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1 Wide-Sense Stationary Processes in Discrete-Time

1.1 The Discrete-Time Fourier Transform
Definition 1.1. A discrete-time random process {Xn}n∈Z is wide-sense stationary (WSS) if E [Xn] = m
and E [X∗nXn+k] = rk for all k, n ∈ Z. If it is complex, we require further that it be proper (i.e., circularly
symmetric), which implies that E [Xn] = 0 and E [XnXn+k] = 0 for all k, n ∈ Z.

The following result relates the autocorrelation function and the power spectral density (PSD) in
multiple ways. First, it shows that the variances of DFT outputs converge uniformly to the continuous
PSD. Second, it implies that one can also estimate the PSD by first estimating the autocorrelation and
then taking the discrete-time Fourier transform. Finally, it leads naturally to the result that the DFT
asymptotically decorrelates WSS stationary noise.

Theorem 1.2 (Wiener-Khinchin). If {Xn}n∈Z is WSS with mean 0 and the autocorrelation, rk =
E [XnXn+k], satisfies

∑∞
k=0 |rk| <∞, then the power spectral density

SX(ω) , lim
N→∞

E

∣∣∣∣∣ 1√
N

N−1∑
n=0

Xne
−iωn

∣∣∣∣∣
2
 =

∞∑
n=−∞

rne
−iωn

is continuous because both limits converge uniformly for all ω.

Proof. We start by defining

X̂N (ω) ,
1√
N

N−1∑
n=0

Xne
−iωn

and observing that

E

[∣∣∣X̂N (ω)
∣∣∣2] = E

[(
1√
N

N−1∑
n=0

Xne
−iωn

)∗(
1√
N

N−1∑
m=0

Xme
−iωm

)]

=
1

N

N−1∑
n=0

N−1∑
m=0

e−iω(m−n)E [X∗nXm]

=
1

N

N−1∑
n=0

N−1∑
m=0

e−iω(m−n)rm−n

=
1

N

N−1∑
k=−N−1

(N − k) e−iωkrk

=

N−1∑
k=−N−1

(
1− k

N

)
e−iωkrk.
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This quantity converges uniformly, for all ω, as N → ∞ because rk is absolutely summable and∣∣(1− k
N

)
e−iωkrk

∣∣ ≤ |rk| whenever it appears in the sum. Therefore, we can interchange the limit
and the sum to see that

lim
N→∞

N−1∑
k=−N−1

(
1− k

N

)
e−iωkrk =

∞∑
k=−∞

e−iωkrk,

where the RHS exists for all ω because rk is absolutely summable. Since the LHS is a sequence of
continuous functions that converges uniformly, it follows that the RHS is also continuous.

Lemma 1.3. Let {Xn}n∈Z be a WSS complex process and XN = X0, . . . , XN−1. If Y N is the DFT of
XN , then the real and imaginary parts Yn have equal variance and are uncorrelated.

Proof. A complex random variable X is proper (or circularly symmetric) if E [X] = 0 and E
[
X2
]

= 0
(don’t forget XX 6= XX∗). First, we compute the variance of the real and imaginary parts of an
arbitrary proper complex random variable with

σ2
r = E

[
1

2
(X +X∗)

1

2
(X +X∗)

]
=

1

4
(E [XX] + E [X∗X] + E [XX∗] + E [X∗X∗]) =

1

2
E [X∗X]

σ2
i = E

[
1

2i
(X −X∗) 1

2i
(X −X∗)

]
= −1

4
(E [XX]− E [X∗X]− E [XX∗] + E [X∗X∗]) =

1

2
E [X∗X] .

Next, we notice the real and imaginary parts are also uncorrelated for an arbitrary proper complex
random variable by observing

E

[
1

2
(X +X∗)

1

2i
(X −X∗)

]
=

1

4i
(E [XX] + E [X∗X]− E [XX∗]− E [X∗X∗]) = 0.

Finally, we observe that Y N is a proper complex random vector because

E [YjYk] = E

[
X̂N

(
2πj

N

)
X̂N

(
2πk

N

)]
= E

[(
1√
N

N−1∑
n=0

Xne
−i 2πj

N n

)(
1√
N

N−1∑
m=0

Xme
−i 2πk

N m

)]

=
1

N

N−1∑
n=0

N−1∑
m=0

e−i
2πj
N ne−i

2πk
N mE [XnXm]︸ ︷︷ ︸

0

= 0.

1.2 Decorrelating Transformations
Let {Xn}n∈Z be a WSS process satisfying

∑∞
k=0 |rk| < ∞ and let [KXN ]m,n , E [X∗nXm] = rm−n be

the autocorrelation matrix of the vector XN = X0, . . . , XN−1. The Karhunen-Loeve transform (KLT) is
a unitary transformation UN , given by the eigenvalue decomposition KXN = UNΛNU

H
N , that maps XN

to Y N = UHNX
N . This changes its basis to the eigenvectors of its correlation matrix and implies that

the correlation matrix of the transformed signal Y N is diagonal. Let λ(N)
i = [ΛN ]i,i be the eigenvalues

of KXN for i = 0, . . . , N −1. Since the Frobenius norm ‖A‖F ,
√∑

i,j |Ai,j |2 is invariant under unitary
transformation, it follows that

1

N
‖KXN ‖

2
F =

1

N

N−1∑
i=0

∣∣∣λ(N)
i

∣∣∣2 .
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Computing the norm directly from the entries of the matrix gives the limit

lim
N→∞

1

N
‖KXN ‖

2
F = lim

N→∞

1

N

N−1∑
m=0

N−1∑
n=0

|rm−n|2 =

∞∑
l=−∞

|rl|2 ,

which converges because
∞∑

l=−∞

|rl|2 ≤

( ∞∑
l=−∞

|rl|

)2

<∞.

Since the 2-norm of the diagonal is upper bounded by the Frobenius norm, one can measure how well a
transform decorrelates a process by computing how much of the Frobenius norm is contributed by the
diagonal.

Lemma 1.4. The DFT asymptotically decorrelates a WSS process in the sense that the correlation
matrix of the output vector Y N = FNX

N contains all of its energy on the diagonal as N → ∞. In
particular, one finds that

lim
N→∞

1

N

N−1∑
k=0

∣∣∣[KY N ]k,k

∣∣∣2 = lim
N→∞

1

N
‖KY N ‖

2
F .

Proof. First, we notice that the k-th diagonal element of KY N is equal to SX
(
2πk
N

)
and compute

lim
N→∞

1

N

N−1∑
k=0

[KY N ]
2
k,k = lim

N→∞

1

N

N−1∑
k=0

∣∣∣∣SX (2πk

N

)∣∣∣∣2 =
1

2π

∫ 2π

0

|SX (ω)|2 dω =

∞∑
l=−∞

|rl|2 ,

where the second step follows from the continuity of SX(ω) and the third from the Parseval relation.
Next, we recall that

∞∑
l=−∞

|rl|2 = lim
N→∞

1

N
‖KXN ‖

2
F = lim

N→∞

1

N
‖KY N ‖

2
F .

Theorem 1.5 (Szegö). Let SX(ω) be the power spectral density of a WSS process {Xn}n∈Z and assume
that the autocorrelation sequence

c(α)n ,
1

2π

∫ 2π

0

|SX(ω)|α/2 eiωndω

is absolutely summable for α = 1. Then, for any continuous function f : [0,M ] → R, with M >
maxω∈[0,2π]

√
SX(ω), one finds that

lim
N→∞

1

N

N−1∑
k=0

f

(
SX

(
2πk

N

))
= lim
N→∞

1

N

N−1∑
i=0

f
(
λ
(N)
i

)
,

where λ(N)
i denotes the i-th eigenvalue of the autocorrelation matrix KXN .

Sketch of proof. Since f(x) is continuous, the Weierstrass approximation theorem shows that, for any
ε > 0, there exists a degree d <∞ polynomial that approximates f(x) on [0,M ] in the sense that

sup
x∈[0,M ]

∣∣∣∣∣f(x)−
d∑
i=0

fix
i

∣∣∣∣∣ < ε.

Therefore, linearity allows us to verify the Theorem’s conclusion only for f(x) = xi with i ∈ N. Since
c
(α+β)
n = c

(α)
n ∗ c(β)n , one can use the z-transform to show that c(α)n is absolutely summable for all α ∈ N.
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For each α ∈ N, one can define Zn to be the WSS process with this autocorrelation sequence and let
KZN be the length-N autocorrelation matrix. Applying the approach taken in Lemma 1.4, one finds
that

1

N

N−1∑
i=0

[
λ
(N)
i

]α
=

1

N

∥∥∥(KXN )
α/2
∥∥∥2
F

=
1

N
‖KZN ‖

2
F .

Taking the limit exposes the Fourier transform connection

lim
N→∞

1

N
‖KZN ‖

2
F =

∞∑
l=−∞

∣∣∣c(α)l

∣∣∣2 = lim
N→∞

1

N

N−1∑
k=0

[
SX

(
2πk

N

)]α
.

1.3 Real WSS Processes
One might naturally expect that these results also apply to real WSS processes. While this is true, it is
somewhat surprising that the analysis becomes harder rather than easier.

Theorem 1.6. If {Xn}n∈Z is a real WSS process with mean 0 and the autocorrelation, rl = E [XnXn+l],
satisfies

∑∞
l=0 |rl| l <∞, then the power spectral density is given by

SX

(
2π bκNc

N

)
, lim
N→∞

E

∣∣∣∣∣
√

2

N

N−1∑
n=0

Xn cos

(
2π bκNc

N
n

)∣∣∣∣∣
2
 =

∞∑
l=−∞

rn cos (2πκl)

and both limits converge uniformly for all 0 < κ < 1
2 . Moreover, the result is unchanged if the cos in the

middle term is replaced by sin.

Proof. We start by defining

X̂N

(
2πk

N

)
,

√
2

N

N−1∑
n=0

Xn cos

(
2πk

N
n

)
and observing that

E

[∣∣∣∣X̂N

(
2πk

N

)∣∣∣∣2
]

= E

[(√
2

N

N−1∑
n=0

Xn cos

(
2πk

N
n

))(√
2

N

N−1∑
m=0

Xm cos

(
2πk

N
m

))]

=
2

N

N−1∑
n=0

N−1∑
m=0

cos

(
2πk

N
n

)
cos

(
2πk

N
m

)
E [XnXm]

=
2

N

N−1∑
n=0

N−1∑
m=0

1

2

(
cos

(
2πk

N
(m− n)

)
+ cos

(
2πk

N
(m+ n)

))
rm−n

=
1

N

N−1∑
l=−N−1

(N − l) cos

(
2πk

N
l

)
rl +

1

N

N−1∑
l=−N−1

max{N−1,N−l−1}∑
n=min{0,−l}

cos

(
2πk

N
(2n+ l)

)
rl

=
1

N

N−1∑
l=−N−1

(N − l) cos

(
2πk

N
l

)
rl +

1

N

N−1∑
l=1

N−l−1∑
n=0

cos

(
2πk

N
(2n+ l)

)
rl +

1

2N

N−1∑
l=1

N−1∑
n=l

cos

(
2πk

N
(2n− l)

)
rl

=
1

N

N−1∑
l=−N−1

(N − l) cos

(
2πk

N
l

)
rl +

2

N

N−1∑
l=1

rl

N−l−1∑
n=0

cos

(
2πk

N
(2n+ l)

)

=

N−1∑
k=−N−1

(
1− l

N

)
cos

(
2πk

N
l

)
rl −

2

N

N−1∑
l=1

rll

(
1 +O

(
l2

N2

))
if 0 < k < N/2

=

N−1∑
k=−N−1

(
1− l

N

)
cos

(
2πk

N
l

)
rl −

2

N

N−1∑
l=1

rll

(
1 +O

(
l2

N2

))
,
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where the last term is negligible because

2

N

∣∣∣∣∣
N−1∑
l=1

rll

(
1 +O

(
l2

N2

))∣∣∣∣∣ ≤ 2

N

N−1∑
l=1

|rl| l
(

1 +O

(
l2

N2

))
≤ O(1)

2

N

∞∑
l=1

|rl| l = O

(
1

N

)

because
∑∞
l=1 |rl| l <∞. For 0 < k < N/2, the estimate

∑N−l−1
n=0 cos

(
2πk
N (2n+ l)

)
= −l

(
1 +O

(
l2

N2

))
follows from computing the sum and then performing a series expansion in N−1. Finally, we can choose
kN = bκNc and see that convergence follows from the continuity of SX (ω), which holds because rl
is absolutely summable and

∣∣(1− l
N

)
cos
(
2πk
N l
)
rl
∣∣ ≤ |rl| whenever it appears in the sum. Also, the

argument above is essentially identical for
√

2
N

∑N−1
n=0 Xn sin

(
2πk
N n

)
because

2 sin(u) sin(v) = cos(u− v)− cos(u+ v).

Corollary 1.7. The discrete Fourier sin/cos basis vectors asymptotically decorrelate a real WSS random
process. For even N , the vectors are given by the columns of the N ×N orthogonal matrix

[AN ]n,k =



√
1
N if k = 0√
2
N sin

(
π(k+1)
N n

)
if k = 1, 3, . . . , N − 3√

2
N cos

(
πk
N n
)

if k = 2, 4, . . . , N − 2√
1
N cos (πn) if k = N − 1

Proof. The proof uses arguments similar to Lemma 1.4.

Example 1.8. For a discrete-time communication channel with real WSS Gaussian noise, one can
achieve capacity by signaling on the basis vectors described in Corollary 1.7. Using waterfilling with
level ν, the achievable rate on each subchannel is given by

Rk =
1

2
log

(
1 +

(
ν − SX

(
πk
N

))+
SX
(
πk
N

) )
+ oN (1),

for k = 0, . . . , N − 1. Therefore, the average rate as N →∞ is given by

lim
N→∞

1

N

N−1∑
k=0

Rk = lim
N→∞

1

N

N−1∑
k=0

1

2
log

(
1 +

(
ν − SX

(
πk
N

))+
SX
(
πk
N

) )
+oN (1) =

1

π

∫ π

0

1

2
log

(
1 +

(ν − SX (ω))
+

SX (ω)

)
dω,

for an average input power of

lim
N→∞

1

N

N−1∑
k=0

Pk = lim
N→∞

1

N

N−1∑
k=0

(
ν − SX

(
πk

N

))+

=
1

π

∫ π

0

(ν − SX (ω))
+
dω.

In fact, the natural generalization of Theorem 1.5 can be used to prove equals the capacity.
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