
ECEN 655: Advanced Channel Coding Spring 2014

Lecture 5 — 01/28/2014

Prof. Henry Pfister Scribe: Ying Wang

1 Overview

In the last lecture, we talked about marginalization via message passing and conditional indepen-

dence for factor graphs. In this lecture, we’ll talk about how to apply the message passing algorithm

for the decoding of LDPC codes.

2 Decoding of LDPC codes

x1 x2 x3 x4 x5 x6 x7

f1 f2 f3

LDPC codes are linear codes defined by xHT = 0 for all c.w. x ∈ C

• H is an r × n sparse parity-check matrix for the code

• Ensembles of LDPC codes can be defined by specifying the bit and check degrees and a

random permutation that connects them

One can build a factor graph (FG) for binary LDPC codes by associating bit and check nodes with

columns and rows of H

• Bits are VNs in FG with local factors from channel observations

• Checks are FNs defined by: feven(xd1) = I(x1 ⊕ · · · ⊕ xd = 0)

• The indicator function of the overall code factors into a product of indicators for the local

parity checks

1C(x
n
1) =

r∏
i=1

feven(xF (i))

1

2.1 VN and CN updates in LLR domain

Normalized binary messages are given by scalar µ(1) = 1 − µ(0). One can also use the likelihood

ratio (LR) µ(0)
µ(1) or the log likelihood-ratio (LLR) L = ln µ(0)

µ(1) .

For inference, LLR messages contain all the information:

L
(t)
i→a = ln

µ
(t)
i→a(0)

µ
(t)
i→a(1)

L̂
(t)
a→i = ln

µ̂
(t)
a→i(0)

µ̂
(t)
a→i(1)

Recall that the VN message-passing update is:

µ
(t+1)
i→a (xi) =

∏
b∈F (i)\a

µ̂
(t)
b→i(xi)

In the LLR domain, this simplifies to

L
(t+1)
i→a = ln

µ
(t+1)
i→a (0)

µ
(t+1)
i→a (1)

= ln

∏
b∈F (i)\a µ̂

(t)
b→i(0)∏

b∈F (i)\a µ̂
(t)
b→i(1)

=
∑

b∈F (i)\a

L̂
(t)
b→i

Recall that the CN message-passing update is:

µ̂
(t)
a→i(xi) =

∑
xV (a)\xi

f1(xV (a))
∏

j∈V (a)\i

µ
(t)
j→a(xj)

In the LLR domain, this gives

L̂
(t)
a→i = ln

µ̂
(t)
a→i(0)

µ̂
(t)
a→i(1)

= ln

∑
xV (a):xi=0 f1(xV (a))

∏
j∈V (a)\i µ

(t)
j→a(xj)∑

xV (a):xi=1 f1(xV (a))
∏
j∈V (a)\i µ

(t)
j→a(xj)

2.2 Simplified Summation

For binary LDPC codes, many of the summations naively include terms that are known to be zero.

For example, the ”factor” associated with the variable node,

f(x1, . . . , xd) = I(x1 = x2 = · · · = xd)

= 1{x1=x2=···=xd}(x
d
1),

is zero except for the arguments 00 · · · 00 and 11 · · · 11. Therefore, we find that

∑
xd1\xd

f(x1, · · · , xd)
d∏
i=1

µ̂→i(xi) =


∏d
i=1 µ̂→i(0) if xd = 0∏d
i=1 µ̂→i(1) if xd = 1

2

Likewise, the check node factor is given by

f(x1, . . . , xd) = I(x1 ⊕ x2 ⊕ · · · ⊕ xd = 0)

= 1{x1⊕x2⊕···⊕xd=0}(x
d
1)

=

0 if odd parity

1 if even parity.

In this case, the function is zero for exactly half of the possible arguments.

2.3 Generating functions

In combinatorics, a generating function is an algebraic object that is used to organize combinatorial

objects into groups by weight. For example, let A be a set where each element a has a non-negative

integer weight w(a). We use Ah to denote the number of elements in A with weight h. Then, the

associated generating function is

A(x) =
∑
a∈A

xw(a) =
∑
h≥0

Ahx
h.

Likewise, one can define B(x) for the sequence Bh associated with the set B. Now, consider

organizing all elements in C = A×B by weight (assuming the product weight is additive w((a, b)) =

w(a) + w(b)). This gives

C(x) =
∑
h≥0

Chx
h

=
∑
a∈A

∑
b∈B

xw((a,b))

=
∑
a∈A

∑
b∈B

xw(a)xw(b)

=

(∑
a∈A

xw(a)

)(∑
b∈B

xw(b)

)
= A(x)B(x).

Example: Consider A(x) = 2x+ x2 and B(x) = x2 + x3 + x4. Then,

(2x+ x2)(x2 + x3 + x4) = (1 · x+ 1 · x+ 1 · x2) · (1 · x2 + 1 · x3 + 1 · x4)

has 9 terms in the expanded product. There is a one-to-one correspondence between these 9 terms

and the ways to pick one object from each set. Multiplying, we find that C(x) = 2x3+3x4+3x5+x6.

3

2.4 Characteristic Function

Let A(x) =
∑

hAhx
h and assume that P(X = h) = Ah/A(1). Thus, X is the weight of an object

drawn randomly from the set A. Recall that the characteristic function of X is

φ(s) = E
[
esX
]

=
∑
h≥0

Ah
A(1)

esh =
A(es)

A(1)

Example: Enumerating weighted patterns of bits with odd/even weight.

Let µi→(0), µi→(1) for i = 1, . . . , d represent real numbers associated binary values 0,1. Consider

the following expression

φ(z) =
d∏
i=1

∑
xi∈{0,1}

µi→(xi)z
xi

=

d∏
i=1

(µi→(0) + zµi→(1))

=
∑

xd1∈{0,1}d

d∏
i=1

µi→(xi) · zwH(xd1)

From this, we can find the even-parity terms of φ(z) (i.e. z0, z2, z4 . . .)

1

2
[φ(z) + φ(−z)] =

∑
xd1∈{0,1}d

feven(xd1)
d∏
i=1

µi→(xi)z
wH(xd1)

The simplified even parity sum is

1

2
[φ(1) + φ(−1)] =

∑
xd1∈{0,1}d

d∏
i=1

µi→(xj)
1

2

[
(1)wH(xd1) + (−1)wH(xd1)

]

=
∑

xd1∈{0,1}d

d∏
i=1

µi→(xj) I
(
wH(xd1) is even

)

=
∑

xd1∈{0,1}d
feven(xd1)

d∏
i=1

µi→(xj)

4

Similarly, the simplified odd parity sum is

1

2
[φ(1)− φ(−1)] =

∑
xd1∈{0,1}d

d∏
i=1

µi→(xj)
1

2

[
(1)wH(xd1) − (−1)wH(xd1)

]

=
∑

xd1∈{0,1}d

d∏
i=1

µi→(xj) I
(
wH(xd1) is odd

)

=
∑

xd1∈{0,1}d
fodd(xd1)

d∏
i=1

µi→(xj)

2.5 Simplified CN update for even parity constraint in LLR domain

x1

x2

x3

f1 x4

µ (t)
1→

µ
(t)
2→

µ
(t)

3→

µ̂
(t)
→4

For degree 4, the CN message-passing update is:

L̂
(t)
→4 = ln

µ̂
(t)
→4(0)

µ̂
(t)
→4(1)

= ln

∑
x31∈{0,1}3

feven(x31)
∏3
i=1 µ

(t)
j→(xj)∑

x41:x
4=1 feven(x41)

∏3
i=1 µ

(t)
j→(xj)

= ln

∑
x31∈{0,1}3

feven(x31)
∏3
i=1 µ

(t)
j→(xj)∑

x31∈{0,1}3
fodd(x31)

∏3
i=1 µ

(t)
j→(xj)

For the general degree d:

L̂
(t)
→d = ln

∏d−1
j=1(µ

(t)
j→(0) + µ

(t)
j→(1)) +

∏d−1
j=1(µ

(t)
j→(0)− µ(t)j→(1))∏d−1

j=1(µ
(t)
j→(0) + µ

(t)
j→(1))−

∏d−1
j=1(µ

(t)
j→(0)− µ(t)j→(1))

= ln
1 +

∏d−1
j=1

µj→(0)−µj→(1)
µj→(0)+µj→(1)

1−
∏d−1
j=1

µj→(0)−µj→(1)
µj→(0)+µj→(1)

= ln
1 +

∏d−1
j=1 tanh(12Lj→)

1−
∏d−1
j=1 tanh(12Lj→)

= 2 tanh−1(

d−1∏
j=1

tanh(
1

2
Lj→))

5

Note that we used the following properties in the computation.

tanh(
1

2
ln
a

b
) =

a− b
a+ b

2 tanh−1(z) = ln
1 + z

1− z

h(z) = ln coth(
|z|
2

)

h(h(z)) = z

3 Extension to a Commutative Semiring

A commutative semiring is a commutative ring where addition may not have inverse. It turns out

that the distributive operations used to reduce the complexity of marginalization work similarly in

any commutative semiring. For example, consider the maximization

max
xn1

f(x1, . . . , xn) = max
xn1

∏
a∈F

fa(xV (a)).

In this case, the max operation (instead of the sum) can be pushed to the right to minimize

computations.

The following table lists some important commutative semirings. For each operation, the identity

is listed along with the mathematical definition.

Table 1: Commutative semiring

Set Addtion Multiplication Name

R ≥ 0 (+, 0) (·, 1) sum-product

R ≥ 0 (max, 0) (·, 1) max-product

R ≥ 0
⋃
{∞} (min,∞) (+, 0) min-sum

6

