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1 Overview

In the last lecture, we covered marginalization and how functions that factorize allow one to mini-
mize the complexity of marginalization. In particular, we discussed:

• how to represent such a factorization as a factor graph and

• how passing messages on that factor graph can leads to efficient marginalization.

In this lecture, we will:

• connect factor graphs with probability,

• discuss the relationship between Bayesian Networks (BNs) and FGs,

• conditional independence in FGs

• log-likelihood-ratio (LLR) messages for binary random variables, and

• discuss the use of FGs in coding.

2 Connection to Probability

Any non-negative function f(x1, . . . xn) can be normalized into the PMF for the RVs X1, . . . Xn

with

Pr(X1 = x1, . . . Xn = xn) =
1

Z
f (x1, . . . xn) ,

where Z =
∑

xn1
f(x1, . . . xn) is called the partition function.

3 Bayesian Networks

Bayesian networks (BNs) and factor graphs are two ways of representing a joint PMF. For any BN,
there is a tree FG with similar graphical structure that represents the same distribution. For any
tree FG, one can also define a BN with similar graphical structure. But, for FGs with cycles there
is typically no equivalent BN. Thus, FGs are more general.

Let the RVs X1, . . . Xn be the vertices of a directed acyclic graph.

Pr(X1 = x1, . . . Xn = xn) =
n∏
i=1

P
(
Xi = xi|Xπ(i) = xπ(i)

)
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where π(i) is the set of nodes with a directed edge to i (i.e., the parents of node Xi).

3.1 Rain-Sprinkler-Grass Example

S R

G

A common example used to motivate BNs is the question, ”What is the probability it is raining
given the grass is wet?”. Since grass may be wet due to either rain or a sprinkler, there are three
random variables R,S,G of interest. The main assumption is that people typically don’t water
their grass when it is raining. Thus, we get the BN

P (G,S,R) = P (R) · P (S|R) · P (G|R,S).

Of course, one problem with this example is that the factorization is generic and works for any
three random variables.

3.2 Markov Chain

Let us consider a homogenous Markov chain. We can represent it using both a BN with

x1 x2 x3 x4

and as a factor graph with

x1f1 f2 x2 x3 x4f2 f2

where f(x1, . . . x4) = f1(x1)f2(x1, x2) · f2(x2, x3) · f2(x3, x4) and f2(x, x
′) = Pr(Xi+1 = x′|Xi = x)

and f1(x1) = Pr(X1 = x1). Using these definitions, the FG is essentially the same as the BN. It
is also possible to use factor nodes where

∑
x′ f2(x, x

′) is not a constant with respect to x. In this
case, the resulting factorization is not easily converted into a BN.

4 Conditional Independence

Let A,B, S be disjoint subsets of VNs. We say that S separates A and B if any path from u ∈ A
to v ∈ B must pass through w ∈ S.

Lemma: If S separates A and B, then

Pr (XA = xA, XB = xB|XS = xS) = Pr (XA = xA|XS = xS) · Pr (XB = xB|XS = xS)
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Proof: Fixing XS = xS allows one to remove all VNs in S and update attached factors. Since
S separates A and B, the new factor graph must break into multiple two disjoint components
with A and B if different components. Revisiting the generalized distributive law, we see that
Pr (XA = xA, XB = xB|XS = xS) decomposes into the product of two terms where one term de-
pends only on xA and the other term depends only on xB.

5 Binary Random Variables

Looking at the update equations for the message-passing algorithm, we see that scaling an input
message by a constant results only in scaling the output message by the same constant. Therefore,
if we are only interested in normalized marginals, then we can safely normalize messages at each
stage and we define

µ
(t)
i→a(xi) =

µ
(t)
i→a(xi)∑
x′ µ

(t)
i→a(x

′)

For binary random variables, normalized messages can be represented by scalars because µ(1) =
1− µ(0). It is sometimes convenient to use other representations:

• Likelihood-Ratio: µ(0)
µ(1)

• Log Likelihood-Ratio: ln µ(0)
µ(1)

• Difference: µ(0)− µ(1)

Now, let us consider the VN update equation

µ
(t)
i→a(xi) =

∏
b∈∂a\i

µ̂
(t−1)
b→i (xi)

For binary random variables with LLR messages:

L
(t)
i→a = ln

µ
(t)
i→a(0)

µ
(t)
i→a(1)

= ln

∏
b∈∂a\i µ̂

(t−1)
b→i (0)∏

b∈∂a\i µ̂
(t−1)
b→i (1)

= ln
∏

b∈∂a\i

µ̂
(t−1)
b→i (0)

µ̂
(t−1)
b→i (1)

=
∑
b∈∂a\i

L̂
(t−1)
b→i

Hence, the VN update becomes a sum in the LLR domain.
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6 Connection to LDPC Codes

x1 x2 x3 x4 x5 x6 x7

f1 f2 f3

Given the r×n parity-check matrix H of a binary linear code C, we define a variable node for each
column and a factor (i.e., check) node for each row. The parity constraint enforced by a check node
gives rise to the FN function

feven(xd1) = I(x1 ⊕ . . .⊕ xd = 0).

The factor associated with row a is connected to the variable node associated with column i iff
Ha,i = 1. The resulting factor graph is typically called the Tanner graph of the code.

Since the binary vector xn1 is a codeword iff it satisfies all parity checks, we see that the indicator
function of the code factors into the form

1C(x
n
1 ) =

r∏
a=1

feven(xC(a)),

where C(a) = {i ∈ [n] |Ha,i = 1}. For decoding, each VN also has a local factor determined by the
channel observation.
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