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Capacity and Mutual Information of Wideband
Multipath Fading Channels

I. Emre Telatar, Member, IEEE,and David N. C. Tse, Member, IEEE

Abstract—In this paper we will investigate the capacity and mu-
tual information of a broadband fading channel consisting of a
finite number of time-varying paths. We will show that the ca-
pacity of the channel in the wideband limit is the same as that
of a wideband Gaussian channel with the same average received
power. However, the input signals needed to achieve the capacity
must be “peaky” in time or frequency. In particular, we show that
if white-like signals are used instead (as is common in spread-spec-
trum systems), the mutual information is inversely proportional to
the number of resolvable paths~ with energy spread out, and in
fact approaches0 as the number of paths gets large. This is true
even when the paths are assumed to be tracked perfectly at the
receiver. A critical parameter ~crit is defined in terms of system
parameters to delineate the threshold on~ over which such over-
spreading phenomenon occurs.

Index Terms—Capacity, CDMA, fading channel, noncoherent
communications, wideband, wireless communications.

I. INTRODUCTION

W IRELESS communication takes place over multipath
fading channels. Typically, the transmitted signal

travels to the receiver along a multitude of paths, the delays
and gains of which vary with time. One design approach to
communication systems for such channels is to separate the
channel measurement and data transmission problems: one
assumes that the receiver can perfectly track the time-varying
channel characteristics, and decodes the transmitted signal
using this knowledge; one then updates the channel estimate
from the knowledge of the transmitted and received signal pair.
When the channel is known to the receiver only and the noise is
additive white Gaussian the best input signals to use are those
that look like samples of white Gaussian noise. However, it is
not clear if the channel characteristics can be reliably estimated
when such input signals are used, or if accurate estimation of
the channel is essential to reliable communication. These issues
are particularly pertinent when the signals are spread over
a very large bandwidth, as in the proposed third-generation
wideband code-division multiple-access (CDMA) systems.
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To answer these questions, we study in this paper the capacity
and mutual information of multipath fading channelswithout
thea priori assumption of knowledge of the channel at the re-
ceiver. We consider a channel having a finite numberof paths
and a large transmission bandwidth. To state the results we
introduce the notion of the number ofresolvable paths : This
is the number of paths one would see if one could only differ-
entiate paths whose delays differ by more than . The fol-
lowing three results are presented in this paper:

1) With no restriction on the input signal other than an av-
erage power constraint, as the bandwidth gets large, one
can achieve communication rates over a multipath fading
channel equal to the capacity of an infinite bandwidth
additive white Gaussian channel of the same signal-to-
noise ratio (SNR) without fading. Moreover, this can be
achieved by frequency shift keying and noncoherent de-
tection.

2) In contrast, if one uses “spread-spectrum” white-like sig-
nals (the definition of which will be made precise in Sec-
tion III), then the mutual information is inversely propor-
tional to the number of resolvable paths, assuming that
the energy is divided more or less equally among all re-
solvable paths and that the path gains are independent.
Thus if the number of resolvable paths is large, the mutual
information is close to zero. This result holds even when
the receiver can track perfectly the timing of each path
and the only uncertainty is in the phases and amplitudes.
Observe that the bandwidth does not directly influence
the mutual information, but if the underlying number of
paths is very large and the delays of these paths spread
out, then will increase with increasing bandwidth.

3) Without side information about the timing of the paths, if
one uses spread-spectrum signals, the mutual information
approaches zero with increasing bandwidth even when
there is a only a single fixed gain path with random time-
varying delay.

The study of the wideband fading channel dates back to the
early 1960’s. Kennedy has shown that the capacity of an infi-
nite-bandwidth Rayleigh fading channel is the same as that of
an infinite bandwidth additive white Gaussian noise (AWGN)
channel with the same average received power (see [2, Sec. 8.6],
[7]). Our first theorem is a parallel result, applicable to any
channel with a finite number of paths.

More recently, Gallager and Médard [4] showed that if the
channel is such that the fading processes at different frequen-
cies are independent, then the mutual information achievable
over this channel approaches zero with increasing bandwidth
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if spread-spectrum input signals are used. Their definition of
spread-spectrum signals is that for each fixed frequency band,
the energy and fourth moment of the signal in that band scale
with and , respectively, as the bandwidth in-
creases. The assumption of the independence of fades at dif-
ferent frequencies is roughly equivalent to assuming an infinite
number of paths. It is not cleara priori whether a similar result
holds if the number of paths is finite. This issue is important in
a wideband system, because any finite set of paths will eventu-
ally be resolvable as the bandwidth gets sufficiently large. This
in part motivates us to deal directly with a model with a finite
number of paths.

The above results show that the answer to this question is
somewhat subtle. Suppose there are a few dominant paths. If
we assume that the receiver has side information on the timing
but not the phases and magnitudes of the paths, then the limita-
tion to mutual information comes from the number ofresolvable
paths rather than the channel bandwidth. Otherwise, if we
assume that no side information is available at receiver about
path delays, the limitation comes from the necessity to estimate
these delays more and more accurately as bandwidth gets large
to be able to decode a white-like transmitted signal. This results
in the decay of mutual information to zero with bandwidth. In
typical wireless settings, the path delays vary much slower than
the path gains (phase and amplitude), so to the first approxima-
tion, the first of the scenarios described will hold. The effects
predicted for the second scenario (that the mutual information
goes to zero with increasing bandwidth even when only a finite
number of paths is present) takes place only at very large band-
widths.

In addition to the above qualitative conclusions, we also com-
pute explicit upper and lower bounds to the mutual information
as a function of key channel parameters. These bounds lead us
to define acritical parameter

where is the average received power constraint, is the
power spectral density of the additive Gaussian noise, andis
the coherence time of the channel. The parameter delin-
eates the regime in whichoverspreadingoccurs. If the number
of resolvable paths is much smaller than , then the mu-
tual information achieved by spread-spectrum signal is close to
the capacity of the nonfading white Gaussian noise channel. On
the other hand, if is much larger than , the mutual infor-
mation achieved is negligibly small.

In other related works, Médard [8] has derived bounds on the
impact of channel estimation errors on the achievable mutual in-
formation of fading wireless channels. Using a similar channel
model as in [4], Médard [9] has obtained explicit upper bound on
the achievable mutual information for direct-sequence CDMA
signals and showed the similar conclusion that the mutual in-
formation goes to zero as the bandwidth gets large. Subsequent
to the conference version of this work [11], Hajek and Subra-
manian [5] have obtained more recent results by applying the
theory of capacity and reliability function per unit cost [3], [13]
to related problems. By using a certain “fourthegy” of the signal
as a cost measure (related to the fourth moment), they showed

that the mutual information achieved by spread-spectrum sig-
nals in fading channels is small because their fourthegy is small.
For a comprehensive survey of other results on fading channels,
see [1].

The remainder of the paper is organized as follows. In Sec-
tion II-B, we introduce a fading channel model and focus on
the question of how to achieve the capacity of the channel with
only an average power constraint. In Section III, we study the
mutual information achieved by wideband spread-spectrum sig-
nals, and derive upper and lower bounds as a function of the
number of resolvable pathsand other channel parameters. In
Section IV, we turn to the problem of detection of binary or-
thogonal broadband signals with multipath diversity reception,
when the path gains are unknown or imperfectly estimated. We
observe the performance deterioration as the number of diver-
sity branches grows, in a manner akin to the scaling of mutual
information. This provides a more intuitive understanding of the
information-theoretic results and an interpretation of the critical
parameter in particular. In Section V, the scenario of single
path with time-varying delay is considered. Section VI contains
our conclusions.

Unless otherwise stated, the information rates in this paper
are in units of nats per second.

II. CAPACITY OF A MULTIPATH FADING CHANNEL

In this section, we will introduce a continuous-time multi-
path fading channel model, and compute its capacity under an
average power constraint.

A. Channel Model

We consider a general multipath fading channel: when the
channel input waveform is , the channel output is given
by

(1)

where is the number of paths, is the gain of path at
time , is the delay of the pathat time , and is white
Gaussian noise with power spectral density .

We begin by identifying a number of key parameters defining
the statistics of this channel.

Thecoherence time is the duration of time over which the
passband channel remains essentially time-invariant; it satisfies

(2)

where is the carrier frequency of the communication system.
For simplicity, we will assume that the channel processes

and are piecewise-constant, with their values
remaining fixed on time intervals ,
While typically the channel varies in a more continuous manner,
this model greatly simplifies the analysis while capturing the
essential idea of channel coherence. We will further assume
that and are stationary and ergodic
discrete-time stochastic processes, and independent of each
other.
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Thedelay spread quantifies the uncertainty in the delay of
the paths; it satisfies

(3)

In this paper, we focus on the regime that the delay spread
is much less than the coherence time of the channel. This is
the case for most wireless channels where typical delay spreads
run in the microseconds whereas typical coherence times are
measured in milliseconds [12].

The average received power is constrained to, and the band-
width of the input signals is constrained to bearound the car-
rier frequency.

The channels we are interested in are “narrowband” in the
sense that the bandwidth is much smaller than the carrier fre-
quency, but “broadband” in the sense that the SNR per degree
of freedom is very small , i.e., we are power-limited as opposed
to bandwidth-limited. That the bandwidth is small compared to
the carrier frequency is the reason why we can define the coher-
ence time only with respect to the carrier frequencyin [2].

B. Capacity via Frequency-Shift Keying

This section is devoted to proving the following theorem. The
proof is based on [2, Sec. 8.6], which proves the analogous result
for a Rayleigh fading channel, except that we use a threshold
decoding rule which allows us to prove a more general result
about the multipath fading channel introduced above.

Theorem 1: The capacity of the multipath fading channel
without bandwidth constraint is at least

It is known that the capacity of the infinite bandwidth fading
channel with perfect channel side information at the receiver
(but no channel information at the transmitter) is , the ca-
pacity of an infinite bandwidth AWGN channel with the same
average received SNR. The capacity of the infinite bandwidth
fading channelwithoutchannel side information cannot exceed
this. Combining this observation with Theorem 1, it can be con-
cluded that in the regime where , the capacity of the
multipath fading channel is close to .

Proof: Suppose we wish to transmit one of messages.
Let be chosen such that . During this interval

, the channel is a linear time-invariant channel at the frequen-
cies of interest. To each message we assign a signal

else

That is, each message is a sinusoid at frequencywith am-
plitude . We will choose to be an integer multiple of

. When is transmitted, the received signal
is given by

Over the interval , the processes and
are constant by the modeling assumption and that
, and we can write the received signal as

where

is the complex phasor representing the amplitude gain and phase
shift during the interval . Without loss of generality,
we will assume that .

At the receiver, the received signal is correlated against all the
possible transmitted signals . Namely, the receiver forms

for . Note that for

where is a circularly symmetric complex Gaussian random
variable with variance . For , since is an
integer multiple of , and are orthogonal
on this interval, and the signal component at the output of the
correlator vanishes and we are left with

where is again a circularly symmetric complex Gaussian
random variable with variance. Note that because of the or-
thogonality of the ’s form a set of independent random
variables.

To transmit message , we will repeat the transmission
on disjoint time intervals to average over the fading of the
channel. The receiver will form the correlations for each
possible message and each interval

where is the complex gain for time interval, and
are independent and identically distributed (i.i.d.) circularly
symmetric complex Gaussian random variables with variance.
The decoder will form the decision variables

and use a threshold rule to decide on a message: ifexceeds
for exactly one value of , say

, then it will declare that was transmitted. Otherwise, it will
declare a decoding error. We will fix and later take it
to be arbitrarily small. Observe that this is a noncoherent scheme
as we do not need to measure the phase nor the amplitude of the
channel gain.
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The decision variable for the transmitted messageis given
by

By the ergodicity of the fading process, this time average will
exceed the threshold with probability arbitrarily close tofor
any as gets large.

For any message , its decision variable is given by

Note that are independent exponentially distributed
random variables with mean, and we will bound the proba-
bility

using a Chernoff bound

where

Using the union bound we see that the probability that one of
the decision variables , , exceeds is upper-bounded
by

This probability decays to zero exponentially inas long as

Substituting the value for we can rewrite our condition as

We now introduce another parameter, which represents the
fraction of time we transmit information. During this time, we
use the scheme described above with , and the rest of
the time the transmitter transmits nothing. This will maintain
the average power to be. The average rate that we achieve is
given by

As approaches, this expression approaches

The desired result follows after noting thatcan be chosen arbi-
trarily small and the symbol duration can be chosen as large
as the coherence time .

In the scheme above, transmission of a symbol is repeated
over different time slots to obtain diversity against fading. This
diversity can alternatively be obtained by frequency hopping,
i.e., repeating the transmission at different frequencies that fade
independently. In a slow fading environment, frequency hop-
ping may be more preferable than interleaving over time as less
delay needs to be incurred.

III. M UTUAL INFORMATION FORWHITE-LIKE SIGNALS

There are a number of interesting properties of the capacity-
achieving scheme described in the previous section. First, at a
time scale shorter than the channel coherence time, the input
signals are “peaky” in frequency. Transmission is done only
on a narrow band. Second, on a longer time scale, the trans-
mitted signal is peaky in time as well. The parameterintro-
duced represents the duty cycle of the transmitted signal, and it
approaches zero to get close to capacity. Third, the channel is
never explicitly measured at the receiver; the detection is non-
coherent.

The above properties of the input signals are quite different
than more traditional CDMA waveforms which are broadband
and which are transmitted continuously over time. We now turn
our attention to the mutual information achieved using such sig-
nals. We first present a discrete-time memoryless approximation
of the continuous-time fading channel model in Section II-A,
which we will analyze in this section. Then we give two alterna-
tive definitions which attempt to capture the imprecise notion of
“white-like spread-spectrum” signals. The main conclusion we
will show is that under both of these definitions, the mutual in-
formation achieved using these signals is inversely proportional
to the number of equal-energy resolvable paths and in fact ap-
proaches as the number of such paths gets large.

A. Discrete-Time Channel Model

Recall that under the continuous-time model used in Section
II-A, the complex gain for path

is assumed to be constant over each time interval
. Here, we will make the further simplifying assumption that

each gain takes on independent values in different intervals.
While typically the channel varies in a more continuous manner,
this model greatly simplifies the analysis while capturing the es-
sential idea of channel coherence. Moreover, becauseis typ-
ically very large, we will assume that the gains’s are circu-
larly symmetric.

We now shift to baseband and sample the continuous-time
system (1) at a rate of . Focusing on the interval ,
we have the following discrete-time input/output relationship:

(4)

where , , and are the sam-
ples of the noise process. The normalization is done such that

and the ’s satisfy the energy constraint
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Although the channel gains are assumed to be independent
in different intervals of length , there is spillover of the input
signal across intervals due to the nonzero delay spread. Hence,
strictly speaking, the channel is not independent in different in-
tervals. However, in the regime where the delay spread is much
smaller than the coherence time, this spillover is negligible. To
incorporate this assumption into our model, let us then replace
the model (4) by the “circular” approximation

(5)

where . In this modified model, the output in a
coherent interval depends only on the input in the same interval.
Note that this approximation is similar in spirit to the-circular
Gaussian channel used in [6].

The sampled delays ’s are the actual delays sampled at a
resolution of . There may be more than one path with the
same sampled delay. These paths are not resolvable at this sam-
pling rate and from the receiver point of view can be considered
as single paths. Let be the number of such resolvable paths and
let be the distinct sampled delays of these paths. If
we let

be the sum of the gains of the paths with the same (sampled)
delay , then we can rewrite (4) as

(6)

where .
At this point, we have a discrete-time model of the channel

with a finite number of resolvable paths, each of which may in
turn be a sum of a number of paths. The gains of these paths are
independent from one interval (of length) to the next. In wire-
less scenarios, the delays , though random, typically vary at
a much slower time scale than the path gains. This is because
the coherence time for the path gains is inversely proportional
to the carrier frequency , while the time for the delay of a path
to change by one tap is inversely proportional to. Since typi-
cally , the delay of a path is changing at a much slower
time scale than its gain. For example, if we take 10 Hz
and 10 Hz, then for a transmitter moving at 60 mi/h to-
ward the receiver, it takes about 18 s for the direct path to move
from one tap to another, while the path gain is rotating at about
55 Hz. Thus here we make the assumption that the path delays

’s can be tracked perfectly at the receiver, i.e., timing acquisi-
tion has already been performed. This assumption is consistent
with the fact that timing acquisition in spread-spectrum systems
is usually much easier than tracking of path gains and phases.
We will further make the assumption that the delays’s and
the path gains ’s are independent. In Section V, we will con-
sider the situation when path timing is not assumed to be known
a priori.

We have invoked a few simplifying assumptions and
made some approximations to derive this discrete-time
model from the original continuous-time model. However,

it is now precisely defined and the analysis to be presented
in this section will be based solely on this discrete-time
model. In this model, the channel, conditional on the path
delays, is memoryless from one coherence interval to the
next. We will therefore focus on analyzing the achievable
mutual information on one such interval. Here,

and
.

B. Upper Bound on Mutual Information

We would like to investigate the mutual information
achievable by “white-like” spread-spectrum sig-

nals . First, we derive an upper bound on the mutual
information in terms of the number of resolvable paths.

We first need to make the notion of “white-like” signals pre-
cise. One possible candidate is to model as a sequence of
independent and identicaly distributed (i.i.d.) random variables.
Thus the input signals look like white noise, and this would be a
good approximation in the situation where the transmitted infor-
mation is spread onto a wide bandwidth by means of error-cor-
rection coding alone. In fact, this is a way to approach the ca-
pacity of the AWGN channel.

An alternative way of spreading, as is common in direct-se-
quence CDMA (DS-CDMA) systems, is to modulate the infor-
mation symbols onto a pseudonoise sequence which has pseu-
dorandom properties but is nevertheless known to the receiver.
Typically, one information symbol spans many “chips” of the
sequence, and so there is actually strong dependency between
consecutive transmitted symbols (the chip values). A more ap-
propriate definition for this class of spread-spectrum signals is
to instead impose conditions on theempirical autocorrelation
functionof the signal

requiring that be close to . (See, for example,
[14] for such properties of pseudonoise sequences.)

The upper bound we present below on the mutual information
applies to both these definitions of spread-spectrum signals, and
it holds for large spreading bandwidths. To avoid technicalities,1

the result is proved under the assumption that the gainsare
uniformly bounded by some constant.

Theorem 2: Assume that the input process satisfies ei-
ther:

1) is an i.i.d. complex-valued process, such that
and ;

or

2) there exists a universal constant, not dependent on
the bandwidth, such that for any realization of the input
process

(7)

for all .

1This assumption can probably be relaxed by a more involved truncation ar-
gument.
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Then as the bandwidth , the following asymptotic
upper bound holds:

where has the same distribution as and is independent of.

The essential property of “white-like” signals which we use
to prove Theorem 2 is that in both cases, the empirical auto-
correlation function when the coherence
time–bandwidth product is large. The following lemma first pro-
vides an upper bound in terms of the empirical autocorrelation
function of for any input process.

Lemma 1: For the channel model (6)

(8)

where are independent of and and each is
identically distributed as .

Proof: See Appendix A.

Proof of Theorem 2:Starting with the upper bound in
Lemma 1, we can further bound the mutual information by

(9)

using the assumption that (and hence ) is uniformly
bounded by the constant. Consider the first term in (9). Let

and . Circular symmetry im-
plies that ’s and ’s are uniform in . For the expectation

inside the logarithm in the first term in (9), condition on every-
thing else and take the expectation with respect to the’s first.
We then get

Now

where is the th-order modified Bessel function of the first
kind. Using the inequality we get

Using Jensen’s inequality, a bound on the first term in (9) is thus

(10)

We now focus on the second term in (9).
Under Assumption 1) on the input sequence

and for

and hence the second term in (9) is .
It is also easy to see that under Assumption 2), the second

term is .
Combining this with (10) now yields the theorem.

The bound in Theorem 2 can be explicitly computed for spe-
cific distributions of the path amplitudes. To get more insight,
consider the special case when the gain amplitudes ’s are
identically distributed such that for all . We
are assuming here that the resolvable paths have equal amount
of energy. Then the bound becomes

where is the generating function of . If the
number of distinguishable paths is large, then the squared
amplitude of the gain of each path is small, of order . The
generating function is approximately linear, and
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and hence the upper bound on is approximately

Thus for large , an approximate upper bound on the mutual
information per unit time is

(11)

We observe that this bound is inversely proportional to the
number of resolvable paths, and holds when the bandwidth
is large. As the number of equal energy paths gets large, the
mutual information goes to zero.

C. Lower Bound on Mutual Information

The upper bound (11) shows that the mutual information goes
to zero when the number of resolvable paths becomes large.
What happens when the number of resolvable paths is small
even though the bandwidth is large? We address this issue by
presenting an asymptotic lower bound to the mutual information

for a specific white input.

Theorem 3: If the input is i.i.d. complex circular sym-
metric Gaussian, then

Proof: We begin with the following relationships:

(12)

where the first equality follows from the chain rule. Conditional
on the path gains and the delays , it can be seen that and

are jointly Gaussian. The first term is then given by

where is a by matrix such that if
and otherwise. By the circular convolution properties of the
discrete Fourier transform (DFT), the eigenvalues of are
precisely , where

is the DFT of the impulse response of the channel. Hence

(13)

The second step follows from the fact that is identically
distributed for every , which in turn follows from the circular
symmetry and independence of the’s.

We can upper-bound the second term in (12) by making a
worst case assumption that the paths gains’s are circularly
symmetric and Gaussian with the same variance

(14)

where and , with
. Now

(Jensen's inequality)

(Jensen's inequality)

The last inequality follows from the energy constraint on the
input and that . Combining this with (13) yields

where the second inequality follows from
for .

As , , and the third term in the
above approacheslike . The theorem folllows.

The quantity is the mutual information per co-
herence time interval. Thus in the wideband limit, we have the
following lower bound on the mutual informationper unit time:

Note that the second term is always less than the first term, so
that this lower bound is strictly positive. The first term is the
capacity of the infinite bandwidth AWGN channel. The second
term can therefore be interpreted as an upper bound on the ca-
pacity penalty due to channel uncertainty. Observe that this term
depends only on the number of resolvable paths and not on the
bandwidth. In particular, if the number of paths is bounded, then
the mutual information is bounded away from zero even at in-
finite bandwidth. This further emphasizes that the fundamental
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Fig. 1. Upper and lower bounds to the achievable mutual information as a function of the number of resolvable paths, forT = 0:018s. The unit is in bits per
second. The upper horizontal line is the capacity of the AWGN channel.

limitation comes from the number of equal-energy resolvable
paths.

As , we have the following asymptotic lower bound:

(15)

which approaches zero as . Compared to the asymptotic
upper bound in (11), we see that the upper and lower bounds
agree to within a factor of.

If we let

(16)

and

then we can write the lower bound as

and the upper bound as

Note that the upper bound holds for largewhile the lower
bound holds for any . If , then

and the mutual information achievable with spread-spectrum
signals is close to the capacity of the infinite-bandwidth AWGN
channel. On the other hand, if , then the upper bound
says that the mutual information achievable is negligible com-
pared to that of an AWGN channel. Thus one may view
as thecritical parameterdelineating the regime where “over-
spreading” occurs. If one thinks of as a nominal informa-
tion rate, then is smaller for low-rate users and for systems
with shorter coherence time.

At a carrier frequency of 1 GHz and vehicle speed of 60 mi/h,
the coherence time is of the order of 18 ms. For a voice user with
a nominal AWGN capacity of 9.6 kbits/s, this gives a value of

to be . On the other hand, at 10 GHz , the coherence
time becomes 1.8 ms, and . The upper and lower
bounds are plotted for these scenarios in Figs. 1 and 2, as a
function of the number of resolvable paths.

IV. DETECTION OFBINARY ORTHOGONAL SIGNALS

In the previous sections, we studied the information-theoretic
properties of broadband multipath channels, focusing on upper
and lower bounds on the achievable mutual information in terms
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Fig. 2. Upper and lower bounds to the achievable mutual information as a function of the number of resolvable paths, forT = 0:0018s. The unit is in bits per
second. The upper horizontal line is the capacity of the AWGN channel.

of the number of resolvable paths. In this section, we will shift
our emphasis to the detection error probability of specific bi-
nary orthogonal modulation schemes under the same scaling.
We will demonstrate performance deterioration as the number
of multipaths grow, in a manner akin to the scaling of mutual
information. We will also give an intuitive understanding of the
critical parameter in terms of estimation errors in the path
gains.

We use the same channel model as in (1):

(17)

where each path has independent statistics.
Consider now an uncoded binary modulation scheme for

which at each symbol time one of two orthogonal waveforms
and is transmitted. The symbol duration is

chosen such that , where and are the delay
spread and the coherence time of the channel, respectively. A
symbol duration much larger than the delay spread means that
we can ignore intersymbol interference. A symbol duration
much less than the coherence time means that we can assume
that the channel is essentially time-invariant over a symbol
duration. The average received energy per bit is. The two
symbols are assumed to be equiprobable. We compare the
performance of narrowband and broadband signaling schemes,
under coherent and noncoherent detection.

A. Narrowband Signaling

First consider the case when the signals are narrowband FSK
signals at frequencies and , chosen to be orthogonal. (These
are the same as the ones used in the capacity-achieving strategy
described in Section II-B.) By correlating the received signals
with and in turn, we obtain two sufficient statistics and

for detection. Assume without loss of generality that symbol
is transmitted. Similar to the development in Section II-B, we

obtain

where and , are indepen-
dent circular symmetric complex Gaussian random variables
(rv’s) with variance . (Recall that is normalized such that

. If is known to the receiver, then coherent de-
tection can be done, and the error probability, conditional on,
is given by

where is the complementary cumulative distribution func-
tion (cdf) of an random variable. If we now assume that
each path has uniform phase, magnitudesuch that
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, and a Rayleigh distribution, then is circular symmetric
Gaussian with variance, and the probability of error, averaged
over , is given by (see, for example, [10, eq. (7.3.8)])

Observe that this expression does not depend on. If each path
is not Rayleigh but still has uniform phase and is identically dis-
tributed, then this expression holds in the limit whenbecomes
large, due to the Central Limit Theorem.

If is not known to the receiver, then noncoherent detec-
tion has to be done by comparing the magnitude ofand
(square-law detector). The error probability, conditional on,
is given by [10, eq. (7.3.11)]

Assuming that each path is Rayleigh, the average error proba-
bility is then [10, eq. (7.3.12)]

If each path is not Rayleigh, then this holds only in the limit
when becomes large.

We observe that while, as expected, the performance of non-
coherent detection is worse than that of coherent detection, the
performance of the noncoherent detector does not get arbitrarily
worse as the number of paths gets large. Its limiting performance
depends only on the average SNR.

B. Wideband Signaling

Let us now consider using spread-spectrum signals, such that
and are white-like and orthogonal. Without going into

the specific details of the structure of the signals, it suffices for
our purpose here to assume that the signals have been chosen
such that delayed versions are nearly orthogonal to each other.
In this case, a reasonable approximation is the standard diver-
sity branch model (see, for example, [10, Sec. 7.4]). In this
model, the receiver observesindependently faded replicas of
the information signal, one for each resolvable path. The addi-
tive noise in each branch is white, Gaussian with power spectral
density , and independent between branches. This last as-
sumption ignores the “self-noise” due to interference between
delayed versions of the signals, and this is a good approxima-
tion if the signals are white-like.

More specifically, suppose that theresolvable paths are at
sampled delays , assumed known to the receiver.
Then if symbol is transmitted and the branches at the baseband
are given by

where is the sum of the complex gains of the paths at delay
. Match-filtering each of the branches with and

gives us the following sufficient statistics for each:

(18)

where are i.i.d. circular symmetric Gaussian random

variables with variance. Note that . For sim-
plicity, we will assume that the gains ’s of the resolvable
paths are identically distributed, and hence have variance,
i.e., the energy in the signal is equally spread among the paths.
Observe that the narrowband scenario corresponds to .

If the receiver has perfect knowledge of the complex path
gains , then the optimum detector is to do maximal-ratio
combining, weighing each branch by and then adding. This
is simply the Rake receiver. Conditional on , the proba-
bility of error is given by [10, eq. (7.4.20)]

If we assume that each of the ’s has a Rayleigh distribu-
tion, the average error probability can be explicitly calculated
as [10, eqs. (7.4.15), (7.4.21)]

(19)

where

Regardless of whether the path gains are Rayleigh, asbe-
comes large

so that the error probability converges to , i.e., the
same as that for a nonfading channel with the same received
SNR.

The performance of coherent detection as a function of
number of resolvable paths is plotted in Figs. 3 and 4 for
Rayleigh fading and at different SNR’s. The narrowband
scenario corresponds to having one diversity branch. We see
that the performance of the broadband scheme improves mono-
tonically with the number of resolvable paths. This is the
well-known multipath diversity advantage of spread-spectrum
schemes.

The picture, however, is different for noncoherent detection.
Consider a receiver which does not know the path gains’s
and implements a square-law detector, i.e., it computes for

and makes a decision based on the larger ofand . The
probability of error is
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Fig. 3. Comparison of error probability under coherent detection (below)
and noncoherent detection (above), as a function of the number of paths.
E =N =10 dB.

Let us first examine this error probability in the limit when the
number of resolvable paths becomes large. Direct computation
shows that

and hence

Also,

Since and are independent and both are a sum ofin-
dependent terms, we can apply the Central Limit Theorem and
conclude that

Hence, the probability of error of the noncoherent scheme ap-
proaches for a large number of resolvable paths. How large
does have to be for this to happen? A more refined estimate
of the error probability yields

Fig. 4. Comparison of error probability under coherent detection (below)
and noncoherent detection (above), as a function of the number of paths.
E =N =15 dB.

Hence, when is comparable to the SNR , then the per-
formance of the noncoherent detector degrades significantly.

For the case when the gain of each branch is Rayleigh, an
explicit expression for the error probability can be computed for
finite [10, eq. (7.4.30)]: it is given by (19) as in the coherent
case, but with given instead by

The performance of noncoherent detection is plotted as a
function of the number of resolvable paths in Figs. 3 and 4
for different SNR’s. We see that for small, performance of
the broadband scheme improves over that of the narrowband
scheme with increasing . This is due to the effect
of multipath diversity. As is increased further, there is a
diminishing return to the benefits from the multipath diversity.
On the other hand, the lack of knowledge about the gains of the
individual resolvable paths starts to hurt the combining ability
of the noncoherent broadband receiver. There is an optimal

after which the performance of the noncoherent broadband
detector starts to degrade. As , the noncoherent
broadband scheme performs even worse than the noncoherent
narrowband scheme and in fact the error probability of the
former approaches .

Observe the contrast in performance scaling of the coherent
and noncoherent broadband schemes. A natural question is
whether the poor performance scaling of the noncoherent
scheme can be offset to some extent by estimating the path
gains and using the estimates in a coherent receiver. To get
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some insights to this question, let us analyze the performance
of a maximal-ratio combiner, using imperfect estimates’s
instead of . We assume that for each diversity branch

, the estimate is obtained from a set of noisy
measurements

The channel measurements are commonly obtained in two
ways: from a pilot signal with known data symbols, or from
previously detected symbols. In the former case,is the
energy per bit of the pilot signal, while in the latter case,

. In either case, it is reasonable to assume that one
can measure over a time interval of length, the coherence
time. Hence, the number of measurementscan be taken to
be , where is the symbol duration. The noise ’s
are taken to be i.i.d. circular symmetric random variables,
normalized such that the variance is, and also independent of
the noise in the interval of the current symbol to be detected.

We employ the linear least-square estimate of; for each ,
this is given by

The mean-square error associated with this estimate is

(20)

same for all branches. The maximal-ratio combiner, using the
channel estimates, computes for each

where is given in (18), and picks the hypothesis with the
larger . The probability of error is

Direct computation yields

Applying the Central Limit Theorem, as

Also, by a variance computation, one can show that as

We thus conclude that as the number of resolvable paths grow,
the probability of error approaches for the coherent scheme

using imperfect channel estimates. Using the mean and variance
computation done above, a more refined estimate of the error
probability for large is given by

Thus if , then the performance is very close to
that of the coherent receiver with perfect channel estimates. On
the other hand, if , then the imperfect channel
estimates have a significant impact on performance. An intuitive
explanation can be seen from (20): if , then
the mean-square error in estimating is approximating ,
the variance of itself. In other words, little information is
gained about the ’s from the channel measurements. As the
number of paths grow large, the receiver meets the same fate as
the noncoherent receiver: detection becomes impossible.

The critical parameter

can be interpreted as the threshold delineating the regime in
which the system is “overspread”: if the number of resolvable
paths is significantly larger than , the estimation errors in
the paths gains precludes effective combining of the multipaths.
Expressing this threshold in terms of system parameters, we find
that

where is the received power of the signal from which channel
measurements are obtained. If the measurements are done in a
decision-feedback mode, is the received power of the trans-
mitted signal itself. In this case, the critical parameter defined
here for detection coincides with that defined in (16) for the
achievable mutual information. If the measurements are done
from a pilot, is the power of the pilot. On the downlink of a
CDMA system, it is more economical to have a pilot common
to all users; moreover, the power can be larger than the signals
for the individual user. This makes coherent combining easier,
resulting in a larger . On the uplink, however, it is not pos-
sible to have a common pilot, and the channel estimation will
have to be done with a weaker pilot alloted to the individual
user, or even noncoherently. With a lower received power from
the individual users, can be considerably smaller.

In concluding this section, we see that the scaling of the error
probability performance of broadband orthogonal modulation
schemes mirrors that of the information-theoretic properties we
derived earlier. As the number of resolvable paths grow large,
the performance of such schemes deteriorate arbitrarily badly,
whether they try to estimate channel parameters or perform non-
coherent detection. Certainly, this is not surprising as the infor-
mation-theoretic results impose fundamental limitation on the
performance ofany schemegiven the constraint that spread-
spectrum transmitted signals are used. On the other hand, the
analysis of specific modulation schemes done here gives a more
concrete feeling as to what goes wrong. Basically, as the number
of resolvable paths become largeand their individual energies
become correspondingly smaller, it is harder to estimate their
gains and to combine them effectively. The fact that the thresh-
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olds identified in both analyses are the same further sub-
stantiates this explanation.

V. TIMING UNCERTAINTY

In Section III, we showed that as the number of resolvable
paths with equal energy gets large, the mutual information
decreases in inverse proportion toand approaches zero. This
holds even when the receiver can track the delay of each path
perfectly. In this section, we shall show that if this side informa-
tion is nota priori assumed, the mutual information goes to zero
with increasing bandwidth even when there is only one path.

We start with the continuous-time model described in Sec-
tion II-A, but specialize to the case of single path with
a fixed gain . We keep the stochastic nature of the
delay process . We assume that remains constant for
a time and jumps to an independent value in the next time
interval of length . The duration can be thought of as the
coherence timefor this model, but observe that this is in general
different from the coherence time for the path gains consid-
ered in Section III. As explained there, the path delays typically
vary much slower than the path gains.

The second assumption is that the delay is uniformly dis-
tributed in , where is the delay spread. We will also as-
sume that there is negligible spillover of the input signal across
intervals, consistent with our assumption of the delay spread
being much less than the coherence time. Analogous to (4), we
will then consider the following baseband discrete-time model
for this channel on one coherence interval:

where are the samples of the received signal,are the scaled
samples of the transmitted signal,is the random delay in this
interval, and are the samples of the noise process. Here,

. Moreover, the channel is independent from one coherence
interval to the next. As in Section III-A, we have normalized the
scaling so that . The random variabletakes values
in and is uniformly distributed on this range. Let

. The assumption on the delay spread makes sure
that . Note that the power constraint over translates
into an energy constraint on

We now present an upper bound to the mutual information
which holds for any input distribution.

Lemma 2: Let . Then

where

is the empirical autocorrelation function of the input process
over the time-interval of length .

Proof: The proof follows the same lines as that of Lem-
ma 1. See Appendix B.

White input signals are essentially those whose empirical au-
tocorrelation function when the coher-
ence time bandwidth product is large. For these signals, Lemma
2 leads to upper bounds on the achievable mutual information
which goes to zero as the bandwidth goes to infinity. The fol-
lowing is a concrete result for the case when is an i.i.d.
process. An analogous result can be obtained for DS-CDMA
signals satisfying condition (7).

Theorem 4: If is an i.i.d. complex-valued process such
that and ,2 then as the
bandwidth , the following asymptotic upper bound
holds:

Proof: See Appendix C.

As the bandwidth becomes large, the upper bound de-
cays to zero like . This decay in mutual information is
due to the necessity to track the path timing accurately, with
the needed resolution increasing linearly with the bandwidth.
While such channel measurements are not crucial for commu-
nication using narrowband sinusoids, they are when white-like
signals are used. As the bandwidth grows, the channel cannot
be tracked at the desired accuracy, and communicating reliably
is also impossible. However, since is quite large for typical
wireless scenarios, this phenomenon will kick in only when the
bandwidth is very large.

VI. CONCLUSION

The main conclusion of this paper is that the mutual informa-
tion achievable using spread-spectrum signals through a multi-
path fading channel depends crucially on how the signal energy
is divided among theresolvable paths. If there are only a few
dominant paths, the achievable mutual information is close to
the capacity of the AWGN channel with the channel gains per-
fectly known. If the energy is spread out among many equal-en-
ergy resolvable paths, the mutual information achievable is very
small, being inversely proportional to the number of resolvable
paths . The limitation comes from the fact that the energy in
each path is too small for the gains to be measured accurately
enough for effective combining. From a communication-theo-
retic point of view, multipath diversity benefits the system only
up to a certain point. When there are too many paths, the un-
certainty about the path gain severely limits performance. We
have also established a critical parameter
which delineates the threshold on the number of resolvable paths
above which this “overspreading” phenomenon occurs: basi-
cally, when the SNR per path over a coherence time interval is
small.

Theorem 1 provides a counterpoint to the above result. It
shows that the above phenomenon is not intrinsic to the multi-
path fading channel itself but is rather a consequence of the sig-

2The latter is a technical condition that can probably be removed.
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naling strategy. Indeed, by using narrowband signals and trans-
mitting at a low duty cycle, capacity of the infinite-bandwidth
AWGN channel can be achieved. This is independent of the
number of paths.

An interesting point is brought out by these results. Whereas
for the infinite-bandwidth AWGN channel, capacity can be
achieved usinganyset of orthogonal signals, such is not the case
for multipath fading channels. The performance is very much
dependent on thespecific choice of the orthogonal signals.
While capacity can be achieved with narrowband sinusoids, the
mutual information achievable by spread-spectrum signals can
be very small. This is intimately tied to the fact that sinusoids
are eigenfunctions ofany linear time-invariant system, while
white-like signals are not.

APPENDIX A
PROOF OFLEMMA 1

Since

we can bound the mutual information by bounding
and separately. It is easy to upper-bound

since the variance of each of the’s is no greater than .
It remains to upper-bound . To simplify notation,
let .

where

and

Expanding the square

where the inequality follows from Jensen’s. Thus we have the
expression at the bottom of this page, proving the lemma.

APPENDIX B
PROOF OFLEMMA 2

To simplify notation, let .
Since
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we can bound the mutual information by bounding and
separately. It is easy to upper-bound

since the variance of each of the’s is no greater than
. It remains to upper-bound . To that end see the

expression at the bottom of this page. Thus

(21)

APPENDIX C
PROOF OFTHEOREM 4

Under the i.i.d. assumption on , the empirical autocorre-
lation function depends only on the difference ,
and the upper bound in Lemma 2 reduces to

To simplify notation, let and and

Notice that , and for , . The upper
bound on the mutual information can now be written as

The first term for large behaves like and we now
concentrate on the expectation

where is the cumulative distribution function of the random
vector . Let
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and write the integration over as a sum of two integrals,
one over , the other over . We will bound each term
separately. For the first, we will use the inequality
for to get

In the first integral we can extend the range of integration to
to get an upper bound

(22)

The second integral equals

since the means of the random variables
are zero. We will treat this term shortly. Turning our attention to
(22), we evaluate

to get an upper bound on (22) of

We will now upper-bound the remaining terms to show that
they decay like . The remaining term is

For the first integral, let us first define
. and the corresponding random variable

with cumulative distribution .
Then, the integration region is precisely that for which

. Furthermore, the integrand is upper-bounded by
. Thus the first integral can be upper-bounded by

Integrating by parts, the integral above equals

Using the union bound, the probability can be
bounded by

Now note that

and

We compute

and, similarly,

We thus conclude that

with the constant depending only on . Substituting
this into our upper bound, we see that

We will now show that a similar bound applies to

Interchanging the sum and the integral, we then bound each term
of the sum. For the term

we first bound by , then extend the range of integra-
tion to the set for which

.We then see that each term is less than
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The term is thus bounded by times the integral above,
and by the same argument as above, this term decays to zero at
least as fast as .
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