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A Punctured History of ECC: In the Beginning

1945: Hamming experiments with ECC for computers

1948: Claude Shannon publishes treatise on information theory

1949: Golay publishes the binary Golay code

1950: Hamming publishes seminal Hamming parity-check code

1955: Elias publishes first paper on convolutional codes

1960: Reed-Solomon code paper and Peterson BCH decoding paper

1960: Gallager introduces low-density parity-check (LDPC) codes and
iterative decoding in his PhD thesis
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A Punctured History of ECC: Big Breakthroughs

1993: Berrou et al. revolutionize coding with turbo codes

1995: MacKay and Neal rediscover LDPC codes

1997: LMSSS approach capacity with irregular LDPC codes

2000: DVB-RCS and 3GPP standards are first to include turbo codes

2001: Zigangirov et al. introduce LDPC convolutional codes

2001: RU introduce density evolution to optimize LDPC codes

2002: Luby’s rateless fountain codes achieve capacity on the BEC

2004: DVB-S2 standard is the first to include LDPC codes

200x: Optimized LDPC codes solve most coding problems
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A Punctured History of ECC: Recent Advances

2009: Arikan’s polar codes deterministically achieve capacity

2011: Kudekar, Richardson, and Urbanke discover threshold saturation
and show LDPC convolutional codes achieve capacity

2012: Variants of LDPC convolutional codes (e.g., braided codes) used in
practice for optical communication

Note: Many important advances (especially in algebraic coding) are
neglected due to our focus on modern capacity approaching codes.
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Applications of Error-Correcting Codes

Many devices make use of error-correcting codes:

Compact Discs and DVDs

Cell Phones

Hard Disk Drives

The Internet

Flash Memory and RAM in your computer

Microprocessor Bus Connections

DNA Microarrays
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Main Elements of this Course
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Inference Problems:
point-to-point communication
multiple-access communication
best assignment w/constraints
rate distortion
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Coding Schemes:
product codes
turbo codes
LDPC codes
polar codes
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Mathematical Tools:
factor graphs: marginalization and message passing
probability: martingales, concentration, and Markov fields
combinatorics: generating functions and duality
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Goals of this Course (1)

1. Define maximum-likelihood (ML) decoding, maximum-a-posteriori
(MAP) decoding, and a-posteriori-probability (APP) processing for
inference problems.

2. Understand random codes (graphs) and code (graph) ensembles.

3. Find the factor graph for an inference problem and approximate its
marginalization via message-passing on that factor graph.

4. Understand connections between: (i) the Gibb’s free energy and APP
processing, (ii) the Bethe free energy and sum-product processing.

5. Analyze the performance of message-passing decoding on the binary
erasure channel (BEC) for both code ensembles and individual codes.
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Goals of this Course (2)

6. Explain the gap between message-passing and MAP decoding and
use EXIT functions to derive bounds on that gap on the BEC.

7. Analyze the performance of message-passing decoding for code
ensembles on binary memoryless symmetric (BMS) channels.

8. Compute average weight enumerator and spectral shape of standard
ensembles and use them to bound ML decoding thresholds.

9. Identify communications and signal processing problems where
message-passing can be used implement detection and estimation.
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Standard Point-to-Point Communication

Uk1 Encoder Channel Decoder Ûk1 , X̂
n
1

Xn
1 Y n1

Encoder: Maps data Uk1 ∈ {0, 1}
k to codeword Xn

1 ∈ C ⊂ Xn

Channel: Randomly maps Xn
1 ∈ Xn to Y n1 ∈ Yn (i.i.d. ∼ p(y|x))

Decoder: Estimates information sequence Ûk1 and codeword X̂n
1

Information Theory: Shannon’s Channel Coding Theorem
An information rate R = k/n (bits/channel use) is achievable iff
R < I(X;Y ), where I(X;Y ) is the mutual information

Capacity C is the maximum of I(X;Y ) over the input dist. p(x)

Proof based on using a random code from a suitable ensemble
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Binary Memoryless Symmetric (BMS) Channels

For BMS Channels, capacity is achieved by:

Uniform input distribution (Pr(X=0)=Pr(X=1)=1/2)

Uniform random codes with maximum-likelihood (ML) decoding

Consider a BSC(p): (i.e., binary symmetric channel with error rate p)

Capacity is C = 1− h(p), where h(p),p log 1
p+ (1−p) log2 1

1−p

Hamming ball: B(yn1 ,m) = {zn1 ∈ {0, 1}n | dH(yn1 , z
n
1 ) ≤ m}

For any ε>0, we find δn=Pr (Xn
1 /∈ B(Y n1 , (p+ε)n))→ 0 by LLN

pn errors expected and prob. of > (p+ ε)n errors vanishes as n→∞
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Random Coding for the BSC (1)

Consider a random code where:

For i = 0, 1, . . . , 2k − 1, ith codeword Xn
1 (i) is i.i.d. Bernoulli(

1
2 )

Codeword Xn
1 (j) is transmitted

Decoder lists all codewords in ball B(Y n1 , (p+ ε)n) around received

Returns a codeword if exactly one codeword in ball

Declares failure otherwise

A union bound on Pe(j), the decoder error probability, gives

Pe(j) ≤ δn +
2k∑

i=0,i6=j

Pr (Xn
1 (i) ∈ B(Y n1 , (p+ ε)n))
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Random Coding for the BSC (2)

Assume p+ ε ≤ 1
2 . Since X

n
1 (i) is independent of Y

n
1 for i 6= j,

Pr (Xn
1 (i) ∈ B(Y n1 , (p+ ε)n)) ≤ 1

2n
|B(Y n1 , (p+ ε)n)|

=
1

2n

b(p+ε)nc∑
i=0

(
n

i

)
≤ 2n[h(p+ε)−1]

If R < C=1−h(p), then R+h(p+ε)−1<0 for some ε>0 and

Pe(j) ≤ δn +

2k∑
i=0,i6=j

Pr (Xn
1 (i) ∈ B(Y n1 , (p+ ε)n))

≤ δn + 2k2n[h(p+ε)−1] = δn + 2n

<0︷ ︸︸ ︷
[R+ h(p+ ε)− 1] → 0
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Random Linear Codes

Also holds for codes defined by random k × n generator matrix

Only problem is that codewords are no longer independent r.v.

Given 2 codewords, distribution on a 3rd changes due to linearity

Need only to argue more carefully that, for i 6= j,

Pr (Xn
1 (i) ∈ B(Y n

1 , (p+ ε)n)) ≤ 1

2n
|B(Y n

1 , (p+ ε)n)|

A few facts about random linear codes:
For fixed code, symmetry implies error prob. independent of j

Since 0 ∈ C, we order codewords so Xn
1 (0) = 0 and choose j = 0

Then, Pr(Xn
1 (i) = xn1 | Xn

1 (0) = 0) = Pr(Xn
1 (i) = xn1 ) and:

For i 6= 0, Xn
1 (i) is independent of both Xn

1 (0) and Y n
1

Pr
(
Xn

1 (i) ∈ B(Y n
1 , (p+ ε)n)

)
≤ 1

2n

∣∣B(Y n
1 , (p+ ε)n)

∣∣
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The 50 Year Challenge

For general linear codes: storage and encoding is tractable

Requires nk bits for storage and nk boolean operations

NP decision problems require “Yes” be verified in polynomial time

“Is there a codeword zn1 s.t. dH(zn1 , y
n
1 ) ≤ e?” is NP-complete!

For the generator matrix G, ML decoding is the inference problem

x̂n1 = arg max
xn
1∈{uG|u∈{0,1}k}

Pr (Y n1 = yn1 | Xn
1 = xn1 )

Q: Is there a code structure that makes decoding tractable?
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Low-Density Parity-Check (LDPC) Codes

parity
checks
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permutation

code bits

Linear codes defined by xHT = 0 for all c.w. x ∈ C
H is an r × n sparse parity-check matrix for the code
Ensembles defined by bit/check degrees and rand. perm.

Bipartite Tanner graph
Bit (check) nodes associated with columns (rows) of H
Each check is attached to all bits that must satisfy the check



ECEN 655: Advanced Channel Coding 17 / 19

History and Applications Course Outline Examples State of the Art

Sparse Graph Codes

= = = = = = =

+++

= = = =

Codeword constraints defined via sparse factor graph
factor nodes define the constraints
variable nodes define the variables
half-edges represent observations (or degree-1 factor nodes)

Three typical constraints
Equality (=): Edges are bits that must have the same value
Parity (+): Edges are bits that must sum to zero (mod 2)
Trellis: Bit edges must be compatible with state edges
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Some Recent History

Turbo Codes
Introduced in 1993 by Berrou, Glavieux, and Thitimajshima
Revolutionized coding theory with performance
McEliece et al.: turbo decoding = belief propagation (1998)

Low Density Parity Check (LDPC) Codes
Introduced in 1960 by Gallager and then forgotten
Re-discovered by MacKay in 1995
Irregular LDPC achieves capacity on BEC (1997)
Density evolution for AWGN: 0.0045 dB from cap. (2001)

Sparse Graph Codes
Natural generalization that encompasses many code families
Low-complexity iterative decoding has outstanding performance
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Turbo vs. LDPC Performance

BER: Standard Turbo (blue) vs Irregular LDPC (red)
From “The Capacity of LDPC Codes Under Message Passing
Decoding”, Richardson & Urbanke, Trans. IT 2001
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