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1 Introduction
These notes are intended to introduce concentration inequalities for martingales with bounded incre-
ments. The final section also provides a gentle introduction to conditional expectation based on sigma
fields. In contrast to providing a firm foundation for measure-theoretic probability, the primary goal is
to introduce the language and intuition used in the study of martingales. The presentation is based on
[1] but adds a few examples and details.

2 Background
Consider a probability space (Ω,F ,P) with a countable sample space Ω. In this case, one can choose
F = 2Ω and the probability of any event A ∈ F is given by the convergent sum

P(A) =
∑
ω∈A

P(ω).

A random variable (r.v.) X is defined by a real function X : Ω→ R of the random outcome ω ∈ Ω. The
expected value of r.v. is denoted

E[X] ,
∑
ω∈Ω

P(ω)X(ω).

Let X,Y, Z be random variables on a common probability space. In this case, the conditional
expectation can be seen both as the deterministic quantity

h(y) , E [X|Y = y] =
∑

ω∈Ω:Y (ω)=y

P (ω)

P ({ω ∈ Ω |Y = y})
X(ω)

and as a new random variable
E [X|Y ] = h(Y ).

Exercise 1. Use elementary probability theory to verify the following identities

E [E[X|Y ]] = E[X]

E [E[X|Y, Z]|Z] = E[X|Z].

Example 2. Let Ω = {1, 2, 3}2 represent the outcomes of rolling two distinguishable 3-sided dice at
once. Assume all outcomes are equiprobable and consider the r.v.s X,Y defined by X ((a, b)) = a and
Y ((a, b)) = a+ b. Then, Z = E [X|Y ] is a discrete r.v. with p.m.f. P (Z = z) defined by

P (Z = z) =



1
9 if z = 1
2
9 if z = 1.5
3
9 if z = 2
2
9 if z = 2.5
1
9 if z = 3

0 otherwise.
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Definition 3. A r.v. X is called integrable if E[|X|] < ∞. A sequence (Xi)
∞
i=0 of r.v.s is called

uniformly integrable if
lim
x→∞

sup
i

E
[
|Xi|I{|X|≥x}

]
= 0,

where IA is the indicator r.v. of the event A ∈ F .

3 Martingales
Let (Xi)

∞
i=0 and (Zi)

∞
i=0 be sequences of random variables (r.v.s) defined on a common probability space.

Definition 4. The sequence (Xi)
∞
i=0 is called a martingale with respect to (Zi)

∞
i=0 if each Xi is

integrable and, for i ∈ N,
E [Xi|Z0, Z1, . . . Zi−1] = Xi−1.

It is called a supermartingale w.r.t. (Zi)
∞
i=0 if E [Xi|Z0, Z1, . . . Zi−1] ≤ Xi−1 and a submartingale

w.r.t. (Zi)
∞
i=0 if E [Xi|Z0, Z1, . . . Zi−1] ≥ Xi−1. If Xi = Zi for all i, then (Xi)

∞
i=0 is simply called a

martingale and
E [Xi|X0, X1, . . . Xi−1] = Xi−1.

Martingales were motivated by the idea of a gambler playing a fair game whose bet at time i can
be any function of the past outcomes. Under this restriction, one finds that the expected wealth of the
gambler satisfies

E [Xi|X0] = E [E [Xi|X0, X1, . . . Xi−1] |X0] = X0

for all i. Taking the expected value on both sides of this equation shows that E [Xi] = E [X0].
The above results appear to contradict the well-known martingale betting strategy where a gambler

bets $1 initially and doubles her bet each time she loses. Eventually, she is guaranteed to win and, at
that point, she will always make a $1 profit. Thus, we have constructed a random stopping time T ,
which is chosen causally based on available information, such that E [XT |X0] = X0 + 1. This “paradox”
was resolved by Doob’s optional stopping time theorem [2, p. 261] which says that E [XT ] = E [X0] if:
(i) P(T < ∞) = 1, E [|XT |] < ∞, and limn→∞ E

[
XnI{T>n}

]
= 0. In the above example, the first two

conditions hold (e.g., T is geometric with mean 2 and E [|XT |] = E [|X0 + 1|] < ∞) but the third does
not. Thus, the theorem does not apply.

Exercise 5. Let Sn = Y1 + Y2 + · · · + Yn be the sum of n i.i.d. r.v. satisfying E [Yi] = µ < ∞,
E
[
(Yi − µ)2

]
= σ2 <∞, and φ(t) = E

[
etYi

]
. Show that the following sequences are martingales:

1. Xn = Sn − nµ

2. Xn = (Sn − nµ)2 − nσ2

3. Xn(t) = etSn−n lnφ(t) for any fixed t such that φ(t) <∞.

Definition 6. Let (Xi)
∞
i=0 be a martingale and define Yi = Xi −Xi−1 for i ∈ N. Then, Yi is called a

martingale difference sequence.

Exercise 7. Show that r.v.s in a martingale difference sequence are conditionally zero-mean (i.e.,
E [Yi|X0, . . . , Xi−1] = 0) and uncorrelated (i.e., E [YiYj |X0, . . . , Xi−1] = 0 for j < i). Use this to
show that, if X0 = 0, then

E
[
X2
n

]
=

n∑
i=1

E
[
Y 2
i

]
=

n∑
i=1

E
[
(Xi −Xi−1)2

]
.

Example 8 (Doob Martingale). Let X be an integrable r.v. and (Zi)
∞
i=0 be an arbitrary sequence of

random variables. Then, the sequence Xi = E [X|Z0, Z1, . . . , Zi], for i = 0, 1, . . ., is automatically a
martingale with respect to (Zi)

∞
i=0. One can verify this by observing that

E [Xi|Z0, Z1, . . . , Zi−1] = E [E [X|Z0, Z1, . . . , Zi] |Z0, Z1, . . . , Zi−1] = E [X|Z0, Z1, . . . , Zi−1] = Xi−1.

The sequence (Xi)
∞
i=0 can be seen as increasingly accurate estimates of X which are constructed based

on the observations (Zi)
∞
i=0. It can also be shown that the sequence (Xi)

∞
i=0 is uniformly integrable .
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Theorem 9 (Martingale Convergence). Let (Xi)
∞
i=0 be a martingale satisfying supi E [|Xi|] < ∞.

Then, the limit X(ω) = limn→∞Xn(ω) exists for almost all ω ∈ Ω. Moreover, E [|X|] < ∞ and
Xn converges to X almost surely. If, in addition, (Xi)

∞
i=0 is a uniformly integrable martingale, then

limn→∞ E [|Xi −X|] = 0 and Xi = E [X|Z0, Z1, . . . , Zi]. Note: the first result is used to prove that polar
codes achieve capacity.

Proof. See [2, p. 278].

4 Martingales with Bounded Differences
Martingales with bounded differences are particularly useful because they are easy to analyze and can
be used to solve many problems in electrical engineering and computer science. They are often used
to prove that a r.v. is tightly concentrated around its mean value. The interesting part is that the
argument is independent of the mean value. The main result depends on the following lemma that was
applied to i.i.d. sums by Hoeffding and to martingales with bounded differences by Azuma.

Lemma 10. If the r.v. Z satisfies |Z| ≤ c and E [Z|A] = 0, then E
[
eγZ |A

]
≤ eγ2c2/2.

Proof. Let f(z) = eγz and observe that, since f(z) is convex, it is upper bounded by the line segment
connecting (−c, f(−c)) to (c, f(c)). This gives

f(z) ≤ g(z) =
1

2c

(
eγc − e−γc

)
z +

1

2

(
eγc + e−γc

)
=
z

c
sinh(γc) + cosh (γc) .

From this, we determine that

E
[
eγZ |A

]
≤ E [g(Z)|A] = E [Z|A]

1

c
sinh(γc) + cosh (γc) = cosh (γc) .

The final result follows from observing that (2k)! = 2k(2k − 1) · · · 1 ≥ 2kk(k − 1) · · · 1 and applying the
upper bound

cosh(x) =

∞∑
k=0

x2k

(2k)!
≤
∞∑
k=0

x2k

k!2k
≤
∞∑
k=0

(
x2

2

)k
k!

= ex
2/2.

Theorem 11. Let Xi = E[X|Z0, Z1, . . . , Zi] be a Doob martingale such that, for i ∈ N,

|Xi −Xi−1| ≤ ci <∞.

Then, for all n ≥ 1 and any α > 0, we have

P
(
Xn −X0 ≥ α

√
n
)
≤ e
− α2n

2
∑n
i=1

c2
i

P
(
X0 −Xn ≥ α

√
n
)
≤ e
− α2n

2
∑n
i=1

c2
i .

Proof. The idea is to estimate a Chernoff bound on Xn−X0 using martingale properties. For any γ ≥ 0,
the Chernoff bound implies

P
(
Xn −X0 ≥ α

√
n
)
≤

E
[
eγ(Xn−X0)

]
eγα
√
n

.

The expectation on the RHS can be upper bounded using

E
[
eγ(Xn−X0)

]
= E

[
eγ(Xn−1−X0)+γ(Xn−Xn−1)

]
= E

[
E
[
eγ(Xn−1−X0)+γ(Xn−Xn−1)|Z0, Z1, . . . , Zn−1

]]
(nested conditional E)

= E
[
eγ(Xn−1−X0)E

[
eγ(Xn−Xn−1)|Z0, Z1, . . . , Zn−1

]]
(Xn−1, X0functions of Zn−1

0 )

≤ E
[
eγ(Xn−1−X0)ec

2
nγ

2/2
]

(Lemma10 via E
[
Xn −Xn−1|Zn−1

0

]
= 0)

≤ e
γ2

2

∑n
i=1 c

2
i . (by induction)
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The first stated result is obtained by using this bound and choosing γ = α
√
n∑

i c
2
i
. The second result follows

from observing that, because

E
[
e−γYn |Z0, Z1, . . . , Zn−1

]
≤ ec

2
nγ

2/2,

one can also apply the same argument to X0 −Xn.

Theorem 12 (McDiarmid). Let Z1, Z2, . . . , Zn be independent random variables taking values in Z and
f : Zn → R be a real function. Then,

P
(
f(Z1, . . . , Zn)− E [f(Z1, . . . , Zn)] ≥ α

√
n
)
≤ e
− α2n

2
∑n
i=1

c2
i ,

where the Lipschitz constant (w.r.t. Hamming distance) associated with the i-th coordinate is

ci = sup
z1,...,zn,z′i∈Z

|f(z1, . . . , zn)− f(z1, . . . , zi−1, z
′
i, zi+1, . . . , zn)| .

Proof. The proof is written for discrete r.v.s but can easily be extended to the general case. Let X =
f(Z1, . . . , Zn) and Xi = E [X|Z1, Z2, . . . , Zi] define a Doob martingale with respect to (Zi)

n
i=1. Since

Z1, Z2, . . . , Zn are independent r.v., we observe that

E [f(Z1, . . . , Zn) |Z1, . . . , Zi−1] =
∑
z′i∈Z

P(Zi = z′i)E [f(Z1, . . . , Zi−1, z
′
i, Zi+1, . . . , Zn) |Z1, . . . , Zi] .

Using this, we can write

|Xi −Xi−1| = |E [f(Z1, . . . , Zn) |Z1, . . . , Zi]− E [f(Z1, . . . , Zn) |Z1, . . . , Zi−1]|

=

∣∣∣∣∣∣E [f(Z1, . . . , Zn) |Z1, . . . , Zi]−
∑
z′i∈Z

P(Zi = z′i)E [f(Z1, . . . , Zi−1, z
′
i, Zi+1, . . . , Zn) |Z1, . . . , Zi]

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
z′i∈Z

P(Zi = z′i)E [f(Z1, . . . , Zn)− f(Z1, . . . , Zi−1, z
′
i, Zi+1, . . . , Zn) |Z1, . . . , Zi]

∣∣∣∣∣∣
≤
∑
z′i∈Z

P(Zi = z′i)E [|f(Z1, . . . , Zn)− f(Z1, . . . , Zi−1, z
′
i, Zi+1, . . . , Zn)| |Z1, . . . , Zi]

≤ sup
z1,...,zn,z′i∈Z

|f(z1, . . . , zn)− f(z1, . . . , zi−1, z
′
i, zi+1, . . . , zn)| .

Since X0 = E [f(Z1, . . . , Zn)] and Xn = f(Z1, . . . , Zn), we can apply Theorem 11 to obtain the stated
result.

Definition 13. Let (Ω,F ,P) be a probability space for the set of graphs with n vertices. Let G
be a random graph and suppose that its vertices are labeled 1, 2, . . . , n and exposed sequentially in
that order. Let the random variable Zi define all the edges emananting from vertex i. Then, for any
function f : Ω → R, the Doob martingale Xi = E [f(G)|Z1, Z2, . . . , Zi] is called the vertex exposure
martingale and satisfies X0 = E [f(G)] and Xn = f(G).

At each step, one new vertex is observed along with all edges connecting that vertex to previously
exposed vertices. Let Ejk, for 1 ≤ j < k ≤ n, be the indicator r.v. of an edge connecting vertex j to
vertex k. The observation process can be seen to expose subsets of these indicator functions at each
step. In particular, we have Zi = {Eji}1≤j<i.

Example 14. The chromatic number χ(G) of a graph G is the minimum number of colors such that,
when all vertices are assigned colors, each pair of adjacent vertices can be assigned different colors.
Let G(n, p) be the Erdos-Renyi ensemble of random graphs with n vertices where each of the

(
n
2

)
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possible edges are chosen independently with probability p. Let G be a random graph from G(n, p) and
Xi = E [χ(G)|Z1, Z2, . . . , Zi] be the vertex exposure martingale for the chromatic number of G.

For a graph G, let Gi be the subgraph generated by the first i vertices of G and observe that Xi

is the weighted average of the chromatic number over all possible extensions of Gi. Likewise, Xi−1 is
the weighted average of the chromatic number over all possible extensions of Gi−1. In this average, one
can group together all terms that have the same edge connections between vertex i and vertices < i.
Doing this, shows that Xi −Xi−1 is upper bounded by the maximum change in the chromatic number
associated with arbitrary changes to edges between vertex i and vertices < i, while keeping all other
edges fixed.

Fortunately, adding one vertex (along with all of its edges) to a graph can increase the chromatic
number by at most one (e.g., it can always be assigned the new color). Since the chromatic number is
unchanged by deleting a vertex and adding it back again, this also implies that deleting a vertex can
reduce it by at most one. This implies that |Xi −Xi−1| ≤ 1 and allows us to apply Theorem 11 to see
that

P
(
|χ(G)− E [χ(G)]| ≥ α

√
n
)
≤ 2e−α

2/2.

Exercise 15. Does the previous analysis of the chromatic number apply to an arbitrary distribution
over graphs? If so, explain. If not, give a counterexample.

Definition 16. Let (Ω,F ,P) be a probability space for the set of graphs with n vertices. Let G be a
random graph and suppose that its edges are exposed sequentially in a fixed order. Let e =

(
n
2

)
and

define Ei, for i = 1, . . . , e, to be an indicator r.v. for the existence of the i-th exposed edge. Then, for
any function f : Ω→ R, the Doob martingale Xi = E [f(G)|E1, E2, . . . , Ei] is called the edge exposure
martingale and satisfies X0 = E [f(G)] and Xe = f(G).

Exercise 17. Repeat the previous analysis of the chromatic number using an edge exposure martingale
and the fact that adding/deleting one edge changes the chromatic number by at most one. Is the bound
better or worse than the vertex exposure martingale?

Now, we extend this approach to handle functions of permutations. Let Sn be the symmetric group
on n elements and, for π, σ ∈ Sn, let d(π, σ) be the minimum number of transpositions required to
transform π into σ (or vice-versa). It turns out that (Sn, d) forms a metric space.

Theorem 18. Let f : Sn → R be a function that satisfies |f(π)− f(σ)| ≤ c d(π, σ) for all π, σ ∈ Sn
(i.e., f is Lipschitz-c w.r.t. d). If Π ∈ Sn is a uniform random permutation on n elements, then

P
(
f(Π)− E [f(Π)] ≥ α

√
n
)
≤ e−α

2/(2c2).

Proof. Let Π be a random permutation with values Π1,Π2, . . . ,Πn. Then, Xj = E [f(Π) |Π1, . . . ,Πj ]
defines a Doob martingale with respect to (Πi)

n
i=1. The key observation we need is that

E [f(Π) |Π1, . . . ,Πj−1] =

n∑
k=j

1

n− j + 1
E [f ((jk)Π) |Π1, . . . ,Πj ] ,

where the transposition (jk) swaps the the j-th and k-th elements of Π. Using this, we can bound the
increments with

|Xj −Xj−1| = |E [f(Π) |Π1, . . . ,Πj ]− E [f(Π) |Π1, . . . ,Πj−1]|

=

∣∣∣∣∣∣E [f(Π) |Π1, . . . ,Πj ]−
n∑
k=j

1

n− j + 1
E [f ((jk)Π) |Π1, . . . ,Πj ]

∣∣∣∣∣∣
=

∣∣∣∣∣∣
n∑
k=j

1

n− j + 1
E [f(Π)− f ((jk)Π) |Π1, . . . ,Πj ]

∣∣∣∣∣∣
≤

n∑
k=j

1

n− j + 1
E [|f(Π)− f ((jk)Π)| |Π1, . . . ,Πj ]

≤ c.

5



Since X0 = E [f(Π)] and Xn = f(Π), we can apply Theorem 11 to obtain the stated result.

Now, we use the two previous theorems to prove the concentration theorem for message-passing
decoding of irregular LDPC codes. The only decoder property used is that the output message from any
bit node depends only on the received values and the graph structure in a “small” local neighborhood of
the bit node.

Corollary 19. Consider a random code drawn from the LDPC(n, λ, ρ) ensemble, transmitted over a
memoryless channel, and let X1, . . . , Xn be the bit-node output messages after ` iterations of message-
passing decoding. Let h :M→ R satisfy supx,x′∈M |h(x)− h(x′)| ≤ 1. Then, we have

P

(∣∣∣∣∣
n∑
i=1

h(Xi)− E

[
n∑
i=1

h(Xi)

]∣∣∣∣∣ ≥ α√n
)
≤ 2e−α

2/(2c2) + 2e−α
2d/(8c2),

where c = rmax(rmaxlmax)` and d =
(∫ 1

0
λ(x)dx

)−1

.

Proof. First, we observe that the code has n bits and m = dn edges. Therefore, the r.v. Xi is given by a
deterministic function gi : Yn×Sm →M of the received vector Y n and the permutation Π that defines
the code. This allows us to define

f(Y n,Π) ,
n∑
i=1

h(Xi) =

n∑
i=1

h (gi(Y
n,Π)) .

The proof proceeds in two steps and consists mainly of verifying that f(Y n,Π) is Lipschitz in Y n w.r.t.
to Hamming distance and Lipschitz in Π w.r.t. transposition distance. Next, we show that, for a fixed Π,
H is concentrated around its average over Y n. Finally, we show that its average over Π is concentrated
around its overall expectation.

Let N (`)
i be the subgraph generated by the check nodes in depth-` neighborhood of the i-th bit and

observe that the output message of the i-th bit depends only on N (`)
i and the received values of bit nodes

in N (`)
i . Since the maximum bit and check degrees are given by lmax and rmax, the maximum number

of check nodes in N (`)
i is given by

B = lmax

`−1∑
i=0

((lmax − 1)(rmax − 1))
`

= lmax
((lmax − 1)(rmax − 1))

` − 1

(lmax − 1)(rmax − 1)− 1

≤ (rmaxlmax)
`
.

Since each check node has at most rmax edges, the maximum number of bit nodes (and edges) in N (`)
i

is upper bounded by A = rmaxB.
Since bit j is in N (`)

i iff bit i is in N (`)
j , it follows that changes in the i-th received value affect at

most A output values. Therefore, for any π ∈ Sm, the maximum change in f(Y n, π) is upper bounded
by the product of the number of Xi’s that can change (i.e., A) with the maximum change in h(Xi) (i.e.,
1). The resulting upper bound on the Lipschitz constant is c = A and Theorem 12 allows us to conclude
that

P
(
f(Y n, π)− E [f(Y n, π)] ≥ α

√
n
)
≤ 2e−α

2/(2c2).

Swapping the endpoints of any two edges in the graph corresponds to transposing two elements of
π in f(yn, π). Since this only affects the i-th output message if one of those edges is in N (`)

i , it follows
that the value of f(yn, π) changes by at most b = 2A = 2c (i.e., at most 2A values change by at most
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1). Since this bound holds for all yn, is also holds for any average over yn. Therefore, we can apply
Theorem 18 to f̃(π) = E [f(Y n, π)] and conclude that

P
(
f̃(Π)− E

[
f̃(Π)

]
≥ α
√
n
)
≤ 2e−α

2m
n /(2b

2) = 2e−α
2d/(8c2).

Combining these two bounds gives the stated result.

5 Sigma Fields and Probability
Definition 20. A σ-field (Ω,F) consists of a set Ω and a collection of subsets F ⊆ 2Ω that satisfies

1. ∅ ∈ F

2. A ∈ F implies Ac ∈ F

3. Ai ∈ F for i ∈ N implies ∪i∈NAi ∈ F

Remark 21. In this note, we restrict our attention to the case that Ω is a complete separable metric
space. For a finite sample space Ω, it is often easiest to use the maximal σ-field F = 2Ω. For infinite
sample spaces, a common choice is the Borel σ-field F = B(Ω), which is the σ-field generated by all open
sets in the topology generated by the metric.

Definition 22. Let Ω be a set and A ⊆ 2Ω be a collection of subsets. The σ-field generated by A is
denoted σ(A) and is defined to be the intersection of all σ-fields that contain A (i.e., the smallest σ-field
that contains A). Existence and uniqueness follows from the intersection in the definition.

Example 23. Consider the sample space Ω = {0, 1}2 associated with two Bernoulli trials. The σ-
field F1 = {∅, {00, 01}, {11, 10}, {00, 01, 10, 11}} is generated by A = {{00, 01}} and only distinguishes
between the outcomes of the first trial. Likewise, F2 = {∅, {00, 10}, {11, 01}, {00, 01, 10, 11}} only resolves
outcomes of the second trial.

Definition 24. A probability space (Ω,F ,P) consists of a σ-field (Ω,F) and a probability law P :
F → R that satisfies

1. P(A) ≥ 0 for all A ∈ F

2. P(Ω) = 1

3. If Ai ∈ F , for i ∈ N, is a collection of pairwise disjoint sets (i.e., Ai ∩Aj = ∅ for i 6= j), then

P (∪i∈NAi) =
∑
i∈N

P (Ai) .

Example 25. Continuing the example, one observes that any probability law on F1 is completely
determined by the success probability P ({11, 10}) of the first trial. Likewise, any probability law on F2

is completely determined by P ({11, 01}).

Definition 26. A function X : Ω→ R is measurable w.r.t. the σ-field F (or F-measurable) if the set
{ω ∈ Ω |X(ω) ≤ a} is in F for all a ∈ R. Furthermore, we let FX = σ(X) denote the σ-field generated
by the aforementioned collection of sets.

Remark 27. There is a one-to-one correspondence between measurable functions and random variables.

Example 28. Continuing the previous example, we let X1 : Ω → R be the function defined by
X1 ((a, b)) = a. Then, X1 is F1-measurable because {ω ∈ Ω |X1(ω) ≤ 0} = {00, 01} ∈ F1 and
{ω ∈ Ω |X1(ω) ≤ 1} = {00, 01, 10, 11} ∈ F1. But, X1 is not F2-measurable because {00, 01} /∈ F2.
One also finds the reverse is true for X2 ((a, b)) = b.
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Proposition 29. Let X,Y be random variables (i.e., measurable functions) defined on (Ω,F ,P). If Y
is FX-measurable, then Y is a deterministic function of X.

Proof. We prove the contrapositive. If Y is not a deterministic function of X, then there is an A ⊆ Ω
such that X(A) = a and Y (A) is not a singleton. For any y ∈ (inf Y (A), supY (A)), one finds that
{ω ∈ Ω |Y (ω) ≤ y} ⊂ {ω ∈ Ω |X(ω) = a}. But, no proper subset of {ω ∈ Ω |X(ω) = a} is in FX . This
implies that Y is not FX -measurable.

Definition 30. For a σ-algebra (Ω,F), let the atom containing ω be Aω(F) = ∩A∈F :ω∈AA or the
smallest element of F that contains ω. The collection of all atoms in F is given by {Aω(F) |ω ∈ Ω}.

Example 31. Continuing the previous example, we observe that, for F1, the collection of atoms is given
by {{00, 01}, {11, 10}}.

Proposition 32. Let X,Y be random variables (i.e., measurable functions) defined on (Ω,F ,P). If Y
is FX-measurable, then Y is constant on all atoms of FX .

Proof. The proof of the previous Proposition can be easily modified to handle this case.

Example 33. Continuing the previous example, we check that X1 is constant on the atoms of F1, since
it is F1-measurable. For the first atom {00, 01}, we verify that X1(00) = X1(01) = 0. Checking the
second atom {00, 01} is left to the reader.

Remark 34. While atoms are well-defined for both countable and uncountable sample spaces, they are
much more useful in countable sample spaces. In the countable case, every element in the σ-algebra can
be constructed as a countable union of atoms. For uncountable sample spaces, the atoms may be the
points (e.g., in the Borel σ-field) but general elements on the σ-field cannot be generated by countable
unions of atoms.

Example 35. Consider the probability space (Ω,F ,P) with Ω = [0, 1]2, where F = B
(
[0, 1]2

)
is the

Borel σ-algebra generated by the standard open sets on this space. The atoms of this σ-algebra are given
by the points of Ω because each point can be seen as the countable intersection of open sets containing
that point. Let X ((a, b)) = a be a r.v. on this probability space and consider the atoms of FX = σ (X).
In this case, one finds that A(a,b) (FX) is the subspace {(a′, b) ∈ Ω | a′ = a}. In other words, knowledge
of X removes all uncertainty in one dimension but provides no information about the other.

6 Conditional Expectation and Sigma Fields
If the sample space Ω is countable, then the conditional expectation can be seen both as the deterministic
quantity

h(y) , E [X|Y = y] =
∑

ω∈Ω:Y (ω)=y

P (ω)

P ({ω ∈ Ω |Y = y})
X(ω)

and the random variable
E [X|Y ] = h(Y ).

When the sample space is uncountable, the sum in h(y) becomes an integral, but the quantity P({Y =
y}) = P ({ω ∈ Ω |Y = y}) may be zero. For this reason, the function h(y) may not be well-defined and
the following definition is used.

Definition 36. Let X,Y be random variables (i.e., measurable functions) defined on (Ω,F ,P) and let
X be integrable. The conditional expectation Z = E [X|Y ] is defined to be any random variable (i.e.,
measurable function) that satisfies

1. Z is FY -measurable

2. For all Λ ∈ FY , we have
∫

Λ
Z(ω) dP =

∫
Λ
X(ω) dP
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Remark 37. One issue is that the conditional expectation is, strictly speaking, not unique. Any two r.v.
satisfying the above conditions (for a fixed X,Y ) must be equal almost everywhere (a.e.) but can differ
on sets of measure zero. Another problem is existence. While the conditional expectation always exists,
proving this requires some work and is neglected in these notes.

It can also be useful to consider conditional expectations w.r.t. to σ-fields.

Definition 38. Let X be an integrable random variable defined on (Ω,F ,P) and G ⊆ F be a subfield of
F . The conditional expectation Z = E [X|G] is defined to be any random variable (i.e., measurable
function) that satisfies

1. Z is G-measurable

2. For all Λ ∈ G, we have
∫

Λ
Z(ω) dP =

∫
Λ
X(ω) dP

Remark 39. One should notice that the only difference from the previous definition is that FY has been
replaced by G. This implies that E [X|Y ] = E [X|G] if G is chosen to be the σ-field generated by Y (i.e.,
G = σ(Y ) = FY ). Likewise, this implies that E [X|G] = E [X|Y ] if Y is chosen to be a r.v. that takes
distinct values on all atoms of G.
Example 40. Continuing the previous example, we let G = σ(Y ) be the σ-field generated by Y and
observe also that G is the σ-field generated by the atoms A = {{11}, {12, 21}, {13, 22, 31}, {23, 32}, {33}}.
It is also worth observing that Z = E [X|G] is constant on all atoms of G.

7 Martingales and Filters
Definition 41. A filter w.r.t. a probability space (Ω,F ,P) is an increasing sequence F0 ⊆ F1 ⊆ · · · ⊆ F
of σ-fields such that (Ω,Fi,P), for i = 0, 1, . . ., is a probability space. It is assumed that F0 = {∅,Ω}
and, by definition, the σ-fields are ordered by refinement in the sense that A ∈ Fi implies A ∈ Fj for
i ≤ j.
Remark 42. One should think about the elements in Fi as summaries of the history of the random
process X0, X1, . . . up to time i.

Proposition 43. Let X be a r.v. and (Fi)∞i=0 be a filter on the probability space (Ω,F ,P). Then, we
have

1. E [E [X|Fi] |Fj ] = E
[
X|Fmin{i,j}

]
for i, j ≥ 0

2. If Y is Fi-measurable, then E [XY |Fi] = E [X|Fi] Y
Proof. TBD

Definition 44. Let (Fi)∞i=0 be a filter on the probability space (Ω,F ,P) and (Xi)
∞
i=0 be a sequence of

integrable r.v.s such that Xi is Fi-measurable. We say that (Xi)
∞
i=0 X0, X1, . . . is a martingale w.r.t.

(Fi)∞i=0 if, for i ∈ N,
E [Xi|Fi−1] = Xi−1.

It is called a supermartingale if E [Xi|Fi−1] ≤ Xi−1 and a submartingale if E [Xi|Fi−1] ≥ Xi−1.

Remark 45. This reduces to the simpler definition of a martingale by choosing Fi = σ(X0, . . . , Xi) (i.e.,
the minimal filter that makes each Xi Fi-measurable) so that E [Xi|Fi−1] = E [Xi|X0, X1, . . . Xi−1].

Definition 46. Let (Xi)
∞
i=0 be a martingale w.r.t. (Fi)∞i=0 and define, for i = 1, 2, . . ., Yi = Xi −Xi−1.

Then, Yi is called a martingale difference sequence.

Example 47 (Doob Martingale). Let X be an integrable r.v. and (Fi)∞i=0 be a filter on the probability
space (Ω,F ,P). Then, the sequence of r.v.s Xi = E [X|Fi] is automatically a uniformly integrable
martingale. One can verify the martingale property by observing that

E [Xi|Fi−1] = E [E [X|Fi] |Fi−1] = E [X|Fi−1] = Xi−1.

The sequence of r.v.s can be seen as increasingly accurate estimates of X that are generated by the
increasingly refined knowledge of X represented by the filter’s increasing σ-fields.
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Theorem 48 (Doob’s Maximal Inequality). Let (Xi)
∞
i=0 be a non-negative submartingale w.r.t. (Fi)∞i=0.

Then, for any p ≥ 1 and λ > 0, we have

P
(

max
i∈{0,...,n}

Xi ≥ λ
)
≤ E [Xp

n]

λp
.

Proof. For p ≥ 1, if (Xi)
∞
i=0 is a non-negative submartingale, then (Xp

i )∞i=0 is too. Applying the maximal
inequality to (Xp

i )∞i=0 gives the stated result [2, p. 280].

Example 49. Let (Xi)
∞
i=0 be a martingale w.r.t. (Fi)∞i=0. Then, for any q ≥ 1, Yi = |Xi|q is a

non-negative submartingale. Thus, for any p ≥ 1, we have

P

(
sup

i∈{0,...,n}
|Xi|q ≥ λ

)
≤ E [|Xn|qp]

λp
.

Theorem 50 (Martingale Convergence). Let (Xi)
∞
i=0 be a martingale w.r.t. (Fi)∞i=0 satisfying supi∈N E [|Xi|] <

∞. Then, the limit X(ω) = limn→∞Xn(ω) exists for almost all ω ∈ Ω and X is measurable w.r.t.
F∞ = σ (∪iFi). Moreover, E [|X|] < ∞ and Xn converges to X almost surely. If, in addition, (Xi)

∞
i=0

is a uniformly integrable martingale, then limn→∞ E [|Xi −X|] = 0 and Xi = E [X|Fi].

Proof. See [2, p. 309].
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