

1−Mp

)
≈ e−N(E−R),

so the correct exponent for Pr(E) is E −R when E > R.

On the other hand, since 1 − p ≤ e−p (which follows from the basic inequality lnx ≤ x − 1),
we have

Pr(E) = 1− (1− p)M ≥ 1− e−Mp.

Thus if M ≈ eNR and p ≈ e−NE with E < R, then we have Pr(E) → 1 as N → ∞, so the
correct exponent for Pr(E) is 0 when E < R.

The exponent of 0 for E = R follows by taking the limit from either side.
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