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1 Introduction
EXtrinsic Information Transfer (EXIT) charts were introduced by ten Brink in 1999 as a useful tool to
understand the convergence of Turbo decoding for different component codes [1]. His work led to the
EXIT area theorem and this was put on rigorous mathematical footing by Ashikhmin, Kramer, and ten
Brink in 2004 [2]. A little later, Measson et al. showed that the area theorem also allows one to upper
bound the MAP decoding threshold using information gleaned from iterative decoding [3]. Together
these ideas highlight the fundamental connections between iterative information processing and optimal
information processing.

2 EXIT Functions
Let C be a length-n binary code and assume that a random codeword X = (X1, . . . , Xn) is chosen ac-
cording to PX(x). Suppose Yi ∈ {0, 1, ?} is an observation of Xi through a BEC with erasure probability
εi and Y = (Y1, . . . , Yn) is the channel output vector. The notation Y ∼i will be used to denote the vector
(Y1, . . . , Yi−1, Yi+1, . . . , Yn) and the notation Y (ε) = (Y1(ε1), . . . , Yn(εn)) will be used to emphasize the
dependence on ε = (ε1, . . . , εn).

Definition 1. The EXIT function for the i-th bit of C is defined to be

hi(ε) , H(Xi|Y ∼i(ε∼i)).

If all εi = ε for i ∈ [n], then the simplified notation hi(ε) , hi ((ε, . . . , ε)) = H(Xi|Y ∼i(ε)) is used.
Similarly, the average EXIT function of C is defined to be h(ε) = 1

n

∑n
i=1 hi(ε) in the first case and

h(ε) = 1
n

∑n
i=1 hi(ε) in the second.

Lemma 2. Using the above setup, the EXIT function for the i-th bit of C satisfies

hi(ε) =
d

dεi
H(X|Y (ε)).

Proof. Suppressing the explicit dependence on ε, this follows from

d

dεi
H(X|Y ) =

d

dεi
[H(Xi|Y ) +H(X∼i|Xi, Y )] (H chain rule)

=
d

dεi
H(Xi|Y ) +

d

dεi
H(X∼i|Xi, Y ∼i)︸ ︷︷ ︸

ind. of εi

(X∼i → Xi → Yi Markov chain)

=
d

dεi

P(Yi =?)H(Xi|Y , Yi =?) + P(Yi 6=?) H(Xi|Y , Yi 6=?)︸ ︷︷ ︸
Yi 6=?⇒Yi=Xi⇒H=0

 (Average over Yi)

=
d

dεi
εiH(Xi|Y ∼i) = H(Xi|Y ∼i). (P(Yi =?) = εi)
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Lemma 3. Using the above setup, let H(X|Y (ε(t))) denote the conditional entropy evaluated along the
BEC path ε(t) = (ε1(t), . . . , εn(t)) for t ∈ [0, 1]. Then,

H(X|Y (ε(1))−H(X|Y (ε(0))) =

ˆ 1

0

h(ε(t)) · ε′(t)dt =
ˆ 1

0

(
n∑
i=1

hi(ε(t))ε
′
i(t)

)
dt,

where h(ε) = (h1(ε), . . . , hn(ε)). If the BEC path satisfies εi(t) = ε(t) for i ∈ [n], then we find that

H(X|Y (ε(1))−H(X|Y (ε(0))) =

ˆ 1

0

(
n∑
i=1

hi(ε(t))ε
′(t)

)
dt = n

ˆ 1

0

h(ε(t))ε′(t)dt.

Proof. These results follow directly from Lemma 2 and vector calculus.

Example 4. Consider the non-linear code C = {00, 10, 11} where codewords are chosen, respectively,
with probabilities 1

2 ,
1
4 ,

1
4 . In this case, H(X) = 3

2 and it is easy to verify that

H(X1|Y2(ε2)) = ε2 +
3

4
(1− ε2)h( 13 )

H(X2|Y1(ε1)) = ε1h(
1
4 ) +

1

2
(1− ε1),

where h(x) = x log2
1
x + (1− x) log2 1

1−x is the binary entropy function. Integrating gives
ˆ 1

0

[H(X1|Y2(ε)) +H(X2|Y1(ε1))] dε =
ˆ 1

0

[
ε+

3

4
(1− ε)h( 13 ) + εh( 14 ) +

1

2
(1− ε)

]
dε

=

(
1

2
+

1

4

)
+

(
3

8
h( 13 ) +

1

2
h( 14 )

)
=

3

4
+

3

4
=

3

2
.

One can also verify, either directly or via differentiation, that

H(X|Y (ε)) = ε1ε2
3

2
+

1

2
(1− ε1)ε2 +

3

4
ε1(1− ε2)h( 13 ).

2.1 Uniform Codeword Distribution
Now, let C be an (n, k) binary linear code with generator matrix G and parity-check matrix H. As-
sume that a random codeword X is chosen uniformly and transmitted through BECs with output
Y ∈ {0, 1, ?}n. Let E(y) , {i ∈ [n] | yi =?} be set of indices where an erasure occurs. For a set
E = (e1, e2, . . . , e|E|) with e1 < e2 < · · · < e|E| and an m × n matrix A = (a1, a2, . . . , an) whose i-
th column is ai, we let AE = (ae1 , ae2 , . . . , ae|E|

). The same rule can be applied to row vectors by
choosing m = 1.

Using this notation, the a posteriori probability (APP) distribution for X given Y is

PX(x|y) =

{
1

|V (y)| if x ∈ V (y)

0 otherwise,

where V (y) =

{
z ∈ C | zEc(y) = yEc(y)

}
is set of codewords that are compatible with the observations.

Since C is linear, the set V (y) is the affine subspace of x ∈ {0, 1}n satisfying

HEx
T
E = HEcy

T
Ec ,

where E(y) is denoted by E for simplicity and yEc is a binary vector known by the decoder. Thus,
dimension of the solution space is given by |E| − rank(HE). Similarly, affine subspace of input vectors
u ∈ {0, 1}k compatible with y is defined by

uGEc = yEc
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and dimension of the solution space is k − rank(GEc). Of course, the two spaces must have the same
dimension and this implies that

k − rank(GEc) = |E| − rank(HE).

Since the input distribution is uniform over C, then these unknown dimensions have full entropy and

H(X|Y = y) = |E| − rank(HE) = k − rank(GEc).

Lemma 5. Using the above setup, the conditional entropy H(X|Y (ε)) is given by

H(X|Y (ε)) = k −
∑
E⊆[n]

(∏
i∈E

εi

)(∏
i∈Ec

(1− εi)

)
rank(GEc)

=

n∑
i=1

εi −
∑
E⊆[n]

(∏
i∈E

εi

)(∏
i∈Ec

(1− εi)

)
rank(HE).

Let H⊥(X|Y (ε)) denote the conditional entropy when X is chosen uniformly from the dual code C⊥.
Then,

H⊥(X|Y (ε)) = H(X|Y (1− ε))− k +
n∑
i=1

εi

and computing the derivative with respect to εi shows that

h⊥i (ε) = 1− hi(1− ε).

Proof. The first formula follows from averaging H(X|Y = y) = k − rank(GEc) over all all possible
erasure patterns because the formula depends only on the erasure pattern and not on the unerased
values. The second formula follows from averaging H(X|Y = y) = |E| − rank(HE) over all all possible
erasure patterns. In this case, the expectation of |E| is computed using

∑
E⊆[n]

(∏
i∈E

εi

)(∏
i∈Ec

(1− εi)

)
|E| =

∑
E⊆[n]

(∏
i∈E

εi

)(∏
i∈Ec

(1− εi)

)
n∑
j=1

1E(j)

=

n∑
j=1

∑
E⊆[n]

(∏
i∈E

εi

)(∏
i∈Ec

(1− εi)

)
1E(j)

=

n∑
j=1

εj .

For the dual code, we note that

H⊥(X|Y (ε)) =

n∑
i=1

εi −
∑
E⊆[n]

(∏
i∈E

εi

)(∏
i∈Ec

(1− εi)

)
rank(H⊥E ) (Definition of H⊥(X|Y (ε)))

=

n∑
i=1

εi −
∑
E⊆[n]

(∏
i∈E

εi

)(∏
i∈Ec

(1− εi)

)
rank(GE) (H⊥ = G)

=

n∑
i=1

εi −
∑
E⊆[n]

(∏
i∈Ec

εi

)(∏
i∈E

(1− εi)

)
rank(GEc) (E-sum invariant: E 7→ Ec)

=

(
n∑
i=1

εi

)
− k +H(X|Y (1− ε)). (Definition of H(X|Y (1− ε)))
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Taking the derivative with εi gives

h⊥i (ε) =
d

dεi
H⊥(X|Y (ε))

=
d

dεi

[(
n∑
i=1

εi

)
− k +H(X|Y (1− ε))

]

= 1− d

dεi
H(X|Y (1− ε))

= 1− hi(1− ε).

This completes the proof.

2.2 Random Codes
Let C(j) be a sequence of random linear codes, each defined by a randomly chosen parity-check matrix
H(j) of size (nj −kj)×nj , where r , kj/nj is design rate of the sequence and nj →∞. No assumptions
are made about the distribution of H(j). Still, the true rate of the j-th code is given by r(C(j)) =
1− 1

n rank(H
(j)) and basic coding theory shows that r(C(j)) ≥ r with equality iff H(j) is full rank. Thus,

we find that
r ≤ r(C(j)).

Now, let h(j)(ε) be the random EXIT function of the j-th random code and observe that

r ≤ lim sup
j→∞

E
[
r(C(j))

]
(E then lim sup)

= lim sup
j→∞

E
[ˆ 1

0

h(j)(ε)dε

]
(EXIT Theorem)

= lim sup
j→∞

ˆ 1

0

E
[
h(j)(ε)

]
︸ ︷︷ ︸

h
(j)

(ε)

dε (E over finite set)

≤
ˆ 1

0

lim sup
j→∞

h
(j)

(ε)︸ ︷︷ ︸
h
(∞)

(ε)

dε (Fatou’s Lemma)

=

ˆ 1

0

h
(∞)

(ε)dε.

2.3 BP EXIT Functions
Let C(j) be a sequence of codes from the ensemble LDPC(λ, ρ), each defined by a randomly chosen
parity-check matrix H(j) of size (nj − kj) × nj , where r , kj/nj is design rate of the sequence and
nj → ∞. Suppose the normalized bit and check degree distributions of each code in the sequence are
given by λ(x) and ρ(x). In this case, one can use the BP estimate after `j iterations for each bit in the
code. In the limit as nj →∞ and `j →∞, the erasure rate is concentrated around the density evolution
estimate

h(BP )(ε) = L(x(ε)),

where x(ε) is the limit of the decreasing sequence x`+1 = ελ(1− ρ(1− x`)) starting from x0 = 1.
Since h(j)(ε) is the EXIT function associated with optimal APP detection of C(j), it follows that the

EXIT function associated with any other estimator cannot be smaller. Thus, one finds that

h
(∞)

(ε) , lim sup
j→∞

h
(j)

(ε) ≤ h(BP )(ε).
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Let us define the MAP noise threshold to be

ε(MAP ) , sup
{
ε ∈ [0, 1]

∣∣h(∞)
(ε) = 0

}
.

Then, one finds that
ˆ 1

0

h
(∞)

(ε)dε =

ˆ 1

ε(MAP )

h
(∞)

(ε)dε ≤
ˆ 1

ε(MAP )

h
(BP )

(ε)dε.

This implies the following upper bound on the MAP noise threshold.

Theorem 6. Let ε be the largest value such that
ˆ 1

ε

h
(BP )

(ε)dε = r.

Then, ε(MAP ) ≤ ε.

Proof. If ε(MAP ) > ε, then one gets the contradiction

r ≤
ˆ 1

0

h
(∞)

(ε)dε

≤
ˆ 1

ε(MAP )

h
(∞)

(ε)dε

≤
ˆ 1

ε(MAP )

h
(BP )

(ε)dε

(a)
<

ˆ 1

ε

h
(BP )

(ε)dε

= r,

where (a) follows from the fact that h
(BP )

(ε) ≥ h(∞)
(ε) > 0 for ε ∈ (ε, ε(MAP )).
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