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1 Introduction

EXtrinsic Information Transfer (EXIT) charts were introduced by ten Brink in 1999 as a useful tool to
understand the convergence of Turbo decoding for different component codes [1]. His work led to the
EXIT area theorem and this was put on rigorous mathematical footing by Ashikhmin, Kramer, and ten
Brink in 2004 [2]. A little later, Measson et al. showed that the area theorem also allows one to upper
bound the MAP decoding threshold using information gleaned from iterative decoding [3]. Together
these ideas highlight the fundamental connections between iterative information processing and optimal
information processing.

2 EXIT Functions

Let C be a length-n binary code and assume that a random codeword X = (Xi,...,X,,) is chosen ac-
cording to Py (z). Suppose Y; € {0,1,7} is an observation of X; through a BEC with erasure probability
¢, and Y = (Y1,...,Y,) is the channel output vector. The notation Y, ; will be used to denote the vector

(Y1,...,Y;1,Y41,...,Y,) and the notation Y (e) = (Yi(e1),. .., Yn(€n)) will be used to emphasize the
dependence on € = (e1,...,€p).

Definition 1. The EXIT function for the i-th bit of C is defined to be
hi(e) & H(X|Y.;(ew:))-

(3

If all ¢; = € for i € [n], then the simplified notation h;(e) = h; ((¢,...,€)) = H(X;|Y ;(€)) is used.
Similarly, the average EXIT function of C is defined to be h(e) = 37" | hi(¢) in the first case and
h(e) = 2 3" | hi(e) in the second.

n

Lemma 2. Using the above setup, the EXIT function for the i-th bit of C satisfies
d
hi(e) = —H(X|Y (¢)).
(6) = g, HX[X(e)

Proof. Suppressing the explicit dependence on ¢, this follows from

d d
diH(K|X) =1 [H(X;|Y) + H(X ;| X5, Y)] (H chain rule)
€; i
d d
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Lemma 3. Using the above setup, let H(X|Y (e(t))) denote the conditional entropy evaluated along the
BEC path €(t) = (e1(t), ..., en(t)) fort € [0,1]. Then,
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where h(€) = (hi(€),...,hn(€)). If the BEC path satisfies €;(t) = €(t) for i € [n], then we find that

1
H(X|Y(e(1)) — H(X[Y (e(0 / (Zh ) dt =n /O h(e(t))€ (t)dt.

Proof. These results follow directly from Lemma 2 and vector calculus. O

Example 4. Consider the non-linear code C = {00, 10,11} where codewords are chosen, respectively,
with probabilities 3, 1, 3. In this case, H(X) = 2 and it is easy to verify that

H(XilYa(ea) = 2 + $0 - ex)h(})

1(]. — 61),

H(X,|Y1(e1)) = e1h(3) + 5

where h(z) = zlog, % + (1 — z) log, ﬁ is the binary entropy function. Integrating gives

1 1 3 L L 1
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One can also verify, either directly or via differentiation, that

3 1 3
H(X|Y(e)) =erea= + = (1 —€1)ea + 161(1 — 62)h(%).

22(

2.1 Uniform Codeword Distribution

Now, let C be an (n, k) binary linear code with generator matrix G and parity-check matrix H. As-
sume that a random codeword X is chosen uniformly and transmitted through BECs with output
Y € {0,1,7}". Let E(y) = {i € [n]|y; =7} be set of indices where an erasure occurs. For a set
E = (e1,e2,...,eg) with 1 < €3 < -+ < g and an m x n matrix A = (ay,a,,...,a,) whose i-
th column is a;, we let A¢ = (a.,,a.,,... ,Qe‘g‘). The same rule can be applied to row vectors by
choosing m = 1.

Using this notation, the a posteriori probability (APP) distribution for X given Y is

Py (aly) = {Ww) tes

0 otherwise,

where V(y) = { 2€C | zgeqy) = is set of codewords that are compatible with the observations.

Yeery)
Since C is linear, the set V'(y) is the affine subspace of 2 € {0,1}" satisfying

T T
Hexe = Heey,.,

where £(y) is denoted by & for simplicity and Yg. Is a binary vector known by the decoder. Thus,
dimension of the solution space is given by |€| — rank(H,g) Similarly, affine subspace of input vectors
u € {0,1}* compatible with y is defined by

QGgC = g(gc



and dimension of the solution space is k — rank(Ggc). Of course, the two spaces must have the same
dimension and this implies that

k —rank(Gge) = |€] — rank(Hg).
Since the input distribution is uniform over C, then these unknown dimensions have full entropy and
H(X|Y =y) = |&| —rank(H¢) = k — rank(Geg-).

Lemma 5. Using the above setup, the conditional entropy H(X|Y (¢€)) is given by

H(X|Y(¢) =k — Z (H €i> (H (1- 61)) rank(Gege)

£C[n] \i€€ icEe

:iq Z (H )(H(l—eﬁ) rank(Hp).

i€E i€ge

Let H-(X|Y (¢)) denote the conditional entropy when X is chosen uniformly from the dual code C*.
Then,

n

HY(X|Y(e)) = HX|Y(1-¢) —k+ ) &

i=1

and computing the derivative with respect to €¢; shows that
hi-(e) =1~ hi(l—e).

Proof. The first formula follows from averaging H(X|Y = y) = k — rank(Ggc) over all all possible
erasure patterns because the formula depends only on the erasure pattern and not on the unerased
values. The second formula follows from averaging H(X|Y = y) = || — rank(H¢) over all all possible
erasure patterns. In this case, the expectation of |£| is computed using

S (e ()= 5 (1) (1) S

EC[n] \i€& icge EC[n] \ic€ ic&e
=> > (He) (H(l—@) 1:(j)
j=1£C[n] \i€€& icge
== ZEJ'.
j=1

For the dual code, we note that

(XY (e) Zez Z (H ei> (H (1-— ei)> rank(Hz) (Definition of H*(X|Y (¢)))

£C[n] \ic€ icge
= Zei - Z (H e,») (H (1- ei)> rank(Ge) (H- =Q)
=1 ECIn] \i€€ i€&e
= Zei - Z (H €i> (H(l - 61)) rank(Gee) (€-sum invariant: £ — £°)
i=1 £C[n] \igge €€
_ (Z ) e+ HXY (1 0). (Definition of H(X[Y (1~ ¢)))



Taking the derivative with ¢; gives

W0 = - HH (XY (o)

K2

d n
=% KZGZ> —k+ H(X|Y(1-¢)

. d%mmm—g)
=1-—h;(1—¢).

This completes the proof. O

2.2 Random Codes

Let CY) be a sequence of random linear codes, each defined by a randomly chosen parity-check matrix
H) of size (n; —kj) x n;, where r = k;/n; is design rate of the sequence and n; — co. No assumptions
are made about the distribution of HU). Still, the true rate of the j-th code is given by r(CY)) =
1— trank(H)) and basic coding theory shows that r(C)) > r with equality iff HY) is full rank. Thus,
we find that

r < r(CY).

Now, let %) (¢) be the random EXIT function of the j-th random code and observe that

r <limsupE [T(C(j))] (E then lim sup)

j—o0

1
= limsupE [/ h(j)(e)de] (EXIT Theorem)
0

j—o0

1
= lim Sup/ E {h(j)(e)} de (E over finite set)
0« ,

Jj—o0

E(j)(e)

1 .
< / limsupﬁm(e) de (Fatou’s Lemma)
0 Jj—oo
—_—
7 (e)

1
:/ E(w)(e)de.
0
2.3 BP EXIT Functions

Let CY) be a sequence of codes from the ensemble LDPC(), p), each defined by a randomly chosen
parity-check matrix HU) of size (n; — kj) x n;, where r = k;j/n; is design rate of the sequence and
n; — 0o. Suppose the normalized bit and check degree distributions of each code in the sequence are
given by A(z) and p(x). In this case, one can use the BP estimate after ¢; iterations for each bit in the
code. In the limit as n; — oo and ¢; — oo, the erasure rate is concentrated around the density evolution
estimate

hBP)(€) = L(x(e)),

where z(¢) is the limit of the decreasing sequence 11 = eA(1 — p(1 — x¢)) starting from xg = 1.
Since h9)(¢) is the EXIT function associated with optimal APP detection of C\9), it follows that the
EXIT function associated with any other estimator cannot be smaller. Thus, one finds that

7-(00)

k() £ lim supﬁ(j)(e) < hBP)(¢).

j—o0



Let us define the MAP noise threshold to be
eMAP) & gy {e € [0,1] |E(m)(e) = O} .

Then, one finds that

1 1 1
/ 7% (e)de = / 7 (e)de < / 7277 (e)de.
0 €

(MAP) (MAP)
This implies the following upper bound on the MAP noise threshold.
Theorem 6. Let € be the largest value such that

1
/ E(BP)(e)de =r.

Then, e MAP) <€

Proof. If ¢ MAP) > & then one gets the contradiction

—(BP

where (a) follows from the fact that h )(6) > E(Oo)(e) > 0 for € € (¢, e(MAP)), O

References

[1] S. ten Brink, “Convergence of iterative decoding,” Flectronic Letters, vol. 35, pp. 806-808, May 1999.

[2] A. Ashikhmin, G. Kramer, and S. ten Brink, “Extrinsic information transfer functions: model and
erasure channel properties,” IEEE Trans. Inform. Theory, vol. 50, pp. 2657-2674, Nov. 2004.

[3] C. Méasson, A. Montanari, and R. L. Urbanke, “Maxwell construction: The hidden bridge between

iterative and maximum a posteriori decoding,” IEFE Trans. Inform. Theory, vol. 54, pp. 5277-5307,
Dec. 2008.



