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Capacity and Mutual Information of Wideband
Multipath Fading Channels

I. Emre TelatarMember, IEEEand David N. C. TseMember, IEEE

Abstract—in this paper we will investigate the capacity and mu- To answer these questions, we study in this paper the capacity
tual information of a broadband fading channel consisting of a and mutual information of multipath fading channelghout
finite number of time-varying paths. We will show that the ca- e 3 priori assumption of knowledge of the channel at the re-
pacity of the channel in the wideband limit is the same as that . . . -
of a wideband Gaussian channel with the same average received“eVer: We con5|der_ a (_:hannel hf’%V'“g afinite numbef paths
power. However, the input signals needed to achieve the capacity@nd @ large transmission bandwidfh. To state the results we
must be “peaky” in time or frequency. In particular, we show that  introduce the notion of the number fsolvable pathd.: This
if white-like signals are used instead (as is common in spread-spec-js the number of paths one would see if one could only differ-

trum systems), the mutual information is inversely proportional to  gntiate paths whose delays differ by more thg#i’. The fol-
the number of resolvable pathd. with energy spread out, and in lowing th It ted in thi o
fact approachesO as the number of paths gets large. This is true owing three results are presented in thiS paper.

even when the paths are assumed to be tracked perfectly at the 1y \jth no restriction on the input signal other than an av-
receiver. A critical parameter L., is defined in terms of system

parameters to delineate the threshold onL over which such over- erage p9wer ConStral.nt’ e.ls the bandwidth ger large, .One
spreading phenomenon occurs. can achieve communication rates over a multipath fading

channel equal to the capacity of an infinite bandwidth
additive white Gaussian channel of the same signal-to-
noise ratio (SNR) without fading. Moreover, this can be

achieved by frequency shift keying and noncoherent de-
|. INTRODUCTION tection.

Index Terms—Capacity, CDMA, fading channel, noncoherent
communications, wideband, wireless communications.

IRELESS communication takes place over multipath 2) In contrast, if one uses “spread-spectrum” white-like sig-

fading channels. Typically, the transmitted signal nals (the definition of which will be made precise in Sec-
travels to the receiver along a multitude of paths, the delays tion Ill), then the mutual information is inversely propor-
and gains of which vary with time. One design approach to  tional to the number of resolvable pathsassuming that
communication systems for such channels is to separate the the energy is divided more or less equally among all re-
channel measurement and data transmission problems: one solvable paths and that the path gains are independent.
assumes that the receiver can perfectly track the time-varying  Thusif the number of resolvable paths is large, the mutual
channel characteristics, and decodes the transmitted signal information is close to zero. This result holds even when
using this knowledge; one then updates the channel estimate the receiver can track perfectly the timing of each path
from the knowledge of the transmitted and received signal pair. ~ and the only uncertainty is in the phases and amplitudes.
When the channel is known to the receiver only and the noiseis  Observe that the bandwidth does not directly influence
additive white Gaussian the best input signals to use are those the mutual information, but if the underlying number of
that look like samples of white Gaussian noise. However, itis  pathsL is very large and the delays of these paths spread
not clear if the channel characteristics can be reliably estimated — out, thenLZ will increase with increasing bandwidth.
when such input signals are used, or if accurate estimation of3) without side information about the timing of the paths, if
the channel is essential to reliable communication. These issues  one uses spread-spectrum signals, the mutual information
are particularly pertinent when the signals are spread over approaches zero with increasing bandwidth even when

a very large bandwidth, as in the proposed third-generation  there is a only a single fixed gain path with random time-
wideband code-division multiple-access (CDMA) systems. varying delay.

The study of the wideband fading channel dates back to the
early 1960's. Kennedy has shown that the capacity of an infi-
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if spread-spectrum input signals are used. Their definition tfat the mutual information achieved by spread-spectrum sig-
spread-spectrum signals is that for each fixed frequency bandls in fading channels is small because their fourthegy is small.
the energy and fourth moment of the signal in that band scdéler a comprehensive survey of other results on fading channels,
with 1/W and 1/W?2, respectively, as the bandwid# in- see [1].
creases. The assumption of the independence of fades at diffhe remainder of the paper is organized as follows. In Sec-
ferent frequencies is roughly equivalent to assuming an infiniten 11-B, we introduce a fading channel model and focus on
number of paths. It is not clearpriori whether a similar result the question of how to achieve the capacity of the channel with
holds if the number of paths is finite. This issue is important ianly an average power constraint. In Section Ill, we study the
a wideband system, because any finite set of paths will evenmmutual information achieved by wideband spread-spectrum sig-
ally be resolvable as the bandwidth gets sufficiently large. Thisls, and derive upper and lower bounds as a function of the
in part motivates us to deal directly with a model with a finiteumber of resolvable patiisand other channel parameters. In
number of paths. Section 1V, we turn to the problem of detection of binary or-
The above results show that the answer to this questionti®gonal broadband signals with multipath diversity reception,
somewhat subtle. Suppose there are a few dominant pathswiien the path gains are unknown or imperfectly estimated. We
we assume that the receiver has side information on the timiolgserve the performance deterioration as the number of diver-
but not the phases and magnitudes of the paths, then the lim#lity branches grows, in a manner akin to the scaling of mutual
tion to mutual information comes from the numberesgolvable information. This provides a more intuitive understanding of the
pathsL rather than the channel bandwidth. Otherwise, if we information-theoretic results and an interpretation of the critical
assume that no side information is available at receiver abquarametevimt in particular. In Section V, the scenario of single
path delays, the limitation comes from the necessity to estimaiath with time-varying delay is considered. Section VI contains
these delays more and more accurately as bandwidth gets lasgeconclusions.
to be able to decode a white-like transmitted signal. This resultsUnless otherwise stated, the information rates in this paper
in the decay of mutual information to zero with bandwidth. Iare in units of nats per second.
typical wireless settings, the path delays vary much slower than
the path gains (phase and amplitude), so to the first approxima-  [I. CAPACITY OF A MULTIPATH FADING CHANNEL
tion, the first of the scenarios described will hold. The effects hi : il introd i i "
predicted for the second scenario (that the mutual informationIn t 1S section, we will introduce a continuous-time muliti-
o . . : .Path fading channel model, and compute its capacity under an
goes to zero with increasing bandwidth even when only a finite

. average power constraint.
number of paths is present) takes place only at very large band- gep

widths. o . A. Channel Model

In addition to the above qualitative conclusions, we also com- ) ) ] .
pute explicit upper and lower bounds to the mutual information W& consider a general multipath fading channel: when the
as a function of key channel parameters. These bounds lead@nnel input waveform ig(¢), the channel outpuf(#) is given

to define acritical parameter by

. PT., L
Lo = 5 y(t) =3 ac(t)e(t — de(t)) + 2(t) (@)

where P is the average received power constrai,/2 is the
power spectral density of the additive Gaussian noise’fansl
the coherence time of the channel. The paramétgr delin- . . .

b eF Gaussian noise with power spectral den¥y)/2.

eates the regime in whiabverspreadingccurs. If the number . . e -
of resolvable path4. is much smaller thai.,;;, then the mu- We b_eg!n by |de_nt|fy|ng anumber of key parameters defining
tpe statistics of this channel.

tual information achieved by spread-spectrum signal is close . . . . .
the capacity of the nonfading white Gaussian noise channel. O%Thecoherence tim@_ is the duration of time over which the

the other hand, if. is much larger thaii. the mutual infor passband channel remains essentially time-invariant; it satisfies
3 crits -

mation achieved is negligibly small. _

In other related works, Médard [8] has derived bounds on the ?u? felde(8) — de(s)] < 1 @
impact of channel estimation errors on the achievable mutual in- st
formation of fading wireless channels. Using a similar channeheref. is the carrier frequency of the communication system.
model as in[4], Médard [9] has obtained explicit upper bound dfor simplicity, we will assume that the channel processes
the achievable mutual information for direct-sequence CDM#a,(¢)} and {d.(¢)} are piecewise-constant, with their values
signals and showed the similar conclusion that the mutual iremaining fixed on time interval®g:Z,, (n + 1)T%.), n € Z.
formation goes to zero as the bandwidth gets large. Subsequathile typically the channel varies in a more continuous manner,
to the conference version of this work [11], Hajek and Subréhis model greatly simplifies the analysis while capturing the
manian [5] have obtained more recent results by applying thesential idea of channel coherence. We will further assume
theory of capacity and reliability function per unit cost [3], [13that {a,(nT.)} and {d,(nT.)} are stationary and ergodic
to related problems. By using a certain “fourthegy” of the signaliscrete-time stochastic processes, and independent of each
as a cost measure (related to the fourth moment), they shovetier.

where L is the number of pathsi,(t) is the gain of pattf at
timet, d(¢) is the delay of the pathat timet, andz(¢) is white
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Thedelay spread’; quantifies the uncertainty in the delay ofOver the interval[Z,, T, — Ty|, the processega,(t)} and
the paths; it satisfies {d¢(t)} are constant by the modeling assumption and that

T, < T, and we can write the received signal as
sup [de(t) — d ()] < Ty 3)

Lm,t

w(t) = " aeV/Aexp (2 fu(t — d)) + (1)

In this paper, we focus on the regime that the delay spread =
is much less than the coherence time of the channel. This is
the case for most wireless channels where typical delay spreads = GVAexp (72 funt) + (1)
run in the microseconds whereas typical coherence times @figere
measured in milliseconds [12].

The average received power is constrainet tand the band-
width of the input signals is constrained toB&around the car-
rier frequency.

The channels we are interested in are “narrowband” in tieethe complex phasor representing the amplitude gain and phase
sense that the bandwidth is much smaller than the carrier feift during the intervally;, 7, — T,]. Without loss of generality,
quency, but “broadband” in the sense that the SNR per degree will assume that(|G|?) = 1.
of freedom is very small , i.e., we are power-limited as opposedAt the receiver, the received signal is correlated against all the
to bandwidth-limited. That the bandwidth is small compared faossible transmitted signats.. Namely, the receiver forms
the carrier frequency is the reason why we can define the coher-
ence time only with respect to the carrier frequericyn [2]. Ry,

1
T /No(T, — 2Ty)

. - ) ) for1 < k < M. Note that fork = m
This section is devoted to proving the following theorem. The

proofis based on [2, Sec. 8.6], which proves the analogous result R, = VAT — 2T3) /NoG + W,
for a Rayleigh fading channel, except that we use a threshold _ _ _ .
decoding rule which allows us to prove a more general resWhereW,, is a circularly symmetric complex Gaussian random

about the multipath fading channel introduced above. variable with variancd. Fork # m, since(fx — f») is an
integer multiple ofl/(T, — 21y), =, andx; are orthogonal

‘Theorem 1:The capacity of the multipath fading channel, this interval, and the signal component at the output of the
without bandwidth constraint is at least correlator vanishes and we are left with

)\ P
1-225) —. Ry, = Wi
(-2 % =W,

L
G= Z ag exp (=727 fmde)

£=1

T, —T,
/ exp (— g2 fut)y(t) dt

Ty

B. Capacity via Frequency-Shift Keying

where W}, is again a circularly symmetric complex Gaussian
It is known that the capacity of the infinite bandwidth fadingandom variable with variance Note that because of the or-

channel with perfect channel side information at the receiviifogonality of ther,'s { W)} form a set of independent random
(but no channel information at the transmitterfAgN,, the ca- variables.
pacity of an infinite bandwidth AWGN channel with the same To transmit message:, we will repeat the transmissiar,,
average received SNR. The capacity of the infinite bandwidtin N disjoint time intervals to average over the fading of the
fading channeWithoutchannel side information cannot excee@hannel. The receiver will form the correlatiof ,, for each
this. Combining this observation with Theorem 1, it can be copossible messadge< k£ < M and each interval < n < N
cluded that in the regime whef®;, <« T, the capacity of the
multipath fading channel is close 8/ Nj. R = Opm vV AT — 2L4) [NoG(n) + Wi

Proof: Suppose we wish to transmit one &f messages. whereG(n) is the complex gain for time interval, andWj, ,
LetT; be chosen suchthal, < 7, < T..Duringthisinterval are independent and identically distributed (i.i.d.) circularly
T}, the channel is a linear time-invariant channel at the frequesyymmetric complex Gaussian random variables with variance

cies of interest. To each message we assign a signal The decoder will form the decision variables
) = Vexp(2r fmt), 0<t<T, L 2
=0, else S = > R
n=1

That is, each message is a sinusoid at frequeficyith am- 54 e a threshold rule to decide on a messagi: éixceeds
plitude v/ \. We will choc_)sefm to _be an integer multlple of 414+ (1— AT, — 2T;)/N, for exactly one value of, say
1/(T; — 21y). Whenz,, is transmitted, the received sign@al ;. then it will declare thak: was transmitted. Otherwise, it will
is given by declare a decoding error. We will fixe (0, 1) and later take it
to be arbitrarily small. Observe that this is a noncoherent scheme
Z ae(t)am(t — de(t)) + 2(1). as we do not need to measure the phase nor the amplitude of the
— channel gain.
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The decision variable for the transmitted mességes given In the scheme above, transmission of a symbol is repeated
by over different time slots to obtain diversity against fading. This
diversity can alternatively be obtained by frequency hopping,
i.e., repeating the transmission at different frequencies that fade
independently. In a slow fading environment, frequency hop-

o ) o ping may be more preferable than interleaving over time as less
By the ergodicity of the fading process, this time average W@e|ay needs to be incurred.

exceed the threshold with probability arbitrarily closeltéor
anye > 0 asN gets large.

1
= ST G, = 2T0)/No + Wi
n=1

For any messagé# m, its decision variable is given by I1l. M UTUAL INFORMATION FORWHITE-LIKE SIGNALS
1 X There are a number of interesting properties of the capacity-
~ D Wl hieving scheme described in the previ ion. Fi
N n achieving scheme described in the previous section. First, at a
n=1

) . . o time scale shorter than the channel coherence time, the input
Note that|W}.,|* are independent exponentially distributedignals are “peaky” in frequency. Transmission is done only
random variables with meah and we will bound the proba- on a narrow band. Second, on a longer time scale, the trans-
bility mitted signal is peaky in time as well. The parameténtro-
duced represents the duty cycle of the transmitted signal, and it
approaches zero to get close to capacity. Third, the channel is
using a Chernoff bound never explicitly measured at the receiver; the detection is non-

coherent.
Prsy > A] < exp(=NE(4)) The above properties of the input signals are quite different
where than more traditional CDMA waveforms which are broadband
E(A) = sup[rA — log(Elexp(r|W11|)])] and which are transmitted continuously over time. We now turn
r our attention to the mutual information achieved using such sig-
= S‘ip[TA +log(1 — )] nals. We first present a discrete-time memoryless approximation
= A—1-log(A). of the continuous-time fading channel model in Section II-A,

Using th ion bound hat th babilit th which we will analyze in this section. Then we give two alterna-
thsmdg t.ef union Sl:g \;:e see that desf.ro abl |tybt atdonde flle definitions which attempt to capture the imprecise notion of
e decision variablesy, k # m, exceedsl is upper-bounded .o jike spread-spectrum” signals. The main conclusion we

by will show is that under both of these definitions, the mutual in-
1 formation achieved using these signals is inversely proportional
eXp<_N [E(A) N logMD : to the number of equal-energy resolvable paths and in fact ap-

) - . proaches) as the number of such paths gets large.
This probability decays to zero exponentiallyihas long as
A. Discrete-Time Channel Model

1
—logM < A—1—logA. _ . . _
- N i . Recall that under the continuous-time model used in Section
Substituting the value fad we can rewrite our conditionas | |_a the complex gain for pattd

RN = o log M < (1- 9 (1 - z%) > Ad(t) = ac(t) exp (—2m fode(t))
f T, — SZT ) 0 is assumed to be constant over each time intgnZal, (n + 1)
— —log [1 +(1—¢) <S—d>} . T.). Here, we will make the further simplifying assumption that
T No each gain takes on independent values in different intervals.

We now introduce another parametgrwhich represents the \whjle typically the channel varies in a more continuous manner,
fraction of time we transmit information. During this time, Wenis model greatly simplifies the analysis while capturing the es-
use the scheme described above wite: P/, and the rest of genial idea of channel coherence. Moreover, becfuisetyp-

the time the transmitter transmits nothing. This will maintaifyq)ly very large, we will assume that the gairs's are circu-
the average power to bie. The average rate that we achieve igyrly symmetric.

given by We now shift to baseband and sample the continuous-time
OR(P/0) = (1— o) <1 3 2%) r system (1) at a rate df/W. Focusing on the intervd0, 7.),
Ts ) No we have the following discrete-time input/output relationship:
o P(T, - 2T) L
_i_10g|:1+(1_—6) <79N0 )} Y, = ]\ZZ;C;A[XF”—’_Z“ i=0,---K.—1 (4)
As @ approaches, this expressan app]rjoaches where K. — |WT.|, 7 = |Wds(t)|, and Z: are the sam-
(I—¢) <1 - 2%) N ples of the noise process. The normalization is done such that
_ s/ 410 _ E[|Z;]?] = 1 and theX,’s satisfy the energy constraint
The desired result follows after noting thatan be chosen arbi- K1
trarily small and the symbol duratidfi can be chosen as large E 1 Z x2| < 1.
as the coherence tinié.. O Ke = " |~
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Although the channel gains are assumed to be independieris now precisely defined and the analysis to be presented
in different intervals of length;., there is spillover of the input in this section will be based solely on this discrete-time
signal across intervals due to the nonzero delay spread. Hemaedel. In this model, the channel, conditional on the path
strictly speaking, the channel is not independent in different idelays, is memoryless from one coherence interval to the
tervals. However, in the regime where the delay spread is muséxt. We will therefore focus on analyzing the achievable
smaller than the coherence time, this spillover is negligible. Toutual information/(X;Y|D) on one such interval. Here,
incorporate this assumption into our model, let us then replage := (Xo, -+, Xk.-1), Y = (Yo,---,Yk._1), and
the model (4) by the “circular” approximation D = (Dy,---,D;).

L
Y, = /j\fj}é ZA[XO_TC)_’_Z“ i=0,---K.,—1 (5) B. Upper Bound on Mutual Information
0% =1 We would like to investigate the mutual information

where(n) = nmod K.. In this modified model, the outputina I(X;Y|D) achievable by “white-like” spread-spectrum sig-
coherent interval depends only on the input in the same intervadls { X;}. First, we derive an upper bound on the mutual
Note that this approximation is similar in spirit to tAecircular  information in terms of the number of resolvable paths
Gaussian channel used in [6]. We first need to make the notion of “white-like” signals pre-

The sampled delays's are the actual delays sampled at @ise. One possible candidate is to mofi&l, } as a sequence of
resolution ofl/W. There may be more than one path with thendependent and identicaly distributed (i.i.d.) random variables.
same sampled delay. These paths are not resolvable at this sBinus the input signals look like white noise, and this would be a
pling rate and from the receiver point of view can be considergdod approximation in the situation where the transmitted infor-
as single paths. Lt be the number of such resolvable paths andation is spread onto a wide bandwidth by means of error-cor-

letDy,---,D; be the distinct sampled delays of these paths.déction coding alone. In fact, this is a way to approach the ca-
we let pacity of the AWGN channel.
An alternative way of spreading, as is common in direct-se-
Gy = Z Am guence CDMA (DS-CDMA) systems, is to modulate the infor-
My =Dy mation symbols onto a pseudonoise sequence which has pseu-
be the sum of the gains of the paths with the same (sampl&?f"fmdom properties b_ut is nevertheless known to _the receiver.
delay D, then we can rewrite (4) as Typically, one information symbol spans many “chips” of the

: sequence, and so there is actually strong dependency between
£ «— consecutive transmitted symbols (the chip values). A more ap-
Yim | Y GXpy + 2 =0 Ke=1 (8) Y oos of eoromaoee :
¢ =1

propriate definition for this class of spread-spectrum signals is
to instead impose conditions on thenpirical autocorrelation

where& = PT./Ny. functionof the signal
At this point, we have a discrete-time model of the channel ’
with a finite number of resolvable paths, each of which may in 1 =
turn be a sum of a number of paths. The gains of these paths are C(m,n) = K. Z Xi—m)X(i=n),
© =0

independent from one interval (of lendkh) to the next. In wire-
less scenarios, the delaj, though random, typically vary at requiring thatC(m, n) be close t&(n—m). (See, for example,
a much slower time scale than the path gains. This is beca{k4] for such properties of pseudonoise sequences.)
the coherence time for the path gains is inversely proportionalThe upper bound we present below on the mutual information
to the carrier frequency., while the time for the delay of a pathapplies to both these definitions of spread-spectrum signals, and
to change by one tap is inversely proportionalito Since typi- it holds for large spreading bandwidths. To avoid technicalities,
cally W « f., the delay of a path is changing at a much slowehe result is proved under the assumption that the gainare
time scale than its gain. For example, if we tdke= 10° Hz uniformly bounded by some constdnt
and f, = 10° Hz, then for a transmitter moving at 60 mi/h to- Theorem 2: Assume that the input procesX;} satisfies ei-
ward the receiver, it takes about 18 s for the direct path to motreer:
from one tap to another, while the path gainis rotating at about 1) {X} is an iid. complex-valued process, such that
55 Hz. Thus here we make the assumption that the path delays J Jo 4 ]

, PN .27 E(X;)=E(X?)=0andE(|X;|*) < o;
D,’s can be tracked perfectly at the receiver, i.e., timing acquisi-
tion has already been performed. This assumption is consistent . )
with the fact that timing acquisition in spread-spectrum systems 2) there exists a universal constadit not dependent on
is usually much easier than tracking of path gains and phases. the bandwidth, such that for any realization of the input

We will further make the assumption that the deldyss and process{.X; }

the path gaing,’'s are independent. In Section V, we will con- d

sider the situation when path timing is not assumed to be known [C(m,n) = b(n —m)| < 2 @)
a priori. c

We have invoked a few simplifying assumptions and  forallm,n.

made some approximations to derive this discrete-timeiryis assumption can probably be relaxed by a more involved truncation ar-
model from the original continuous-time model. Howevegument.
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Then as the bandwidti’ — oo, the following asymptotic inside the logarithm in the first term in (9), condition on every-
upper bound holds: thing else and take the expectation with respect to/tlsdirst.
We then get

3
1
. < ) 2 2 2
I(X;Y|D) < l§:lj10g,Eexp(5 |H?|Ge?) + O <\/_> log Eg exp

L
259%{2 Héaé}
=1
i
259%{2 e T |Hé|Gé}

=1

whereH, has the same distribution as and is independe@,of
= 10g E|H|Ew exXp

The essential property of “white-like” signals which we use
to prove Theorem 2 is that in both cases, the empirical auto-
correlation functionC(m, n) = 6(n — m) when the coherence Now

time—bandwidth product is large. The following lemma first pro- ’ Teny
vides an upper bound in terms of the empirical autocorrelation By, exp(Re(ac™)) = Io(2|al)
function of { X; } for any input process. wherel, is theoth-order modified Bessel function of the first

Lemma 1: For the channel model (6) kind. Using the inequalityo(z) < exp (2% /4) we get

L
I(X;Y|D)<Exa,p Eyexp [ 26Re ZH[G[
98 K.-1( L =1
log |Exexp F%e Z ZX(i—Dc)Gf L
e i=0 \ =1 Z log B, exp[€7|H[*|Ge[*].
i *
> (Z Xi-p )Hm> }]) Using Jensen’s inequallty,abound on the firsttermin (9) is thus
m=1 L
Eclog (EH exp |26 me{ZHéGé} )
=1

L
:EX,G,D 10g (EH exXp [28 Z
m=1 L

L < ) 108 By, e, explE2 [ H*|Ge?]. (10)
Red Hy | > GC(Dy, Dy) (=1
=1 We now focus on the second term in (9).

8) Under Assumption 1) on the input sequercé; }

E[lX*-1
K.

where{H,} are independent dfG;} and{D,} and eactH,is  Ex|C(k,k)—1|</Ex[(C(k,k)—1)2]=
identically distributed a&7,.
Proof: See Appendix A. O andform > 0

Proof of Theorem 2:Starting with the upper bound in . <JE 5| ElXa
Lemma 1, we can further bound the mutual information by x|CCk o+ m)| < VEx Ok, k+m)l] K,

and hence the second term in (9Y3§1/vW).
It is also easy to see that under Assumption 2), the second

L term isO(1/W).
2£Re Z HeGe Combining this with (10) now yields the theorem. O
=1

I(X;Y|D)

< Ex g plog (EH exp

7 The bound in Theorem 2 can be explicitly computed for spe-
Z Z G [C(De, D) = Se] cific distributions of the path amplitudes. To get more insight,
— Hon e[CDe, D tm consider the special case when the gain amplitjéie§’s are
- } identically distributed such that(|G,|?) = 1/L for all £. We
I
2ERe { > HZGZ}

are assuming here that the resolvable paths have equal amount
of energy. Then the bound becomes
{=1

< Fglog (EH exp

L L
=+ 28()2ED [ZZEX |C Dé, ) 6Zm,|

N &2 N
LIOgE|H1|,|G1|eXP<~—|H1|2|G1|2) = Llog g(&?)
L2
9)
(=1 I=1

where g(r) is the generating function off;|?|G1|?. If the
number of distinguishable patis is large, then the squared
using the assumption thit,| (and hencdH,|) is uniformly amplitude of the gain of each path is small, of ordéf.. The
bounded by the constaht Consider the first term in (9). Let generating functiory is approximately linear, and

= |H¢|le7 7% andG, = |G¢|e~7%¢. Circular symmetry im- ) ) i &2
plies thatp’s andy’s are uniform in—, 7]. For the expectation 9(&7) =1+ EB(HL[7|GL) = 1 + 72
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and hence the upper bound 60X ; Y | D) is approximately We can upper-bound the second term in (12) by making a
£2 worst case assumption that the paths g&ip's are circularly
f' symmetric and Gaussian with the same variance
~ g *
Thus for largeL, an approximate upper bound on the mutual I(Y;G| X, D) < Ex,plogdet <I+ ZBAB ) (14
information per unit time is

whereB;,,, = X(;_,,) andA = diag (o}, -, 0%), with o7 =
PQTC (11) E[|G[|2] Now
NGL I(Y:G|X, D)
We observe that this bound is inversely proportional to the & .
< .
number of resolvable paths, and holds when the bandwidth = Ex.plogdet I+Kc BAB
is large. As the number of equal energy paths gets large, the E .
mutual information goes to zero. =FEx plogdet <I+K B BA)
. ~ 1 & . .
C. Lower Bound on Mutual Information <LEx plog [f tr <I+fB*BA>}(Jensen's inequality)
The upper bound (11) shows that the mutual information goes 7 ‘ Ko—1
to zero when the number of resolvable paths becomes large. - ] £
What happens when the number of resolvable paths is small — LEx,plog 1+1i ;_:1 g:o X D‘)|
even though the bandwidth is large? We address this issue by o B
presenting an asymptotic lower bound to the mutual information . ek ) 1 et )
I(X;Y|D) for a specific white input. <LEplog 1+f ZUZEX K Z [ X(m—-py|
=1 ¢ m=0

Theorem 3:If the input{ X, } is i.i.d. complex circular sym-

metric Gaussian, then ) P
S L 10g <1 + f) .

N 1
I(X;Y|D) =€ —L10g<1+ 5) +0 <_> ]
L w The last inequality follows from the energy constraint on the
Proof: We begin with the following relationships: input and thay", o7 = 1. Combining this with (13) yields

I(X;Y|D) = I(Y;X,G|D) - I(Y;G| X, D) I(X;Y| D)
> I(Y; X |G,D) - I(Y;G| X,D) (12)

(Jensen's inequality)

el | £
. ) ) N > K.Eglog| 1+ ZG[ —f/log(l—i—T)
where the first equality follows from the chain rule. Conditional K. |~ L

on the path gain& and the delay®), it can be seen that and

Y are jointly Gaussian. The first term is then given by 2 !

2 L = £
el G¢| — Llog <1 + T)
2 I

4

L
e 2 EEG|Y G
IY;X|G,D)=Eg plogdet| I + fAA =1

whereA is aK. by K. matrix such thati;,,, = G, if m=(i—Dy) Se_ E10g<1 N f) ~ 2 ‘. EL: G
andO0 otherwise. By the circular convolution properties of the — —
discrete Fourier transform (DFT), the eigenvaluesiof* are ) ) )
precisely|F(k/K.)|%k = 0--- K. — 1, where ¥(\;rr1ere>th§ second inequality follows frdog(1+x) > +—(x* /2)
X .
L AsW — oo, K. = |WT,] — oc, and the third term in the
=" Geexp (2n]Def) above approachéslike O(1/W). The theorem folllows. [
=1 The quantity/(X;Y"|D) is the mutual information per co-

is the DFT of the impulse response of the channel. Hence herence time interval. Thus in the wideband limit, we have the
K.—1 following lower bound on the mutual informatiguer unit time
Sl o))

k=0

[(Y:X|G,D) = Ecp i__10g< PT)
NO Tc N()L )

= K.Ecp 1Og< |F(0)|2> Note that the second term is always less than the first term, so
’ that this lower bound is strictly positive. The first term is the
7, 2 capacity of the infinite bandwidth AWGN channel. The second
£ i -
= K.Eclog| 1+ — Z al . (13) term can therefore be interpreted as an upper bound on the ca
K. pacity penalty due to channel uncertainty. Observe that this term

depends only on the number of resolvable paths and not on the
The second step follows from the fact thiaf) is identically bandwidth. In particular, if the number of paths is bounded, then
distributed for everyf, which in turn follows from the circular the mutual information is bounded away from zero even at in-
symmetry and independence of tig’s. finite bandwidth. This further emphasizes that the fundamental
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Fig. 1. Upper and lower bounds to the achievable mutual information as a function of the number of resolvable paths; fbf18s. The unit is in bits per
second. The upper horizontal line is the capacity of the AWGN channel.

limitation comes from the number of equal-energy resolvabiote that the upper bound holds for largewhile the lower

paths. bound holds for any.. If L < Le., then
As L — oo, we have the following asymptotic lower bound: - -
5 crit ~
P27, (15) Lerit tog <1 I ) 0
=
2NyL and the mutual information achievable with spread-spectrum

which approaches zero &s— ~. Compared to the asymptoticSignals is close to the capacity of the infinite-bandwidth AWGN

upper bound in (11), we see that the upper and lower bourfal,annel' On the other hand,ﬂf>> L““.’ then the upp(.er.bound
agree to within a factor o says that the mutual information achievable is negligible com-

pared to that of an AWGN channel. Thus one may view;

If we let . . . .
as thecritical parameterdelineating the regime where “over-
= PT, spreading” occurs. If one thinks 8f/N, as a nominal informa-
Lerie := No (16) tion rate, therL,; is smaller for low-rate users and for systems
with shorter coherence time.
and At a carrier frequency of 1 GHz and vehicle speed of 60 mi/h,
p the coherence time is of the order of 18 ms. For a voice user with
Cawan = —, a nominal AWGN capacity of 9.6 kbits/s, this gives a value of
No Ly to be120. On the other hand, at 10 GHz , the coherence
then we can write the lower bound as time becomes 1.8 ms, anfd.,;; = 12. The upper and lower

bounds are plotted for these scenarios in Figs. 1 and 2, as a
function of the number of resolvable paths.

ff f/crit
Or 7 1 — = 10 - 1 =+ =
AWGN [ Tt 8( i7 )

and the upper bound as

IV. DETECTION OFBINARY ORTHOGONAL SIGNALS

In the previous sections, we studied the information-theoretic
Levit properties of broadband multipath channels, focusing on upper
Cawan I and lower bounds on the achievable mutual information in terms
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Fig. 2. Upper and lower bounds to the achievable mutual information as a function of the number of resolvable péths, #3d0018s. The unit is in bits per
second. The upper horizontal line is the capacity of the AWGN channel.

of the number of resolvable paths. In this section, we will shift. Narrowband Signaling

our emphasis to the detection error probability of specific bi- g5t consider the case when the signals are narrowband FSK
nary qrthogonal modulation schemes u_nder_ the same Scal'é‘i%nals atfrequencief andf;, chosen to be orthogonal. (These
We will demonstrate performance deterioration as the numigk he same as the ones used in the capacity-achieving strategy
of multipaths grow, in a manner akin to the scaling of mutuglgscribed in Section 11-B.) By correlating the received signals
information. We will also give an intuitive understanding of the, i, 2o andzz, in turn, we obtain two sufficient statistida, and
critical parameteL.; in terms of estimation errors in the path, for detection. Assume without loss of generality that symbol

gains. ) 0 is transmitted. Similar to the development in Section II-B, we
We use the same channel model as in (1): obtain
L z
y(t) = Z ac(t)x(t — de(t)) + 2(1) (17) Ry = ,/FOG + Wy, k=0
=1 Wy, k=1

where each path has independent statistics. L ]

Consider now an uncoded binary modulation scheme hereG = >_,_; acexp(727 fode) andWy, W, are indepen-
which at each symbol time one of two orthogonal wavefornfi€nt circular symmetric complex Gaussian random variables
zo(-) and z1(-) is transmitted. The symbol duratiofi, is (rv’s) with vanancgl. (Recall that is r_10rmal|zed such that
chosen such thd; < T, < T, wherel}; andZ. are the delay E(|G|2) = 1. If G is known to the receiver, then co_herent de-
spread and the coherence time of the channel, respectivelyfe&tion can be done, and the error probability, conditionalon
symbol duration much larger than the delay spread means ti$a@ven by
we can ignore intersymbol interference. A symbol duration
much less than the coherence time means that we can assume pe(G) = Q < /i|G|>
that the channel is essentially time-invariant over a symbol ' 2N
duration. The average received energy per bif;isThe two
symbols are assumed to be equiprobable. We compare Wieere()(-) is the complementary cumulative distribution func-
performance of narrowband and broadband signaling schentes) (cdf) of anV (0, 1) random variable. If we now assume that
under coherent and noncoherent detection. each path has uniform phase, magnitadsuch thatt(a?) =
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1/L, and a Rayleigh distribution, the® is circular symmetric where {W,} are i.i.d. circular symmetric Gaussian random

Gaussian with varianck and the probability of error, averagedyariables with variance. Note thatG = 2521 Gy. For sim-
overG, is given by (see, for example, [10, eq. (7.3.8)]) plicity, we will assume that the gaing,’s of the resolvable
paths are identically distributed, and hence have variayﬁie

i.e., the energy in the signal is equally spread among the paths.
Observe that the narrowband scenario correspondis-al.

If the receiver has perfect knowledge of the complex path
Observe that this expression does not depenfi.dheach path gains{,}, then the optimum detector is to do maximal-ratio
is not Rayleigh but still has uniform phase and is identically digombining, weighing each branch b and then adding. This
tributed, then this expression holds in the limit whehecomes js simply the Rake receiver. Conditional 417}, the proba-

large, due to the Central Limit Theorem. bility of error is given by [10, eq. (7.4.20)]

If G is not known to the receiver, then noncoherent detec- .
tion has to be done by comparing the magnitudé&efand R, 1¢&, L 9
(square-law detector). The error probability, conditionak@n p({Ge}) = 2 Ny Z |Gel” ] -
is given by [10, eq. (7.3.11)] =t

If we assume that each of th&/,|'s has a Rayleigh distribu-
1 < 1& |G|2>

p(G) = S| —5 tion, the average error probability can be explicitly calculated
0 as [10, egs. (7.4.15), (7.4.21)]
Assuming that each path is Rayleigh, the average error proba- Pi1 - .
bility is then [10, eq. (7.3.12)] po = <1 — u) Z <L -1 +£> <1 + u) (19)
1 ‘ 2 — / 2
P ey o where

If each path is not Rayleigh, then this holds only in the limit
when L becomes large.

We observe that while, as expected, the performance of non-
coherent detection is worse than that of coherent detection, the
performance of the noncoherent detector does not get arbitrarilyRegardless of whether the path gains are Rayleigl, las-
worse as the number of paths gets large. Its limiting performangsmes large
depends only on the average SNR.

I3
B. Wideband Signaling Z G2 21
=1

Let us now consider using spread-spectrum signals, such that

zo andz, are white-like and orthogonal. Without going intOs, y ¢ the error probability convergesctb( 2%) i.e., the
the specific details of the structure of the signals, it suffices for : \ 0 .

. same as that for a nonfading channel with the same received
our purpose here to assume that the signals have been ch ﬂ
such that delayed versions are nearly orthogonal to each othe h'e erformance of coherent detection as a function of
In this case, a reasonable approximation is the standard divelﬂ?nberpof resolvable paths is plotted in Fias. 3 and 4 for
sity branch model (see, for example, [10, Sec. 7.4]). In th P P gs.

model, the receiver observésindependently faded replicas of aylelgh fading and at dlfferent SNR’S' _The harrowband
cenario corresponds to having one diversity branch. We see

the information signal, one for each resolvable path. The addi- )
. - . . . . t the performance of the broadband scheme improves mono-
tive noise in each branch is white, Gaussian with power specga‘?.

densityNy/2, and independent between branches. This last g[ncally with th? numperL 9f resolvable paths. This is the

sumption ignores the “self-noise” due to interference betwedfy, ll-known muiltipath diversity advantage of spread-spectrum
delayed versions of the signals, and this is a good approximc’ghemes'
tion if the signals are white-like.

More specifically, suppose that tHeresolvable paths are at

The picture, however, is different for noncoherent detection.
Consider a receiver which does not know the path gé&lpis
and implements a square-law detector, i.e., it computek for

sampled delayd, .-, Dj, assumed known to the receiver.O
Then if symboD is transmitted and the branches at the baseban’d1
are given by i
~ _ 2
ye(t) = Gezo(t — Do) + ze(t),  £=1,---,L Ui —;|RM|

whereG, is the sum of the complex gains of the paths at del
D,. Match-filtering each of the branches wittj(t — D,) and
27 (t— D) gives us the following sufficient statistics for eath

L L
Ry = %Gé + Woe, k=0 (18) Pr[l7; > Up] =Pt Z [Wiel* > Z
Wi, k=1 =1 =1

%ynd makes a decision based on the larget/@fand U;. The

probability of error is
z 2
b
A/ FOGZ + Woe ] .
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Fig. 3. Comparison of error probability under coherent detection (belowg. 4. Comparison of error probability under coherent detection (below)
and noncoherent detection (above), as a function of the number of patissd noncoherent detection (above), as a function of the number of paths.

&»/Ny, =10 dB.

&,/N, =15 dB.

Let us first examine this error probability in the limit when thedence, wherl. is comparable to the SN&, /Ny, then the per-
number of resolvable paths becomes large. Direct computatfenmance of the noncoherent detector degrades significantly.

shows that
EU, -Uy)=——

and hence
lim FE Lf]o =0.
L—oo \/z

U -0y

VL

Also,

lim Var =2.

L—oo

Sincel, andU; are independent and both are a sund.dh-

For the case when the gai#y of each branch is Rayleigh, an
explicit expression for the error probability can be computed for
finite L [10, eq. (7.4.30)]: it is given by (19) as in the coherent
case, but with: given instead by

Ep
Ny

2L+ &
The performance of noncoherent detection is plotted as a
function of the number of resolvable paths in Figs. 3 and 4
for different SNR’s. We see that for smdll, performance of
the broadband scheme improves over that of the narrowband
scheme(L = 1) with increasingL. This is due to the effect
of multipath diversity. AsL is increased further, there is a
diminishing return to the benefits from the multipath diversity.
On the other hand, the lack of knowledge about the gains of the

i

dependent terms, we can apply the Central Limit Theorem aimdlividual resolvable paths starts to hurt the combining ability

conclude that
U, — U,
% 2 N(0,2).
L

Hence, the probability of error of the noncoherent scheme
proached /2 for a large number of resolvable paths. How larg

of the noncoherent broadband receiver. There is an optimal
L~ after which the performance of the noncoherent broadband
detector starts to degrade. As — oo, the noncoherent
broadband scheme performs even worse than the noncoherent

ﬁrrowband scheme and in fact the error probability of the

rmer approaches/2.

doesi, have to be for this to happen? A more refined estimate Observe the contrast in performance scaling of the coherent

of the error probability yields

and noncoherent broadband schemes. A natural question is

whether the poor performance scaling of the noncoherent
scheme can be offset to some extent by estimating the path
gains and using the estimates in a coherent receiver. To get

~of )L
peer( Zf/No>.
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some insights to this question, let us analyze the performangng imperfect channel estimates. Using the mean and variance
of a maximal-ratio combiner, using imperfect estimatéss computation done above, a more refined estimate of the error
instead of G,. We assume that for each diversity branchrobability for largeL is given by
¢ =1,---,L, the estimate&?, is obtained from a set of noisy
measurements ~Q 1 ~ &
& pe Lo\ NV,

Suj =\ Get Zegs G =100 2 (1+ 5g) Mo
The channel measurements are commonly obtained in twoThus ifL < J(€,/N), then the performance is very close to
ways: from a pilot signal with known data symbols, or fronthat of the coherent receiver with perfect channel estimates. On
previously detected symbols. In the former casg,is the the other hand, it. > J(E,/No), then the imperfect channel
energy per bit of the pilot signal, while in the latter casegstimates haveaS|gn|f|cant|mpacton performance. An intuitive
&, = &,. In either case, it is reasonable to assume that osgplanation can be seen from (20):4f 3> J(£,/Ny), then
can measure over a time interval of lendgth the coherence the mean-square error in estimatiéig is approximatingl /L,
time. Hence, the number of measuremehtsan be taken to the variance of7, itself. In other words, little information is
be T./T.,, whereT, is the symbol duration. The noisé;’s gained about thé?,’s from the channel measurements. As the
are taken to be i.i.d. circular symmetric random variablespmber of paths grow large, the receiver meets the same fate as
normalized such that the variancelisand also independent ofthe noncoherent receiver: detection becomes impossible.
the noise in the interval of the current symbol to be detected. The critical parameter

We employ the linear least-square estimaté&/pffor each?, Lit == Jﬁ

this is given by

5 can be interpreted as the threshgld delineating the regime in
Gy = Z Se;. which the system is “overspread”: if the number of resolvable
N + L paths is significantly larger thah,;, the estimation errors in
The mean-square error assomated with this estimate is  the paths gains precludes effective combining of the multipaths.
1 (20) Expressing this threshold in terms of system parameters, we find

1\ +L that
same for all branches. The maximal-ratio combiner, using the 3 PT.
channel estimates, computes~f0r eack 0,1 Levie = No
L
Vi := Re Z é;*RM whereP is the received power of the signal from which channel
=1 measurements are obtained. If the measurements are done in a
where Ry, is given in (18), and picks the hypothesis with thelecision-feedback modé’ is the received power of the trans-
largerV;. The probability of error is mitted signal itself. In this case, the critical parameter defined
L here for detection coincides with that defined in (16) for the
pe = Pr[V1 > Vo] = Pr |Re G7 (Wi — Wo) achievable mutual information. If the measurements are done
=1 from a pilot, PP is the power of the pilot. On the downlink of a
L CDMA system, it is more economical to have a pilot common
Ep A . :
2 Re Z GiGep | - to all users; moreover, the power can be larger than the signals
No =1 for the individual user. This makes coherent combining easier,
Direct computation yields resulting in a largeL..;. On the uplink, however, it is not pos-
Jf:’ sible to have a common pilot, and the channel estimation will
E(G;Gy) = ~570~ have to be done with a weaker pilot alloted to the individual
L ( L) user, or even noncoherently. With a lower received power from
E(G" (Wi — Wye)) =0 the individual usersL.,;; can be considerably smaller.

In concluding this section, we see that the scaling of the error

2.J 5
Var[G* (Wi, — Wye)] = = No —. probability performance of broadband orthogonal modulation
L (,\1; + L) schemes mirrors that of the information-theoretic properties we
Applying the Central Limit Theorem, a — oo derived earlier. As the number of resolvable paths grow large,
i the performance of such schemes deteriorate arbitrarily badly,
VI e Z Gi(Wie — Woo) ¢ 2 N(0,JE,/No). whether they try to estimate channel parameters or perform non-

coherent detection. Certainly, this is not surprising as the infor-
Also, by a variance computation, one can show that agation-theoretic results impose fundamental limitation on the
L - > performance ofany schemeaiven the constraint that spread-
spectrum transmitted signals are used. On the other hand, the
\f %e Z Gz G, 2o analysis of specific modulation schemes dope here gives a more
concrete feeling as to what goes wrong. Basically, as the number
of resolvable paths become largad their individual energies
We thus conclude that as the number of resolvable paths grisecome correspondingly smaller, it is harder to estimate their
the probability of error approacheg2 for the coherent schemegains and to combine them effectively. The fact that the thresh-



1396 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 4, JULY 2000

olds L.;; identified in both analyses are the same further suls the empirical autocorrelation function of the input process

stantiates this explanation. over the time-interval of lengtff”.
Proof: The proof follows the same lines as that of Lem-
V. TIMING UNCERTAINTY ma 1. See Appendix B. O

In Section 1ll, we showed that as the number of resolvable White input signals are essentially those whose empirical au-
pathsL with equal energy gets large, the mutual informatiotocorrelation functiorC’(m, n) ~ &6(n — m) when the coher-
decreases in inverse proportionZtand approaches zero. Thisence time bandwidth product is large. For these signals, Lemma
holds even when the receiver can track the delay of each patkeads to upper bounds on the achievable mutual information
perfectly. In this section, we shall show that if this side informawhich goes to zero as the bandwidth goes to infinity. The fol-
tion is nota priori assumed, the mutual information goes to zefdowing is a concrete result for the case whighi; } is an i.i.d.
with increasing bandwidth even when there is only one path.process. An analogous result can be obtained for DS-CDMA

We start with the continuous-time model described in Sesignals satisfying condition (7).
tion II-A, but specialize to the case of single pafh= 1) with
a fixed gain(a;(t) = 1). We keep the stochastic nature of th?hatE(Xi) _ E(X?) = 0 and B(|X;12) < 0,2 then as the

delay procesd; (t). We assume that, (¢) remains constant for bandwidth — oo, the following asymptotic upper bound
atimeZ’ and jumps to an independent value in the next tin]%aolds '

Theorem 4:1f {X,} is ani.i.d. complex-valued process such

interval of lengthZ?.. The duratiori’ can be thought of as the 1 2PT! 1
coherence timéor this model, but observe that this is in general ~ £(X;Y) < exp -1 +0| 5 -
) . : . Wiy No W
different from the coherence tini& for the path gains consid- Proof: See Appendix C.
ered in Section lll. As explained there, the path delays typically ]
vary much slower than the path gains. As the bandwidthi¥' becomes large, the upper bound de-

The second assumption is that the delay is uniformly di§ays to zero likel/W. This decay in mutual information is
tributed in[0, 73], whereT}, is the delay spread. We will also as-due to the necessity to track the path timing accurately, with
sume that there is negligible spillover of the input signal acro2¢ needed resolution increasing linearly with the bandwidth.
intervals, consistent with our assumption of the delay spre¥¢file such channel measurements are not crucial for commu-
being much less than the coherence time. Analogous to (4), {jgation using narrowband SII‘]US.OIdS, they are when white-like
will then consider the following baseband discrete-time modgignals are used. As the bandwidth grows, the channel cannot

for this channel on one coherence interval: be tracked at the desired accuracy, and communicating reliably
P is also impossible. However, sin@é is quite large for typical
Y, = / N Ié' ((i—7) + Zi, i=0,--,K —1 wireless scenarios, this phenomenon will kick in only when the
0 bandwidth is very large.

whereY; are the samples of the received sigdglare the scaled

samples of the transmitted signalis the random delay in this VI. CONCLUSION

interval, andZ; are the samples of the noise process. Hefe= . . . . .

WT.. Moreover, the channel is independent from one coherenceThe main conclusion of this paper is that the mutual informa-
c* 1 . . . .

interval to the next. As in Section IlI-A, we have normalized thgOn achievable using spread-spectrum signals through a multi-

scaling sothak[|Z;|2] = 1. The random variable takes values path fading channel depends crucially on how the signal energy

in{1,---,7,W}and is uniformly distributed on this range. LetS divided among theesolvable pathslf there are only a few

« = Tu/T'. The assumption on the delay spread makes s gminant paths, the achievable mutual information is close to

thate < 1. Note that the power constraint oveft) translates ]E etlcalfacny OIE‘ :Ee AWGN _channeldwm: the channel gains Iper-
into an energy constraint ofX; : i = 1,---, K’} ectly known. If the energy is spread outamong many equal-en-
K1 ergy resolvable paths, the mutual information achievable is very

P 1 v2| <1 small, being inversely proportional to the number of resolvable
fé ; if=" pathsL. The limitation comes from the fact that the energy in

) _each path is too small for the gains to be measured accurately
We now present an upper bound to the mutual informatiqf gh for effective combining. From a communication-theo-

which holds for any input distribution. retic point of view, multipath diversity benefits the system only
Lemma 2: Let &’ = PI’/N,. Then up to a certain point. When there are too many paths, the un-
oK1 certainty about the path gain severely limits performance. We
I(X;Y)<E 1 3 log 1 have also established a critical parametteri; = PT./No

kKl i~ K which delineates the threshold on the number of resolvable paths

k1 above which this “overspreading” phenomenon occurs: basi-

% Z exp{%/ Re[C'(d, E)]})] callyl,I when the SNR per path over a coherence time interval is

small.
where = Theorem 1 provides a counterpoint to the above result. It

, shows that the above phenomenon is not intrinsic to the multi-
K1 path fading channel itself but is rather a consequence of the sig-

1 *
Cl(m77'L) = F Z X(i—’rn)X(i,—n)

c o 2The latter is a technical condition that can probably be removed.
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naling strategy. Indeed, by using narrowband signals and trandiere
mitting at a low duty cycle, capacity of the infinite-bandwidth
AWGN channel can be achieved. This is independent of the b= ZHKX@—DI)
number of paths. ¢
An interesting point is brought out by these results. Whereggd
for the infinite-bandwidth AWGN channel, capacity can be Qi = ZX(FD[)QZ-
achieved usingnyset of orthogonal signals, such is not the case ¢
for multipath fading channels. The performance is very mu@xpanding the square
dependent on thapecific choice of the orthogonal signals.
While capacity can be achieved with narrowband sinusoids, the (Y| X, D)
mutual information achievable by spread-spectrum signals can= —k log 7 — EZ |Zi|2 |

be very small. This is intimately tied to the fact that sinusoids f
are eigenfunctions afiny linear time-invariant system, while <
white-like signals are not. + EcElog <EH exp <_E SoIp-qil?
APPENDIX A
PROOF OFLEMMA 1 - 2v5//fz%2(f’i _Qi)Zi>>
Since — _klo .
= —klog(e) — Eg2\/E[kEy Yy _ Re(P.Z})
I(X;Y|D)=HY|D)-H(Y|X,D) g
£
we can bound the mutual information by boundiHgY | D) + EgElog <EH exp <_E Z 1P — Qi
and —H(Y | X,D) separately. It is easy to upper-bound i
H(Y |D)

+2v/E/k w(@zn))
H(Y|D) < HY) < klogme(l 4 E/k)

since the variance of each of thgs is no greater thath+ £ / k. < —klog(we) + EqEx plog| Ewexp
It remains to upper-bound H(Y | X, D). To simplify notation,

letk = K,. & 2 v
— NP - QiPEz exp 2/ E [k Re(Qi 7
~H(Y | X,D) k4 @l epryE/i© )>
= Ellog(p(Y | X, D))] — _kloe EqEx plog| E
= EgE[log(p(Y | X,D)| G = ¢] = —klog(re) + Eg x,D log H exXp

= EgFElog (EHWk exp

£
+ Zi— \/;zg:X(i—Dg)gé
I3 APPENDIX B
= —FEgElog| Egr"exp| — Z ‘\/;PZ PROOF OFLEMMA 2

To simplify notation, let: = K.
£
Zi =\ 7. Qi
+ kQ

/€ £
E E HgX(i_D[) — E [|-Pz - Qz|2 - |QZ|2]>
4 7

2

expression at the bottom of this page, proving the lemma.

) where the inequality follows from Jensen’s. Thus we have the

2 Since
IX;Y)Y=HY)-HY |X)

k—1
1
I(X;Y | D) < klog(1+ &/k) + EgEx plog <EH exp—€ SIP - Qi - |Qi|2]>
1=0

k—1 k—1
£ 1 .
=log(1+&€/k) - EGEX,DE ; |P|? + EcEx plog <EH eXPSE ; Re (21,Q; ))

k—1
1
S IflOg(l +8//€) — 8 +EGEX7D10g<EHeXp8% Z%e (RQT))
=0
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we can bound the mutual information by boundiHgY ") and APPENDIX C
—H(Y | X) separately. It is easy to upper-bouHdY") PROOF OFTHEOREM 4

Under the i.i.d. assumption diX; }, the empirical autocorre-
lation functionC’ (m, n) depends only on the differenee- m,
and the upper bound in Lemma 2 reduces to

1 aK!-1 € K/ -1
E 10g<aK’ Z exp{K/ Z NRe [2X¢X(*F[)} })] .
< ¢ =0

£=0

H(Y) < klogme(l+E/k)

since the variance of each of th&’s is no greater thad +
&/k. Itremains to upper-bound H(Y | X). To that end see the
expression at the bottom of this page. Thus

I(X;Y) < klog(1 +€/k) To simplify notation, let: = K’ andn = ok’ and

ak—1 ak—1
1 K
+ = ZEX10g< Zexp 1 -
ak = Se= 1> e (mix(i_@), =0, .n.
k—1 i=1
1 .
- &5 > [|X(i,d) - X(i,@|2 - |X(i[)|2}> Notice thatE[So] = 2, and for/ > 0, E[S¢] = 0. The upper
i=0 bound on the mutual information can now be written as
ak—1 n—1
1
Slos(1+ /) - 5 3 B z XKoo (klos(1 -+ &) — >+E108< Z) |
n
£=0
ak—1
The first term for largek behaves like-£2/(2k) and we now
Ex1 8—
k Z X Og( Z =P concentrate on the expectation

k—1 n—1
X Z Re (2X(i_d)XE“‘i_é))> Elog(% Z ess,)
£=0

=0

<k10g(1+5//€)—8 n—1
ak—1 <1 ak—1 1 :/ 10g< Zees‘> dFy(s0,- -+, 5n-1)

Z Exlog 3 Z expé‘% £=0
= whereF}, is the cumulative distribution function of the random
k-1 vector(Syp,---,S,_1). Let
(21)

X Re Xi,— X*7_
Z ( (=D [)> G ={(s0, " +,5n—1) : max{so — 2,51, -, 8,1} < 1/E}

=0

—H(Y | X)=Ellog(p(Y | X))]
E[Elog(p(Y | X)) [ D=d]]

ak—1 1 ak—1
1Og<ak Z’ﬁ exp — Z

£
A(z a+Zi— \/;X@e)

akZE

)

ak—1 k—1 k—1
1
108( > ex <‘5E > Xy~ K| —2V/E/E Zm(X@—d)—X(i—é)Z?)))]

£=0 =0 =0

k—1
=—klogn—FE Z |Z;|?
i=0
ak—1

TP
1 ak—1
=—klog(we) ok Z 2V E/RE
d=0

1akl

ok 2 P
ak—1

1
< —klog(re)+— S B
< Og(WG)Jrak 2 X

Z%e )((Z d)Z)

=0

ak—1 _
1 1
10g<ak Z < SE Z X(z d) X(z é)| +2\/ Z%e X(Z é)Z )))
£=0 =0
ak—1 k 1 k1
1
10g<@ Do exp € ZIX<z 0= Xa-pl® Ezexp2y/E/RDY Re( X [)z)>

£=0 =0 =0

1 ak—1 1 k—1 : . 2 i 2
log of 2 XP _SEZ [|-X(7¢_d)—)x<7¢_z>| —|Xi—o)| }
=0
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and write the integration oveR™ as a sum of two integrals, For the first integral, let us first define = max{sy — 2,

one over@, the other ovelR™ \ G. We will bound each term sy,---,s,_1}. and the corresponding random varialle =
separately. For the first, we will use the inequality< 1+u+w? max{So — 2,51, ---,S,_1} with cumulative distributionf;.
for v < 1to get Then, the integration regidR™ \ G is precisely that for which
ne1 w > 1/€. Furthermore, the integrand is upper-bounded by
/10g <% Z 6554) dFy(s0,+, 5n_1) 2€ + Eu. Thus the first integral can be upper-bounded by
G — oo
= 28Pr(U>1/8)+8/ wdFy (u).
1/€

< [ og (27 (1+£(s0-2)+£3(s0 -2
G n Integrating by parts, the integral above equals
(1+835+823?)> dFk(30773n—1) (U> 1/8 +8/ PI‘ U>U’)d

1 Using the union bound, the probabiliB: (U > u) can be
:/ log <1+—(625—1+5628(80 —2) +¢*E%(so —2)%)  bounded by
G n

1%
4=
n

i3

n—1
n—1
Pr (U < Pr(So—2 Pr (S .
+Z£se+82812> dF(so, 5 Sn—1) F{U> ) < PriS >u)+;::l i8> )
=1

. Now note that
< /G - <625_1+6255(30_2)+62552(30—2)2 Pr(So — 2 > u) < E[(Sp — 2)¢]/uS
and Pr (S, > u) < E [S7]/ u°

n—1
+ Z 835+823?> dFy(s0,++*,Sn_1) We compute
=1
p— 2 p—
1 ey 2 Bl(S0-2)%)= g (REI( X2~ 1)
= —14+¢e*E%(sg —I—Zc‘: dry 2 o\ 2132
an +15k(E—1)E[(| X1 "= 1)7]E[(| X1 = 1)7]
1 n-l +20k(k -1 E[(|X:[* - 1)°]?
28
+/G n < 5<30‘2>+253f> A% +90k(k—1)(k—2) E[(|X: [P~ 1))
=1 .
_— . . <64E[(| X1 —1)%](90k 3435k~ 4+ k>
In the first integral we can extend the range of integratioid'to - [ 12 1]56 6 +730 r+74 )75
to get an upper bound < 64(1+ B[ X0 |7/7)7 (90K + 3567 +477)
1 n—1 and, similarly,
L 2 26 02 92 2 2 .
" <C L+ EE (S0 — 277 + ;_:15 E [Sl]> - (22) E [SS] < 64E[| X, 2] (902 435k~ +£5).
The second integral equals We thus conclude that
1 cn ac
1 P(U > u) <
_/ - <658(80 _ 2) + Z 88[) dF;, Je3,6 k2u6
R™\G T =1 with the constant depending only or2[| X1 |'?]. Substituting
since the means of the random variall§g—2), 51, -+, S,,_;  this into our upper bound, we see that

are zero. We will treat this term shortly. Turning our attention to . = e
22), we evaluate log | = £S5 ) dIy, < — (1187 /5 4+ £°).
(22), /R\G%(nze ) b < Ty (11E7/5 4 £°)

4 £=0
27—
E[(So —2)7] = E(E[|X1| ]-1) We will now show that a similar bound applies to
2
E[S3] =2, ¢=1,---.n—1 1 "
[ [] k B:—/ —<658(80—2)+2885 dry,.
to get an upper bound on (22) of R\G T =1
1 e &2 ) Interchanging the sum and the integral, we then bound each term
@(C -+ T O(1/k%). of the sum. For the term
We will now upper-bound the remaining terms to show that / (—s¢) dF,
they decay likeD(1/k?). The remaining term is R\G
it s we first bound—s, by |s.|, then extend the range of integra-
/ log{ ~ > e ) dh, tion to the set for whichy = | max{So — 1, Sy, -+, Sn_1}| >
R\ =0 1/€.We then see that each term is less than

1
_/ - < 258 30—2 ZSS[) dF},. / v dF}.
R\G T v>1/E
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The termB is thus bounded by ¢*¢ times the integral above,
and by the same argument as above, this term decays to zero at
least as fast as/k?.
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