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What to do?

g7

theoretically optimal?

E D E— I What is information

OPEN PROBLEM: THE CAPACITY REGION OF THE
INTERFERENCE CHANNEL
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Example |:binary adder channel

X1 €10,1 2
W1—> Encoder 1} 1 { } ><D >(De(30der 1)'—> Wl

= X1 ® Xo
(modulo 2 addition)

/ \ Yy = X1 & X
Encoder ; UJ Decoder 2 )—>W2

26{0 1}

What rate pairs (log(#m),log(#W>)) can be transmitted reliably?

X1
Y 0 1 Y=Y, =0— (Xl,XQ)
L 0o 1 Yi=Y,=1—= (X1, X>)
2 1 1 : O

3

Can only transmit | bit in total

€ {(0,0),(1,1)
c {(0,1),(1,0

)

;
;



Example |:binary adder channel

X1 €10,1 -
Wi—| Encoder 1} . { } ’® >(Decoder 1)—>W1

= X1 ® Xo
(modulo 2 addition)

/ \ Yy = X1 & X
Encoder ; UJ Decoder 2 )—>W2

QE{O 1}

\s ©
What rate pairs (log(#W1), log(#W,)) &'ﬂ e st A% tted reliably?

‘I \L“O\N g Uuter bound (individual)
ofime> Ey Outer bound (sum)

*
*
Fy

N\ Fix X2 =0 then Y; = X,
SvliS x"

Ci=1 Rl lOg(#Wl)
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Example 2: AWGN channel

Zy ~N(0,1)

Power P l
b

X .
W]_—>( Encoder 1 ) ! hll 2NV >(Decoder 1)'_’ W]_
Yi=hiXq + hoa1 Xo + 24

_«Outer bound (individual)
"~ When hai, hi2 are “big”
Fix Xo =0 then Y1 = h11 X1 + £44

—

Rl = lOg(#Wl)

1
Cy = 5 log(1 + by P1) 5



Goals of this lecture

forced jokes

|) understand what is understood .
forced travel pics

2)

3)

4)

understand 3 outer bound and | inner
bound proof techniques

forced UIC advertisement

understand different ways of handling
interference

ask questions and relate to your own research
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Formal definition

X7 Y )
W1—> Encoder 1 1 (Decoder 1)——>W1
Channel /

{p(ybyth@)J
Wo——| Encoder 2)X/n' \Y;(Decoder 2 )—>W2
2 2

e a discrete memoryless interference channel (DM-IC) (A7 x
Xo, p(y1, Y2|x1, x2), Y1 XV2) consists of 4 finite sets/alphabets
X1, Xo, V1, Vo and a collection of conditional pmfs p(y1, yo2|z1, x2)

e sender 7 = 1,2 sends an independent message W; to receiver j

e lower case x is an instance of random variable X in calligraphic alphabet X



Formal definition

o A (27411 2782 ) code for the IC consists of:

1. Two message sets-, and [1 : 27F2]

wy € [1:2"72] = 2T (w,)

3. Two decoders:

yy — [1: 2"%2] U error

e we assume Wi and Wy are uniformly distributed on [1 : 27#1] and [1 : 2782
respectively



Formal definition

e average probability of error:

P = P{(Wy, W) # (W1, W)}

e Rate pair (R, Ry) is achievable if there exists a sequence of (21, 2742 n) codes
with P™ 5 0 as n — oo

e The capacity region ot the DM-IC is the closure of the set of achievable rate
pairs (Rl, Rg)

e Note: capacity region depends on p(y1,¥y2|x1,x2) only through the marginals
p(y1|z1, z2) and p(yz|z1, x2)






Reminder

Point-to-point capacity

R<C:= m(ach(X;Y)
p\x

Rl SI(XMYXQ)Q)
Ry < I1(X2;Y|X4,Q)
R1—|—R2 SI(Xl,XQ;Y Q)

union taken over all p(q)p(x1|q)p(x2|q)




What if the transmitters cooperate?

X Y. " A
W2 W]__>( Encoder 1 1 1 (Decoder 1}—>W1
Channel /

>< [p(yl,ythxz)J
\

Wl Wo——| Encoder 2)/n' (Decoder 2 )—>W
X2 an 2

becomes a 2Tx antenna broadcast channel (solved for AWGN)

n
1 ( ) A
Decoder 1 IV
Channel / 1

W _ (Wl, WQ)‘—> Encoder 1 X_ — (X]_ 7X2l[p(y1,y2$1,$2)J

\ y \Y;(Decoder 2 )-’Wz
2




What if the receivers cooperate!

n

X Y/ .
W]_—V( Encoder 1 )\1A 1 (Decoder 1}—>W1
Channel / —
2

Y.
[p(y1, Y2 \561, $2)J
Yn

1
Wo——| Encoder M \}/Q;(Decoder 2 )—>W2

.« aiff cult

becomes a 2Rx anter~ _ | hat \S “css channel (solved)

_corferet
\ts > Encoder 1 X1 ( A
‘ L Channel ~
Y™ = (YY" W
[Qp(yl,ygxl,:ﬁg)1 ( 1 2 )> Decoder 1 p» !
J W
Wo——| Encoder 2){ L )




Early work

[H. Sato, “Two-user communication channels,” IEEE Trans. Inf. Theory, vol. 23, no. 3, pp. 295-304, 1977.]

[A. B. Carleial, “A case where interference does not reduce capacity,” IEEE Trans. Inf. Theory, vol. 21, no. 5, pp. 569-570, 1975.]

[A. B. Carleial, “Interference channels,” IEEE Trans. Inf. Theory, vol. 24, no. 1, pp. 60-70, 1978.]




DM-IC: Basic inner and outer bounds

“Single-user” outer bound: F[X interference

e Maximal (achievable) individual rates:

—| Encoder

Rl S Cl — INnax ](X17Y1’X2 = CUQ), RQ § 02 — INnaxX I(XQ,YQ‘Xl = 561)

p(1),22 pla>) 21
“Basic genie” outer bound: GIVE interference

e Union over all p(q)p(x1|q)p(x2|q) of

Ry < I(X1;Y1|X2,Q), Ra < I(X2;Y2|X1,0Q)
“Single-user” time-sharing inner bound: AVOID interference

e Union over all t € [0,1] of: Ry <tCy, Ry < (1—1)C5

Treating interference as noise inner bound: “SUFFER” interference
e Union over all p(q)p(x1|q)p(x2|q) of

R <I(X1;Y11Q), R < I(X9:Y2|Q)



AWGN Gaussian IC

Power P a1 /I/(O, 1) 2
S, = h7 P

X Y- A 11
W1—>( Encoder 1 ) L hll »@ 1»(De(t()der 1)—> W1 ]1 _ h%l P

ha1
hi2

1.2
W2—> Encoder 2\ ® >(Decoder 2 )—>W2 S2 o h22P
o Xz h Y2 Iy = h2,P

Power P 7 ./1/'(0 ! 2 — 12

2 " ;

Average transmit power constraint: for all codewords x7(w1) and x5 (ws),

n n
J=1 j=1

Practically relevant

|6



AWGN Gaussian IC

7y ~ N(0,1)

Ly A
>® E(Decoder 1)——> Wl

Power 1
Wl_F( Encoder 1 )

W2—> Encoder 2} @ >(Decoder 2 )——>W2
\/572 Yo
Power 1
N

Average transmit power constraint: for all codewords =7 (wy) and a3 (ws),

- E 5131] ’LU1 E 'CEQJ w2



Gaussian-IC: Basic inner and outer bounds
Zy ~ N(0,1)
Power 1 \/5_1 ‘l Y,

@—» Decoder 1 Wl

VL
VT2
Wo—| Encoder ecoder W
Zy ~ N(0,1)
CC I
SI ngl e- u S e r O ute r bo u n d : Average transmit power constraint: for all codewords x'(w;) and % (w2),
o . o . . lzn:x2(w1)<l lzn:x2(w2)<l
e Maximal (achievable) individual rates: n 2ot S 2 olwe) S

1 1
Ry <(Cq:= 5 log(1 4 51), Ry < (s := 5 log(1 4+ S3)

“Single-user” time-sharing (with power control) inner bound:
e Union over all « € [0, 1]:

Q S1 (1—a) So
< — — <
R1_210g<1—|—a), Ry < 5 log<1—|—(1_a)>

Treating interference as noise inner bound (with Gaussian inputs):
1 51 1 52
< -log |1 < -log |1
sy Og( +1+Il>’ 2 = 5 Og( +1+12)
|18




The main problem with the Gaussian-IC

What inputs are optimal?

Zy ~N(0,1)
Power 1 \/5,7

) L by A
W1_> Encoder 1 =@—l W1
V1
V12
W2—> Encoder 2 @7> WQ
Power 1 v 52 T 2

Zy ~N(0,1)

Average transmit power constraint: for all codewords =7 (w;) and =% (ws),

i 1 &
n lefg(wl) <1, n Zl$§g(w2) <1,
J= J=

Max entropy and EPI:
Gaussian inputs are best inputs
but also worst noise

Tension between the 2 users!



DM-IC: Simultaneous decoding inner bound

“Compound MAC” inner bound:_

n

X7 Y7 )
I/‘/vl—> Encoder 1 (Decoder 1)—>W1
Channel /

[p(yb y2|x1,x2)J
Wo——] Encoder 2))(/71v \Y;(Decoder 2 )—>W2 .
2 2

e Union over all p(q)p(x1|q)p(x2|q) of

<m0 o) QD)
P < i ) 1.1 111

R1 + Ro < min{l (X, X2; Y1|Q), (X17X2,Y2|Q)}

Can be tightened..... how?

20



DM-IC: Simultaneous decoding inner bound

“Compound MAC” inner bound: (force both to decode both)

e Union over all p(q)p(z1|q)p(x2|q) of

<101 ) QD)
I

Rl + RQ < mln{I(X17X27Y1‘Q (X17X27Y2|Q)}

Can be tightened..... how!?

e Union over all p(q)p(x1|q)p(x2|q) of

R < I(X1;Y1]|X2,Q)
Ry < I(X9; Y2 X1,Q)
Ri1 + Re <min{l (X1, X2;Y1|Q), (X1, X2;Y5|Q)}

21



Comparison of the Bounds

e We consider the symmetric case (S1 =So=S=1and [ =1, =1)

low interference 1 — 0.2

Ry

lowish interference 1—=05

TDMA

Treating
interference
as noise

N
N
AN

Simultaneous
decoding

highish interference 1 _— o8

Ry

high interference 1 — 11

Ry

Ry

-—>-Dccodcr 2 W2

22

images taken from [A. El Gamal and Y.H. Kim, “Lecture Notes on Network Information Theory,” http://arxiv.org/abs/1001.3404 ]



DM-IC: Sato’s outer bound

o Let R(p(y1,y2|z1,72)) be the union over all p(¢q)p(z1|q)p(z2|q)p(y1, y2|z1, 22) of

R, < I(X1;Y1|X2,Q)
Ry < I(X2;Y2|X1,Q)

Then the intersection of the sets R(p(y1, y2|x1,x2)) over all p(y1, y2|x1, x2) with
the same marginals as p(y1, y2|r1, z2) is an outer bound for the DM-IC.

Give user 2 signal as side information at Rx |

Give user | signal as side information at Rx 2

Handout |: proof of Sato’s outer bound

23



Handout |: proof of Sato’s outer bound

an — H(Wl)

2 H (W1 |Wy)

b
(:)H(Wng’)

CHWAIY, X5) + (Wi Y| X5)

(d)
< nef +I(Wy; YY" X3)

()

= ney + (XY X3)

(f) =
< nef + ) I(Xq;; Y151 Xo;)

j=1

(i) ne? e nI(Xl; Yl‘XQa Q)a

24



Handout |: proof of Sato’s outer bound

n. vy B X S
I(X7; Y| X)) = ZI(X1j3Y1 ’X2>X11>"'X1(j—1))

71=1 \\
nel-

(i) C\'\a“
< ZI XY X5, X, - Xy 21y) S O& tne

=1 S—“es

cy\es

(J) ZH Y].j‘XQ 7X117m©¥(\ H YlJ’XQ , X711, Xl(j—l),le)

1=1
(k)
&S HY[Xay) — HOAIXG X X1y, X .

71=1 o L5 .\“
(1) — cOY\d\UO“
= ZH(Ylj\ij) H (Y15 X25, X15) usS \\

Jj=1 a\\ \“P

o 2>
we ©©



Are these ever tight!
(inner = outer)

Treat interference as noise Sing|e_user outer

(Coded) time-sharing Sato outer

Simultaneous decoding

(Successive interference cancellation)
26



A DM-IC is said to have very strong interference if

Vp(w1)p(x2)

)

Decoder 1)——> Wl

W2—> Encoder 2

Decoder 2 '—>W2

Power 1

@)

N

S
)

27



A DM-IC is said to have very strong interference if

I(X1; Yl‘XQ)
I(XQ; YQ‘Xl)

(X1;Y2)

(Xy: V) Vp(w1)p(x2)

<1
<1

Theorem (capacity region under very strong interference). The
capacity region of the DM=IC under very strong interference is the set of rate
pairs (R, R2) such that

R < I(X1; Y1 X2, Q)
Ry < I(X2:Ys|X1,Q)

for some p(q, z1,72) = p(q)p(x1]q)p(x2]q).

Achievability? Successive interference cancellation!

Decode interference FIRST, then desired!

At Rx 1: RQ S ](XQ;Yl) then Rl S I(Xl;Y1|X2)
At Rx 2: Ry < I(X1:Y>) then Rs < I(Xs: Yo | X)) 28



A DM-IC is said to have very strong interference if

I(X1; Yl‘XQ)
I(XQ; YQ‘Xl)

(X1;Y2)

1
(Xa:Y)) Vp(w1)p(x2)

<
<

Theorem (capacity region under very strong interference). The
capacity region of the DM=IC under very strong interference is the set of rate
pairs (R, R2) such that

Ry < I(X1;Y1]X2,Q)
Ry < I(X9; Y5 X1,Q)

for some p(q,z1,72) = p(q)p(x1]g)p(x2]q).

Converse! Basic genie outer bounds (or Sato)

29



A DM-IC is said to have very strong interference if

I(Xl; Yl‘XQ)

< I(X1;Y3)
I(XQ; YQ‘Xl) §

(Xy: V) Vp(w1)p(x2)

1
1
A DM-IC is said to have strong interference if

Vp(r1)p(z2)

Very strong interference — strong interference

Strong interference -» very strong interference

30



Capacity of DM-IC under strong interference

I(Xl, Y]_‘XQ)
I(XQ, YQ‘X]_)

(X71;Y2|X2)

(X2; Y1 X7) Vp(x1)p(x2)

<1
<1
Theorem (capacity region in strong interference). The capacity re-

gion of the interference channel (X; x X5, p(y1,y2|x1,x2), V1 X Vo)in strong in-
terference is the set of rate pairs (Ry, R2) such that

R < I(X1;Y1|X5,Q) (1)
Ry < I(X32;Y2|X1,Q) (2)
R1+R2 Smin{](XlaXZ;Y1|Q)7I(X17X2;Y2|Q)} (3)

for some p(q, z1,z2) = p(q)p(21]g)p(x2|g) where [Q| < 4.

[M. H. M. Costa and A. El Gamal, “The capacity region of the discrete memoryless interference channel with strong interference,” IEEE Trans. Inf. Theory, vol. 33, no.
5,pp-710-711, 1987 ]

Achievability! Simultaneous decoding inner bound

Converse! See handout

31



n(R1 -+ Rg) = H(W1) + H(Wg)

(@)

< I(Wy; YY) + I(Wa; YY) + ney,

(b)
< I(X75Y7") + I(X55 Yy + ney

(¢)
< I(XT5 Y| Xo) + (X33 Yy') + nen
(d)
< I(XT5 Y5 | Xg) + 1(X55 Y5') + ney

(X7, X2 V) + nen

(f) <&
< ZI(XM,X%Y%) + nen

i1

32



Z1 ~ N(0,1)
Power P /;\ -
W1—>( Encoder 1 ) 1 > 1(De(‘0der 1)-—-> Wl

Symmetric Gaussian IC

W2—> Encoder 2) 1 @
Power P T
N

>(Decoder 2 )—>W2
Yo

Very strong interference: o> +P
capacity region know- 'e ﬁe(eﬁc .ce fully first

nu
Strong ins _ode AL

_apacity region known, jointly decode interference and message

Weak interference: «> <1 Costa’s corner point known, LATER 33

[V.S. Annapureddy and V.V. Veeravalli, Gaussian interference networks: Sum
capacity in the low-interference regime and new outer bounds on the capacity
1 region, Information Theory, IEEE Transactions on 55 (2009), no. 7, 3032 —3050.]

[
te r e re n - [A.S. Motahari and A K. Khandani, Capacity bounds for the gaussian interference
O d e ‘ n channel, Information Theory, IEEE Transactions on 55 (2009), no. 2, 620 —643.]
e C [Xiaohu Shang, G. Kramer, and Biao Chen, A new outer bound and the noisy-
r

—~ivy (AN} lUWﬂ UGU SS' Gn ' n P u tS + TI N interference sum-rate capacity for gaussian interference channels, Information

Theory, IEEE Transactions on 55 (2009), no. 2, 689 —699. ]



Decoding all or nothing
(of the interference), the
logical next step is.....



Forced jokes

35



| DON'T ALWAYS PREFER
BEING REFERRED TO AS "DR.”

BUT WHEN 1 DO, IT:SUSUALLY Aﬂiﬂ
BEING REFERRED TO/AS MS., MBS.ﬂll!Y
ORSEXCUSE ME DO YOU KNOW Wlllljﬂlf
PROFESSOR IS FOR THIS CLASS.”

36



NORMAL DHISTRIBUT\ON

e ——————————————————————————————————————————

PALANCEMAL DISTRIBUTION
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R 7

>

}m -

C" s

= &
-
\

- HBREADING @ FIND ANEW REFORMAT
REJECT *"®REVIEWS JOURNAL REFS

REVIEWERS RESUBMIT REVISION ACCEPT

38



l ...50, PROF. JONES, ‘ WELL, YOU

M TOTALLY SHOULYD
STUCK! WHAT PROBABLY FIX (T,

WWW.PHDCOMICS.CO
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Decoding all or nothing
(of the interference), the
logical next step is.....



DMC: Han+Kobayashi inner bound |

Largest single-letter achievable rate region

[T. S. Han and K. Kobayashi, “A new achievable rate region for the interference channel,” IEEE Trans. Inf. Theory, vol. 27, no. 1, pp. 49-60, 1981.]

Achieves capacity when we know it

[H.-F. Chong, M. Motani, H. K. Garg, and H. El Gamal, “On the Han—Kobayashi region for the interference channel,” IEEE Trans. Inf. Theory, vol. 54, no. 7, pp. 3188-3195, July 2008. ]

Thought to perhaps be the capacity region in general,
but NO!

[C. Nair, L. Xia, M. Yazdanpanah, *“Sub-optimality of the Han-and-Kobayashi Achievable Region for Interference Channels,” Proc. of ISIT, 2015.]

more later... for now, let us understand this
Important region

41



DMC: Han+Kobayashi inner bound

[T. S. Han and K. Kobayashi, “A new achievable rate region for the interference
channel,” IEEE Trans. Inf. Theory, vol. 27, no. 1, pp. 49-60, 1981.]

Theorem (Han-+Kobayashi inner bound). A rate pair (Rp, Ro) is
achievable for a DM-IC (X} x Xo, p(y1, y2|T1,x2), V1 X Va) if it satisfies

Ry < I(X1:Y1|Us, Q) (1)

Ry < I(X9;Y2|U1,Q) (2)

R+ Ry < I(X4,U;:Y1|Q) + 1(X2; Y2 Uy, Us, Q) (3)
Ry + Ry < I(X1;Y1|U1, Uz, Q) + I(X2,Us; Y2|Q) (4)
Ry + Ry < I(Xy,U2; Y1|U1, Q) + (X2, Uy; Ya|Uz, Q) (5)
QRy + Ry < I(Xy, Us: Y11Q) + I(X1: Y1 |Uy, Uz, Q) + I(Xs, Uy: Ya|Us, Q) (6)
Ry + 2Ry < I(X2,U1; Y2|Q) + I(X2; Ya|Ur, Uz, Q) + I(X1,Us; Y1|U1, Q)  (7)

for some p(q, u1,uz2,z1,72) = p(q)p(u1, v1]q)p(uz, r2|q) where [U;| < |X1] + 4,
Us| < | X5+ 4, and |Q] < 7.

42



Handout 3: proof of H+K

Outline:

1) Split message into “public” and “private” parts

2) At each Tx, superpose public over private

3) At each Rx, decode both public messages and the
desired private message

4) Rate region looks like two simultaneous 3 user
MAC channels, one at each receiver

5)Fourier-Motzkin eliminate to put in terms of (r:, R,)

43



) Split message into “public” and “private” parts

Rate Ry = R1, + R1. .
Wi —»‘ﬁ(Encoderl X? Yln(Decoder 1}—' 6\1 —>W1

C Channel / /\

&

1
{p(yh 3/2\331, 332)}

W2 —»l — ] Encoder 2)/nv \(Decoder 2 )——» 6\ G
s X3 Yy 1 W
Co

Rate RQ — R2p -+ RQC

“Public” = common = decoded by everyone

|dea: carefully split so can decode part of the interference

44



Rate Ry = Ry, + Ry,

—> —| Encoder 1

2) At each Tx, superpose public over prlvate

Rate R2 = Rgp + RQC

Codebook generation: Fix p(q)p(u1,x1|q)p(us, 2|q)
(Generate a sequence g ~ H?ﬂ pq(pi)

Tx 1 codebook: randomly and conditional independently generate 2™t ge-
quences u?(wi.), w1 € [1 : 2™e], each according to [] 1pU1|Q(u12|qz) For
each u7(wi.), randomly and conditionally mdependently generate 2"%r ge-
quences 7 (w1e, Wip), wip € [1 : 2™1r] each according to [ 17 px, v, .0 (T1iluti(wic), ¢;)

(similarly for Tx 2 codebook)

Encoding: to send w; = (wi¢, w1p), encoder 1 transmits z (w1, wip) (similarly
for encoder 2)

Decoding: upon receiving y7", decoder 1 finds the unique message pair (w1, w1p)
such that (¢",u}(t1e), uy(wae), 27 (Wie, W1p),yT) are jointly typical for some
wy. € [1 : 27f2¢] If no unique pair exists, the decoder declares an error.
Similarly for decoder 2.

45



3) At each Rx, decode both public messages and the
desired private message

S
2
5

Possible errors: Joint pmf

~

g
<

~

=
=
N

=
Fe
S
=
S
=

<
S

N

=
<

=
S
S
=
S
=

=
e
S
=

=
/\/\/\/\E\/\/\/\

N

=

H%%l—l%%l—ln—\,g
O
N

* X X X = = = =
NI N3 N3 N3 N3 NI NI NI

=

— — — — — —
-

— — — ~— — — — —

/\/\/\/\EA/\/—\

=S F3 F3 /3 S3 S P3 FS

- % - % = % * =
fw!
SN N TN N N N /N
=3 =3 ~3 53 =3 =3
&
=3 B3 B3 =3 =3 =3

0O N O O & W DN
N
=
g
<

Count them and get probability from the packing lemma:

taken from [A. El Gamal and Y.H. Kim, “Lecture Notes on Network Information Theory,” http://arxiv.org/abs/1001.3404.]



3) At each Rx, decode both public messages and the
desired private message

Packing Lemma [3]. Let (U, X,Y) ~ p(u,z,y). Let (U™, Y") ~ p(u™,y™) be a pair of arbitrarily distributed random
sequences (not necessarily according to [[7_, pu.y (U;, U;)). Let X"(m),m € A, where |A| < 2"%, be random sequences,
each distributed according to [];" ; px|u(@ilu1). Assume that X™(m),m € A, is pairwise conditionally independent of yn
given U™, but is arbitrarily dependent on other X™(m) sequences. Then, there exists §(¢) — 0 as ¢ — 0 such that

Pr{(U", X"(m),Y") € T} = 0as n — oo if R< I(X;Y|U) — 6(e),
where 72(") is defined as the typical set
T = T, X, Y) = {(u", 2", y") : |m(u, 2, y[u”, 2, y") — plu, ,y)| < € p(u, z,y)},

where .
|{Z . (uzaxzayz) — (u,x,y)|

m(u, x, ylu™, ", y") = for (u,z,y) eU x X x Y

n

[3] A. El Gamal and Y.-H. Kim, Network Information Theory. Cambridge University Press, 2011. 47




3) At each Rx, decode both public messages and the
desired private message

Possible errors:

W1c

Joint pmf

0O N O OC1T & W N K

1

p(uf, z7)p(uy)p(yt|=T, uy)

= X X =X X%

<

=
s
S

=
S
=

=

=
s
S

=
S
=

=

S

=
S
S

=
S
=

=

=
e
S

=
S
=

g
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/\/’\/\@/‘\/‘\

HS 3 3 P33 /3 &3
— ~— —

=

=3

~—

g
N
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Count them and get probability from the packing lemma:

taken from [A. El Gamal and Y.H. Kim, “Lecture Notes on Network Information Theory,” http://arxiv.org/abs/1001.3404 ]




4) Rate region looks like two simultaneous 3 user MAC
channels, one at each receiver

I T I T T
1 1 | 1 | 1 | a0 N2\ (2|t 1) |
| -

taken from [A. El Gamal and Y.H. Kim, “Lecture Notes on Network Information Theory,” http://arxiv.org/abs/1001.3404.]



5) Fourier-Motzkin eliminate to put in terms of (R, R)
Rip < I(X1; Y1|Ur, Uz, Q)
Rlp Bl Rlc SI X17Y1‘U27 )
Rlp T RQC S 1 X U27Y1‘U17Q)

(

(

Rip + Ry —RQCSI(X Uz; Y1|Q) OLD
< I(X1;Y2|Up,Us,Q)
(
(
(

R2p il R2C§I X Y2‘U17Q)
R2p T Rlc S 1 X U17Y2‘U27Q)
Rop + Roc + Ric < 1(X2,U1;Y2|Q)

taken from [A. El Gamal and Y.H. Kim, “Lecture Notes on Network Information Theory,” http://arxiv.org/abs/1001.3404.] 50



Comments on H+K

Theorem (Han+Kobayashi inner bound).

achievable for a DM-IC (X; x Xs, p(y1, y2|x1,x2), V1 X Vo) if it satisfies

Ry < I(X1; 11Uz, Q)

Ry <1
Ri+ Ry <1

Ri1+ Ry < I(X1,U2; Y1
2Ry + Ry < I(X1,U2; Y1
R1 + 2Ry < I(X2,U1; Y

2;Y2|U17

Q)

X
X1,Us; Y1|Q) + 1(Xa; Y2|Ur, Uz, Q)

U, Q)+ I(X2,Uy; Y2 |Us, Q)
Q)+ 1(X1;Y1|U1,Us, Q) + 1(X2,Up; Y2|U2, Q)

(
(
(
R+ Ry < I(X1;Y1|Up, U, Q) + 1(X2,Uq;Y32|Q)
(
(
( Q) + 1(X2; Y2 |Ur, Uz, Q) + (X1, U2; Y1|U1, Q)

A rate pair (R, Rs) is
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Comments on H+K

Theorem (Han+Kobayashi inner bound). A rate pair (Rp, Ro) is

achievable for a DM-IC (X; x Xs, p(y1, y2|x1,x2), V1 X Vo) if it satisfies

Ry < I(Xy: Y1 |Us, Q)
Ry < I(Xs: Y3|Uy, Q)
Ry + Ry < I(X1,U; Y1|Q) + 1(X2; Y2 Uy, Uz, Q)
Ri + Ry < I(X1;Y1|U1,U2,Q) + (X2, Up; Y2|Q)
Ry + Ry < I(X1,U2; Y1|UL, Q) + 1(X2,Ur; Y2 |Us, Q)
2R + Ry < I(X1,U; Y1|Q) + I(X1; Y1 |U1, Uz, Q) + I(X2,Up; Ya|Us, Q)
Ry + 2Ry < I(X2,U1;Y2|Q) + I(Xo; Yo |Ur, Uz, Q) + 1(X1,Uz; Y1|U1, Q)

1
2
3

ot =~

6

(
(
(
(
(
(
(7

)
)
)
)
)
)
)

for some p(q, ui, uz, x1,x2) = p(q)p(u1, x1|q)p(u2, x2|q) where |U| < |Xy| + 4,
Us| < | A5 +4, and |Q] < T.
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Comments on H+K

Theorem (Han+Kobayashi inner bound). A rate pair (Rp, Ro) is
achievable for a DM-IC (X; x Xs, p(y1, y2|x1,x2), V1 X Vo) if it satisfies

Ry < I(X1: Yi|Us, Q) (1)

Ry < I(Xs: Ya|Uy, Q) (2)
Ry + Ry < I(X41, U Y1|Q) + 1(X2; Ya|Ur, Uz, Q) (3)
Ri + Ry < I(X1;Y1|U1,U2,Q) + (X2, Up; Y2|Q) (4)
Ry + Ry < I(X1,Us; Y1|U1,Q) + (X2, Up; Y2 |Us, Q) (5)
2R + Ry < I(X1,U; Y1|Q) + 1(X1; Y1 U1, Uz, Q) + I( X2, Up; Y2|Us, @) (6)
Ry + 2Ry < I(Xa,Uy; Ya|Q) + I(Xo; Ya| Uy, Us, Q) + I(X1, U ViU, Q) (7)

for some p(q, ui, uz, x1,x2) = p(q)p(u1, x1|q)p(u2, x2|q) where |U| < |Xy| + 4,
Us| < | A5 +4, and |Q] < T.

1) Key difficulty?
2) Tight for a few classes of channels, up next




Does H+K ever achieve
capacity!?



Class of deterministic ICs

| 1,02 1 1M 1
(v (wr.12) v deterministic
have capacity in general

15

1

" Yo (2, tl))—’Y2

e for every x1, y1(x1,t2) is a one-to-one function of ¢, B T w—

e for every xo, ya2(x2,%1) is a one-to-one function of t; region of a class of deterministic

interference channels,” IEEE Trans. Inf.
Theory, vol. 28, no. 2, pp. 343-346, 1982. ]

Class of semi-deterministic ICs

probabilistic
constant gap to capacity

[I. E. Telatar and D. N. C. Tse, “Bounds on the capacity
region of a class of interference channels,” in Proc.

IEEE International Symposium on Information
55 Theory, Nice, France, June 2007.]



Class of semi-deterministic ICs

Gaussian is a special case!

Z1 ~N(0,1)
Power 1
S
\/T l Y];(DGCOdeI' 1)——> Wl

Wl—{ ncoder 1 )

W2—> Encoder 2} (D >(Decoder 2 )——>W2
\/ SQ YQ
Power 1
N

56

e for every x1, y1(x1,%2) is a one-to-one function of ¢,
o for every xo, y2(x2,%1) is a one-to-one function of t;

probabilistic

To =11 Xo+ 23
Yi=V5X1+1T5

T = 12X1 + 25
Yo = /5o Xo + T}



Class of semi-deterministic ICs

Y, e for every x1, y1(x1,%2) is a one-to-one function of ¢,

o for every xo, y2(x2,%1) is a one-to-one function of t;

(ot} probabilistic

Gaussian is a special case!

Deterministic is a special case!

=(y1 (x1,t2) )—>Y1

15
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Inner bound: class of semi-deterministic ICs

X Y, e for every x1, y1(x1,%2) is a one-to-one function of ¢,
o for every xo, y2(x2,%1) is a one-to-one function of t;
XQ/ =Ly2(£€2,t1))—>Y2 PrObabiIiStiC

Theorem (inner bound of semi-deterministic IC) The following rate
pairs (R1, R2) are achievable (Han—+Kobayashi scheme under restriction p(uq, us|q, 1, x2) =

P | x4 (u1 |~’El)pT2\X2 (u2|z2):

Ry < HW|U2,Q) — H(13|U2, Q) ’&S\\.\ (1)
Ry < H(Y|U4,Q) — H(TY|Uy O \40‘03\’ (2)
Ry + Ry < H(Y1|Q) + H(Y2|Uy \,\’a,“ 1|01, Q) — H(T»|Us, Q) (3)
Ry+ Ry < HVA|UL. U, Q) + Hei|Q) — H(TL|UL, Q) — H(To|Us, Q) (4)
Ry + Ry < H(Y1|U1, Q) + H(Y2|U2,Q) — H(T1|U1, Q) — H(T2|Us, Q) (5)
2R1 + R < HM|Q) + H(Y1|U1, X2,Q) + H(Y2|U2,Q) — H(1T1|U1, Q) — QH((1;2|U27Q)
6
Ry + 2Ry < H(Y2|Q) + H(Y2|U1,U2, Q) + H(Y1|U1,Q) — 2H(T1|U1, Q) — HE%W%Q)

for some p(q, 1, v2) = p(q)p(z1|q)p(r2|q) and p(u1, uz|q, v1,x2) = pry | x, (U1|21) P71y x, (U2]22).
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Outer bound: class of semi-deterministic ICs

X Y, e for every x1, y1(x1,%2) is a one-to-one function of ¢,
o for every xo, y2(x2,%1) is a one-to-one function of t;
X2/ =Ly2(£€2,t1))—>Y2 PrObabiIiStiC

RO(QleaXQZ

Theorem (outer bound of semi-deterministic IC) Every achievable
rate pair (R, Ry) must satisfy

ot
Ry < H(Y1|X5, Q) — H(Ty|X>) \ “r‘Oﬁ'(\a (1)
Ry < H(%IX,,Q) ~ HITIX) g 10® 2
Ri+ Ry < HY1|Q) + H(Ya|U- C\e\l X1 — H(Th| X)) (3)
Ry + Ry < HV|U ?\\C L) — H(Ty|X1) — H(T2|Xs) (4)
Rl —+ R2 < ITSEP’( 1 \YQ’UQ, ) H(T |v\\ — (TQ’XQ) (5)

)+ HY UL X500 AW ) - H(TY| X)) — 2H (Th|Xo)
pen®
Ry + 2Ry < H(Y2|Q) + H(Y2|Uz, X1, Q) + H(Y1|U1,Q) — 2H (11| X1) — H (1| X>)

for some p(q, x1,22) = p(q)p(z1]|qg)p(z2|q) and p(u1, uzlq, 1, 2) = pry|x, (U1]|T1)pry) x, (U2|72).
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Handout 4: outer bound semi-deterministic

Outline:

|) Showcases major difficulty in converses: single-
letterization (if this is desired...)
2) Neat trick of combining many multi-letter terms

60



Handout 4: outer bound semi-deterministic

Define random variables U* and U3' such that Uj; is jointly distributed with
Xji according to pr,|x,(u|rj;), conditionally independent of T}; given Xj; for
every j = 1,2 and every ¢ € [1 : n.

X1 =ry1($1,t2)

Bound A1l:
nR; < I(X{;Y]")
= H(Y?) = H(P|X))
H(Y{") — H(T3'| X7)
— (Y1n) ( 2)

H le H(TZn)

N

61



Handout 4: outer bound semi-deterministic

Bound B1: (genie at Rx 1 of-)

nRy < I(X?;Yf,’)
= I[(X{;U7) + 1(X75 X' |UT) + I(XT5 Y| UT, X3)

= H(U}) — HUPM X)) + HYMUY, X5) — H(Y | X, U7, X))

(a) n n|vn n|rrn n n|vn
— H(T1)—H(U1 ’X1)‘|‘H(Y1 ‘U17X2)_H(T2 |X2)

<|H(1]")|— ZH(UM’XM) + ZH(YM\UM,X%) — ZH(Tzi\Xzi)

1=1 1=1 1=1

N

Bound C1: (genie at Rx 1 Of' why do some terms single-

letterize but not others?

= I( XU+ [( X5 Y |UTY)
= H(U?) - H(UT|XT) + HY|UT) — H(Y'| X7, U7)
= H(I7") — H(UP|XT) + H(Y|\UY) — H(Ty)

<|H(1")|—-|H(13) _i:H(Uli‘Xli)+§:H(Yli’Uli)

=1 62 1=1




Handout 4: outer bound semi-deterministic

X1\ ={y1 (x1,t2) Y;
15

Bound D1: (genie at Rx 1 of X7}) T
X =Ly2(x2,t1))—>Y2

nRky < I(X7; V7", X5)
= I(X1; X)) + I(X{; Y| X3)
= H(Y"|X3) — H(Y{"| X7, X3)
= H(Y"|X3) — H(T3'| X))

< ZH(YU\X%) — ZH(T%\X%)
i=1 i=1

by symmetry, obtain analogous bounds at Rx 2
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Handout 4: outer bound semi-deterministic

Bound Al: nR; < Z H(Y;)—|H(1Y)
i=1

n

Bound B1: ’I?,Rl S H(Tln) — Z H(Ulz‘Xlz> + ZH(le’Ulsz%) — ZH(TQZ‘XQZ)
i=1 =1 =1

Bound C1: nR; <|H(T{")|—|H(Ty) —ZH(U1i|X1¢)—I—ZH(Y17;|U1i)
i=1 i=1

Bound D1: nRy <) H(Yyi|Xy) — > H(Ty|Xa)
1=1 1=1

Bound A2: nR,; < Z H(Yy) — | H(IT)
i=1

Bound B2: TLRQ < H(TZn) — ZH(UQZ‘XQz) + ZH(Y%‘U%,XM) — ZH(TM‘XM)
=1 =1 1=1

Bound C2: nRy <|H(T})|—|H(IT) |- H(UzlXa:) + > H(YailUz)
1=1 =1

Bound D2: nR, <Y H(Yy|Xy)— Y H(Ty|Xy;)
1=1 1=1

Combine these in different ways and use Q time-sharing
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Outer bound: class of semi-deterministic ICs

X Y, e for every x1, y1(x1,%2) is a one-to-one function of ¢,
o for every xo, y2(x2,%1) is a one-to-one function of t;
X2/ =Ly2(£€2,t1))—>Y2 PrObabiIiStiC

RO(QleaXQZ

Theorem (outer bound of semi-deterministic IC) Every achievable
rate pair (R, Ry) must satisfy

ot
Ry < H(Y1|X5, Q) — H(Ty|X>) \ “r‘Oﬁ'(\a (1)
Ry < H(%IX,,Q) ~ HITIX) g 10® 2
Ri+ Ry < HY1|Q) + H(Ya|U- C\e\l X1 — H(Th| X)) (3)
Ry + Ry < HV|U ?\\C L) — H(Ty|X1) — H(T2|Xs) (4)
Rl —+ R2 < ITSEP’( 1 \YQ’UQ, ) H(T |v\\ — (TQ’XQ) (5)

)+ HY UL X500 AW ) - H(TY| X)) — 2H (Th|Xo)
pen®
Ry + 2Ry < H(Y2|Q) + H(Y2|Uz, X1, Q) + H(Y1|U1,Q) — 2H (11| X1) — H (1| X>)

for some p(q, x1,22) = p(q)p(z1]|qg)p(z2|q) and p(u1, uzlq, 1, 2) = pry|x, (U1]|T1)pry) x, (U2|72).
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GAP: Class of semi-deterministic ICs

e for every x1, y1(x1,%2) is a one-to-one function of ¢,
o for every xo, y2(x2,%1) is a one-to-one function of t;

probabilistic

d\rect\y
Theorem (gap for clase H},\(Jrnwngt.,eémerinistic IC) If (Ri,R2) €

Ro(Q, X1, X3) then (R, Com\‘i"l"; 15|Us,Q), Ry — I(X1;T1|U1, Q) is achievable.

1. E. Telatar and D. N. C. Tse, “Bounds on the capacity region of a class of interference channels,” in Proc. IEEE International Symposium on Information Theory, Nice, France, June 2007.]

Theorem (gap for Gaussian IC) If (R- P, o for Gauslir hound R‘é‘WGN
then (R; — 1/2, Ry — 1/2) is achievable.

Bo\,\ﬂd &
[R. Etkin, D. Tse, and H. Wang, “Gaussian interference channel capacity to within one bit,” IEEE Trans. Inf. Theory, vol. 54, no. 12, pp. 5534-5562, Dec. 2008. ]

=0
Theorem (gap for class of deterministic Ini‘\f nd \(X;T\U’,@Ucrministic

function of x;, and the one-to-one const~ :‘n'\st'\c,the“, «uen the inner and outer

: rm Ny
bounds match and we h?\ﬁh‘e (o s de™ eglon of a class of deterministic ICs.

[A. El Gamal and M. H. M. Costa, “The capacity region of a class of deterministic interference channels,” IEEE Trans. Inf. Theory, vol. 28, no. 2, pp. 343-346, 1982. ]
66
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Capacity: class of deterministic I1Cs

X1 o y1 (21, t2) '—>Y1
\fﬁ . .
13 e for every x1, y1(x1,%2) is a one-to-one function of ¢,

o for every xo, yo(x2,%1) is a one-to-one function of #;

7
Xz/ a | Yo (2, tl))_’Y2

Theorem (capacity of class of deterministic IC) The capacity region

of the class of deterministic interference channels is the set of rate pairs (R, Ro)
such that

Ry < HY1|T3,Q) (1)

Ry < H(Y2|T1,Q) (2)
Ri + Ry < HY1|Q) + H(Y2|T1,T2,Q) (3)
Ri+ Ry < HY|T1, T3, Q) + H(Y2|Q) (4)
Ry + Ry < HY1|T2,Q) + H(Y2|Th, Q) (5)
2R1 + Re < HY1|Q) + HY1 |11, T5,Q) + H(Y:2 |15, Q) (6)
R+ 2Ry < HY2|Q)+ H(Y2|T1, T, Q)+ H(Y + 1|T1, Q) (7)

for some p(q)p(x1|q)p(z2|q). .



Forced 1nterference quotes
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“Do not let the things that you can’t do
interfere with the things that you can do”

- John Wooden
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“I have never let schoollng interfere
with my education”

— Mark Twailn
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Does H+K ever achieve
capacity!?

almost.....

The Gaussian IC



The AWGN-IC

Z1 ~N(0,1)
Power 1
S
W1—>( Encoder 1 ) \/71 é YE(Decoder 1}—> Wl

Power 1

VVQ—> Encoder 2} \/572 GTD Y2>(Decoder 2 )——>W2
N

of practical relevance in wireless systems:
cellular, wireless local area networks (WViFi),
ad hoc networks (wireless sensors or nodes)

72

Excellent survey of results on Gaussian IC in Introduction of [R. Bustin, H.V. Poor, and S. Shamai “The Effect of Maximal Rate Codes on the Interfering
Message Rate,” http://arxiv.org/abs/1404.6690]



http://arxiv.org/abs/1404.6690

AWGN: H+K achieves capacity to within |/2 bit

Z1 ~ N(0,1)

Zy ~ N(0,1)

Theorem (gap for Gaussian IC) If (R, R5) is in the outer bound R‘é‘WGN
then (Ry — 1/2, Ry — 1/2) is achievable.

Etkin, Tse,Wang show how to pick
Gaussian inputs in H+K scheme

[R. Etkin, D. Tse, and H. Wang, “Gaussian interference channel capacity to within one bit,” IEEE Trans. Inf. Theory, vol. 54, no. 12, pp. 5534-5562, Dec. 2008. ]

depends on the regime of operation
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AWGN: the “W” curve for the GDoF

highlights effect of interference rather than noise

\

R;

. 3 log(1+snr)’

€ [1:2], (R1, R2) is achievable » .

/

“W’” curve for R,=R;

R = Ry

Ry = Rs

image taken from

[R. Etkin, D. Tse, and H. Wang,
“Gaussian interference channel
capacity to within one bit,” IEEE
Trans. Inf. Theory, vol. 54, no. 12,
pp. 5534-5562, Dec. 2008. ]

orthogonal (TDM or FDM) |

interference treated as noise

1.5
log INR

o=——0
log SNR
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AWGN: the “W” curve for the GDoF

image + formula taken from

[R. Etkin, D. Tse, and H. Wang, ! N
“Gaussian interference channel \
capacity to within one bit,” IEEE \
Trans. Inf. Theory, vol. 54, no. 12, L \
pp. 5534-5562, Dec. 2008. ] \

capacity

0-66 ............... \'EEETEE . AR ..............................................................................
: orthogonal (TDM or FDM) -

0.5

(log (?'\'—FF{{) log INR < L log SNR I . _

log INR 2 1log SNR < log INR < Z1og SNR | |
SNR 5 { interference treated as noise
10gm gl()gSNR<10gINR<1()gSNR B \\\ |
log VINR  log SNR < log INR < 21log SNR {

\ log SNR log INR > 21log SNR | | % I |
0 08 o0.66 1 15 2 25

A log INR
~ log SNR

Reg| Mmes Very weak Mixed Strong  Very strong

7\

Coym R

Very weak: treating interference as noise is sometimes sum-capacity optimal, capacity partially known

[X. Shang, G. Kramer, and B. Chen, “A new outer bound and the noisy-interference sum-rate capacity for Gaussian interference channels,” IEEE Trans. Inf.
Theory, vol. 55, no. 2, pp. 689—699, Feb. 2009.]

[V.S. Annapureddy and V. V. Veeravalli, “Gaussian interference networks: Sum capacity in the low interference regime and new outer bounds on the capacity
region,” IEEE Trans. Inf. Theory, vol. 55, no. 7, pp. 3032-3050, July 2009. ]

[A. S. Motahari and A. K. Khandani, “Capacity bounds for the Gaussian interference channel,” IEEE Trans. Inf. Theory, vol. 55, no. 2, pp. 620-643, Feb.
20009. ] 75



AWGN: the “W” curve for the GDoF

image + formula taken from

[R. Etkin, D. Tse, and H. Wang, 1
“Gaussian interference channel
capacity to within one bit,” IEEE
Trans. Inf. Theory, vol. 54, no. 12, L

pp. 5534-5562, Dec. 2008. | /
0_66 ........... \ ............ ..............................................................................

L \\ orthogonal (TDM or FDM)
0.5 .

capacity

(log (?'\'—FF{{) log INR < L log SNR I _
log INR L1og SNR < log INR < 2log SNR | |
%, ~ 4 SNR 5 { interference treated as noise
sym ~ 1()g\/m 3 log SNR < log INR < log SNR i |
log vINR log SNR < log INR < 21log SNR ;
. log SNR log INR > 21log SNR ! 1 3 | ,
0 0.5 0.66 1 1.5 2 2.5
_ log INR
R . “~log SNR
egl mes Very weak Mixed Strong  Very strong

Very weak: treating interference as noise is sometimes sum-capacity optimal, capacity partially known

Strong: jointly decoding both messages at both receivers is capacity optimal, capacity known
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AWGN: the “W” curve for the GDoF

image + formula taken from

[R. Etkin, D. Tse, and H. Wang, 1 \
“Gaussian interference channel ‘ |
capacity to within one bit,” IEEE \ capacity
Trans. Inf. Theory, vol. 54, no. 12, L \\\

pp. 5534-5562, Dec. 2008. ] \

N/

orthogonal (TDM or FDM)

0.5 \\ :
(log (?'\'—FF{{) log INR < L log SNR I |
log INR 2 1log SNR < log INR < Z1og SNR | ,
%, ~{ 1o SNR 2100 SNR < loe INR < loe SNR ke interference treated as noise
y g \/m 3 108 g g - \\\ |
log vINR log SNR < log INR < 21log SNR ;
\ log SNR log INR > 21log SNR ! 1 X | |
0 0.5 0.66 1 15 ¥ 25
_ log INR
R . “~Jog SNR
egl mes Very weak Mixed Strong  Very strong

Very weak: treating interference as noise is sometimes sum-capacity optimal, capacity partially known

Strong: jointly decode both messages at both receivers is capacity optimal, capacity known

Very strong: first decode interference then desired is capacity optimal, capacity known 77



AWGN: the “W” curve for the GDoF

image + formula taken from

[R. Etkin, D. Tse, and H. Wang, 1
“Gaussian interference channel

capacity to within one bit,” IEEE : capacity
Trans. Inf. Theory, vol. 54, no. 12, B i
pp- 5534-5562, Dec. 2008. ] \

0 66 ............................ o e e e

orthogonal (TDM or FDM) _

0.5

(log (?'\'—g) log INR < L log SNR I _
log INR L1og SNR < log INR < 2 log SNR | |
%, oy SNR 5 B interference treated as noise
sym ~ 1()g\/m 3 log SNR < log INR < log SNR i |
log vINR log SNR < log INR < 21log SNR :
Llog SNR log INR > 2log SNR ! 11 . | |
0 0.5 0.66 1 5 2 @5
_ log INR
R . “~Jog SNR
egl mes Very weak Mixed Strong  Very strong

Very weak: treating interference as noise is sometimes capacity optimal, capacity partially known

Mixed |: partially decode interference H+K is gDoF optimal — larger INR, cancel more, capacity unknown

Strong: jointly decode both messages at both receivers is capacity optimal, capacity known

Very strong: first decode interference then desired is capacity optimal, capacity known 78



AWGN: the “W” curve for the GDoF

image + formula taken from

[R. Etkin, D. Tse, and H. Wang, 1
“Gaussian interference channel
capacity to within one bit,” IEEE
Trans. Inf. Theory, vol. 54, no. 12,
pp. 5534-5562, Dec. 2008. ]

capacity

0.66 [:eereererere e Neeviniiins / .....................................................................

orthogonal (TDM or FDM) _

0.5

oz (?'\'—5) log INR < 1 1og SNR I _
log INR L1og SNR < log INR < 2log SNR N
Csym ~ < 10g SNR 2 10gSNR < log INR < IOgSNR . Interrerence treated as noise
VINR = I - .
log VINR  log SNR < log INR < 2log SNR
(logSNR  log INR > 21log SNR | . | |
00 0.5 0.66 1 1.5 2 5
_ log INR
R . “=Tog SNR
egl mes Very weak Mixed Strong  Very strong
Very weak: treating interference as noise is sometimes capacity optimal, capacity partially known
Mixed |: partially decode interference H+K is gDoF optimal — larger INR, cancel more, capacity unknown
Mixed 2: partially decode interference H+K is gDoF optimal — larger INR hurts, capacity unknown

Strong: jointly decode both messages at both receivers is capacity optimal, capacity known

Very strong: first decode interference then desired is capacity optimal, capacity known 79



AWGN: Regimes  OPEN

capacity

HIGHLY RECOMMEND LOOKING AT DAVID TSE’S SLIDES + |
IGAL SASON’S PAPERS ON GAUSSIAN ICs FOR
FURTHER INSIGHT!

orthogonal (TDM or FDM) |

interference treated as noise

_ log INR
" log SNR

Very weak: treating interference as noise is sometimes sum-capacity optimal, capacity partially known
Mixed |: partially decode interference H+K is gDoF optimal — larger INR, cancel more, capacity unknown

Mixed 2: partially decode interference H+K is gDoF optimal — larger INR hurts, capacity unknown
Strong: jointly decode both messages at both receivers is capacity optimal, capacity known

Very strong: first decode interference then desired is capacity optimal, capacity known

Use Han+Kobayashi scheme with private level set such that received at same
level as noise at undesired receiver

Simple, almost optimal but not necessarily the best, in these challenging regimes

[R. Etkin, D. Tse, and H. Wang, “Gaussian
interference channel capacity to
within one bit,” IEEE Trans. Inf.
Theory, vol. 54, no. 12, pp. 5534—

80 5562, Dec. 2008. ]
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1.4
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04+

Some other GDoF comparisons

= One-way IC with perfect feedback

Em— One-way IC = Two-way IC with partial adaptation
One-way IC with rate—limited feedback
Two-way IC with full adaptation

8l

One-way IC with rate-limited FB

[Vahid, Sub, [ 1 % 1
Avestimehr @ @

’One-way IC with FB 20/2] ;
O—06
[SuhTse St =
2011] 9
‘é'messages Two-way o
[Cheng, Devroye |
2012] |
One-way IC 4 messages
l | [Bresler, Tse
2008]
[Etkin, Tse,

@ — @) | Wang 2008]



2 recent results
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Is H+K capacity achieving in general! NO!

[C. Nair, L. Xia, M. Yazdanpanah, “Sub-optimality of the Han-and-Kobayashi Achievable Region for Interference Channels,” Proc. of ISIT, 2015.]

|) Simplified channel model, Z-IC

M; —— Encoder 1

X3

 q(y1]ze, z2)

Y

g =

X3

% Decoder 1

Mo —— Encoder 2

3 Decoder 2

Fig. 2. Discrete memoryless CZI channel
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Is H+K capacity achieving in general! NO!

[C. Nair, L. Xia, M. Yazdanpanah, “Sub-optimality of the Han-and-Kobayashi Achievable Region for Interference Channels,” Proc. of ISIT, 2015.]

2) Characterize max sum-rate for H+K along
the direction AR + Ry

Lemma 1. For a CZI channel, for all A > 1

I%&X()\Rl"‘RQ): max {I(Xl,XQ;Y1)+ ¢ [H(X2)—I(X2;Y1|X1)+(>\—1)I(X1;Y1)}}a

p1(x1)p2(z2) p2(x2)

where E[f(z)] of f(x) denotes the upper concave envelope of f(x) over x. [4]

[4] Chandra Nair, Upper concave envelopes and auxiliary random variables, International Journal of Ad-
vances in Engineering Sciences and Applied Mathematics 5 (2013), no. 1, 12-20 (English).

3) Look at two-letter treating interference as
noise region

Proposition 3. The set of rate pairs satisfying

1

Ry = §I(X11,X12;Y11,Y12’Q)7
1
Ry = §H<X217H22|Q)7

for some pmf p(q)p(x11, T12|q)p(T21T22|q) with |Q| < 2 is achievable by the original channel.
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Is H+K capacity achieving in general! NO!

[C. Nair, L. Xia, M. Yazdanpanah, “Sub-optimality of the Han-and-Kobayashi Achievable Region for Interference Channels,” Proc. of ISIT, 2015.]

(alensa) = [P0 =010, X2 = 0,00 P(Y; = 01X, X5 = 0,1)
qy1|x1,22) = P(Y1=0|X1,X2=1,0) PY1=0/X;,Xo=1,1)|"

Tab. 1: Table of counter-examples

4) Find computable channel for V] e yon e [ o

2 105 1.107516 1.108141
hich I | —
which two-letter TIN
2.5 _0_030209 0.992978_ 1.159383 1.169312

[0.591419  0.865901 |

outperforms i.i.d. HK AR; 4+ Ry = oo |

0.356166
| |0.985504 0.031707 1.292172 1.311027

[0.287272  0.459966
3| 0113711 0.995405 1117253 1.123151

[0.429804 0.147712]
4| |0.948192  0.002848 1.181392 1.196189

[0.068730  0.443630]

AnaIYticaI for A p— 2 41 lo.011377 0.954887 1.223409 1.243958

[0.969199  0.564440]
5 | 0.954079 0.061409 1.351229 1.372191

[0.943226  0.447252]

! (po,Qo) = (0507829413, 0436538150) 5 | |0.950791 0.024302 1.231254 1.250564

[0.943292  0.045996]
0 10.589551  0.202487| 1.069405 1.076932

repetition coding! o | [omasm omestel [ s | vsam

- | 0058449 0.558649 1 494974 1.452769

)
) — 0.36q0 :0.194915 0.959172:
)
)

0.033312  0.876067
T | o.286125 0.992825 1.179438 1.187867

(17 O)) — O-64Q0 0307723 0.874843]

10 10.032090  0.710535) 1.370830

=1- 164Q0 [0.946802  0.311909)]

15 10.730770 0155075 1.391596

[0.382410 0.081474]

memo I")’ 1001 o 584797 0.241840| | 374010

[0.673979  0.194596]

I
s
5
5
I
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Is H+K capacity achieving in general?

NO!

[C. Nair, L. Xia, M. Yazdanpanah, **Sub-optimality of the Han-and-Kobayashi Achievable Region for Interference Channels,” Proc. of ISIT, 2015.]

All known capacity results use H+K.. ..

Intuition:
X9 acts as a state for X1 — Y7 channel

i.i.d. distributions on X; are not optimal if state
has memory
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2 recent results
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2) Costa’s corner point conjecture

images taken from slides of [I. Sason, ""On the Corner Points of the Capacity Region of a Two-User Gaussian Interference Channel,” Proc. of ISIT, 2014.]

“Costa’s
corner points”

OB e —

0

i i i i i i
0 0.5 1 1.5 2 2.5 3
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Recent result: Costa’s corner point conjecture

images taken from slides of [I. Sason, *"On the Corner Points of the Capacity Region of a Two-User Gaussian Interference Channel,” Proc. of ISIT, 2014.]

Conjecture (Originated by Costa, 1985)

For a two-user GIC with positive cross-link gains, let

1 1 1 .
Cr 2 - log(L+Pt), Cp2 - log(l+Py) Gaussian IC:;
be the capacities of the single-user AWGN channels, and Yi=X1 + Vv a12 Xo + 244
« afl az1 Pr cal a12Ps Yo = Jasg X1+ X9+ 2o
R1—210g(1+1+P2>, R2—210g(1+1+P1 :

Then, the following is conjectured to hold fok reliable communication:

Q If Ry > Cy —%, then Ry < R} + 8y(e) where lim._,d;(¢e) = 0.

Q If Ry > Cf — ¢, then Ry < R} + d2(e) where lim._,gd2(¢) = 0.

Max‘imal P2P rates

\

Maximal treat-interference as noise rates

Interpretation of this conjecture for weak GIC

If one user transmits at its maximal possible rate, the other user should
decrease its rate such that both decoders can reliably decode its message.
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Recent result: Costa’s corner point conjecture

o

Recent progress by Sason:

[I. Sason, ""On the Corner Points of the Capacity Region of a Two-User Gaussian Interference Channel,” Proc. of ISIT, 2014.]

idea: similar to gDoF analysis, shows asymptotic tightness of new bounds on corner point

And finally proven by:

[Y. Polyanskiy and Y. Wu ""Wasserstein continuity of entropy and outer bounds for
interference channels," http://arxiv:1504.04419]

N\\‘

idea: new converse which relates differential entropies to Wasserstein distances and bounds
these using Talagrand’s inequality

[R. Bustin, H.V. Poor, and S. Shamai “The Effect of Maximal Rate Codes on the Interfering Message Rate,” http://arxiv.org/abs/1404.6690
e ™

idea: use properties of the MMSE of good channel codes
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http://arxiv:1504.04419
http://arxiv.org/abs/1404.6690

BREAK!!
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Variations, extensions
and implications

92



Overview

Alex Dysto Daniela Tuninetti Natasha Devroye

Discrete inputs in Gaussian interference channel:
“good” codes and “good” interferers

some slides taken from Alex Dytso’s Ph.D. defense, May 2016

Variations of the IC
e
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|Cs with lack of codebook knowledge

“F” is the codebook, known to all Tx,Rx

X" Channel y”" .
W | Encoder —>» » Decoder W
T p(y|x) ;
F
( W — X" \

1—)X1,X2 ..... Xn
2%X1,X2 ..... Xn

\ W] = X1, Xa,. o X )
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|Cs with lack of codebook knowledge

*in networks, often assume nodes know all
codebooks of ALL other nodes

*this may be unrealistic sometimes....

95



|Cs with lack of codebook knowledge

Our motivation:

Wi, —»

Fi || F
Fy l l P )
i X'ln Yln . i n n l l
Encoder 1 |—» Channel » Decoder 1 —» W, X Yy .
Wi —»| Encoder 1 — Channel  —{ Decoder 1 —» W,
(Y1, y2|T1, T2)
X Y . ,Ya|x1, @
Encoder 2 2 »] | 2! Decoder 21— Wo Xy Plys, yalor, @2) Yy .
T Wy —»| Encoder 2 ——» +—| Decoder 2—» 11,
F: F T
2 2 F2 F2

IC with one
oblivious Rx

IC with two
oblivious Rx

A. Dytso, N. Devroye, and D. Tuninetti, “On the capacity of interference channels with partial codebook knowledge,” ISIT 2013

A. Dytso, D. Tuninetti and N. Devroye, ~"On the Two-User Interference Channel With Lack of Knowledge of the Interference Codebook at
One Receiver," IEEE Transactions on Information Theory, Vol. 61, No. 3, pp. 1256-1276, March 2015.

A. Dytso, D. Tuninetti and N. Devroye. “On Gaussian Interference Channels with Mixed Gaussian and Discrete Inputs,” ISIT 2014

A. Dytso, D. Tuninetti and N. Devroye “Interference as Noise: Friend of Foe?” IEEE Trans. on Info Theory, June 2016.
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Past work: lack of codebooks leads to non-
Gaussians outperforming Gaussians

A. Sanderovich, S. Shamai, Y. Steinberg, and G. Kramer, “Communication
via decentralized processing,” IT July 2008.

Gaussian noise: example where BPSK outperforms Gaussian inputs

Y. v | A. Sanderovich, S. Shamai, Y. Steinberg, and G. Kramer, “Communication
i 11 Relay a decentralized processing,” IT July 2008.
xn ? \\“ Jpper and lower b~ s e\’\Ce of 'e for deterministic channels
W—sfEncodell _— P \( Jaussiana '(_‘(\ e \(_,’\ PP
A Qf* Yy AS |2~ Ne ,ONQV\( 1\\60 Y 6 utperforms Gaussian inputs
! +——| Relay V\u\t“'\se‘. mat'\o\’\
i f y\"\% ns © of )
\o Vo
\Y\'\n“e £E W““\—,Z ar 2015 S L g
\Ona _\ ’ q ll i
\\(eT \’d“ ao \“ﬁofmat 147 X“ 531 Yln \/ v
ebO 1, 0 > Decoder
Cod W1—> Encoder g‘
r = H
O. Simeone, E. Erkip, and S. Shi.iidl, “On codebook information for F'1 = i
interference relay channels with out-of-band relaying,” IT May 2011. N :
Qy )
- n :
1. Primitive relay channel: capacity with compress forward n S Y3 o Relay
2. IC+R+Oblivious receivers: capacity with compress forward and TIN Frood X2 ~ g T F
3. Gaussian noise: optimizing input unknown W2 » Bhcoder ><ﬁ ;
: 3 |
Fy ><': :
- [}
C1C-OR _ ] Ry < I(X1;11]Q) 5 Yy ¥
Ry < I(X2;Y3|Q) < Ll
PQPx,1oPx;1Q 5 rar
Ry Py
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Discrete inputs in Gaussian channels — deeper?

Other supporting arguments

e E. Abbe and L. Zheng, “A coordinate .
system for Gaussian networks,” IT ’ N ©9g DoF Gain
2012.

e E. Calvo, J. Fonollosa, and J. Vidal, . .

“On the totally asynchronous * Discrete In ® ut
interference channel with single-user con CI usions are

receivers,” 1SIT 2009 ) )
simulation based

98



Questions

*|loss in performance due to lack of codebook
knowledge? due to lack of synchronization?

are there inputs that outperform Gaussians
in the AWGN |C under these conditions?

*can we show analytical gains!?
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How we tackle discrete inputs for G-IC

 best inner bound for Gaussian IC is the complex H+K scheme

- simpler scheme — Treating Interference as Noise with no Time Sharing:

72 TINnoTS 0< Ry <I(X1;Y7) }

— UPXlXQZPleXQ { O S R2 S I(X27Y2>
- we show discrete inputs in TINNnoTS performs well!

 neat, general tools to bound minimum distance of sum-sets, ar4 ]
information achieved by discrete RVs in Gaussian noisg P\S\( \»\eﬂfj

S. Li, Y.-C. Huang, T. Liu, and H.D. Pfister, “On the limits of treating interference as noise in the

SI m I Ia. I" reS u Its as two-user Gaussian symmetric interference channel,” ISIT 2015.
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Capacity is actually known.... sort of

Interference Channel (IC)

P Fy Fs
. Gk
W1 —»| Encoder 1 —— Channel —| Decoder 1 —» W;
9 -//U 7:6
o p(y1, y2|z1, 72) vy A
Wy —»{ Encoder 2 |—» —»| Decoder 2—» T/,
F2 Fl F2

IATA

3|3

. <Ry
C = nlirgoco ( U {(Rl,Rg) ' 0< Ry
Pxaxg=PxpPxy

(X7 Y") })
I[(X3:;Y5")
Uncomputable

o Complexity | x X5|™



Treating interference as noise inner bound

° . Rt 0 < Rl = iI(X{L Yln)
CCIPCIC”')’. € =limy_cco (UPX{LXS’:PX?PX?{ 0< Ry < 1I(X§L Y5")

R. Ahlswede, “Multi-way communication channels,” in Proc. IEEE Int. Symp. Inf. Theory, March 1973, pp. 23-52.

li.i.d. inputs

Treat Interference as Noise Inner Bound:

RENTS —co(Upvrr { 02 21w ) With Time Sharing

RIINnOTS | 0< Ry < I(X1;Y7)
o - P =PaPx, 10 < Ry < I1(X0:Ya)

No Time Sharing
How far away is TINnoTS from capacity?

ls it really “treating interference as noise”?
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Gaussian channels with discrete inputs

Z1,Z9 ~ N(0,1)

F zn Fi|| F>
T Sy o .
1 —»{ Enc. > »O—p[ Dec. W, Y]_ p— \/ﬁXl —I— |an2 —I— Z]_
Vinr vy Y2 =V ianl + sanQ + ZQ
Wy —| Enc. X7 N —»D—| Dec. —»T17,
T R
Fy Z Fy || F2

- instead of taking X1 and X:2to be Gaussian, take them to be discrete

- difficulty: how to evaluate mutual information expressions with discrete
and Gaussian mixtures

103 103



Tools for Discrete
Inputs



Discrete+mixed inputs

» Discrete input Xp ~P(Xp) =) pid(x;)

=1
1
Xp ~PAM(N), [X| = N,p; = & for all i € [1,...,N]

A A A A A A 4 A 4

* PAM input
* Minimum distance  dmin(Xp) = min lz; — o
* Mixed inputs Xmix = V1 —0Xp + VX,
6 € (0,1],
Xg ~ N(Oa 1)
E[X5] <1
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Bounds on mutual information

Y =+/snrX + Z,
We deﬁne: 7 ~ N(0,1)

I(X; Yenr) = I(X, snr)
E [(X — E[X|Ysn])?] = mmse(X, snr)

Interested in:  [H(Xb) - gap]™ < I(Xp,snr) < H(Xp)

Want the tightest version of the “gap” term
for a given PMF
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Bounds on mutual information

[H(Xp) — gap]" < I(Xp,snr) < H(Xp)

Ozarow W?'ner-

gaPow-A = flog£—|— (1—¢)log

— £ +Elog(N — 1), €:=20 (\/Sﬁd;}“i“(m)

Ozarow-Wyner-B

1 Te 1 192 L. Ozarow and A. Wyner, “On the capacity of the Gaussian
gap lOg _|_ _ lOg 1 + channel with a finite number of input levels,” IEEE Trans. Inf.
OW-B = 2 6 9 ST d2 8(Xp) Theory, vol. 36, no. 6, pp. 1426—1428, Nov 1990.
min (X p

DTD-ITA" 14-A

i snr(aci—acj)2 1
—log Z ]\?/p_J z —5 log (2me)| < I(Xp,snr) < H(Xp)
(4,5)€[1:N]?
Snrdrrun(XD)

gapm<zlog(2)+log(1+<N—1> : ) DTD-ITA" 14-B

1+

Dytso, A.; Tuninetti, D.; Devroye, N., "On discrete alphabets for the two-
user Gaussian interference channel with one receiver lacking knowledge
|07 | of the interfering codebook," ITA, 2014 , vol., no., pp.1,8, 9-14 Feb. 2014




Comparison of bounds

InpUt: PAM With N = |vV1+snr| = H(X) = log(N) ~ %log(1+snr)
number of points

20

2 I I I I
Ozarow-Wyner-B
Ozarow-Wyner-B Ozarow-Wyner-A /
18 |- Ozarow-Wyner-A 1.8 | DTD-ITA14-A .
DTD-ITA14-A DTD-ITA14-B
DTD-ITA14-B shaping loss
16 k- Capacity / 16k

1.4

1.2

1 B |

08} |
06|
04k
02 /
| | | | | | | | | | | O 1 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 920 100 110 0 10 20 30 40 50 60 70 80 90 100 110
SNRdB SNRdB

shaping loss of uniform lattice
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Why is discrete good? Examples.

1.Pointto-point Gaussian noise Channel

v = ol + Ze - good input
E[X?] <1,Zg ~N(0,1)

2 .Pointto-point Gaussian noise Channel with State
Y = srX + k.+ zo: ¢good state / interferer

E[X2] <1,%Zg NN(Ov 1)7
T ~ discrete: |[T'| = N and d?nin(ﬂ > 0

109



Discrete is a good input.

1.Pointto-point Gaussian noise Channel

Y = \/snr.—l— Al
E[X?] <1,Zg ~ N(0,1)

. with PAM:
Capacity
N = |V1+snr]
1
C = 5 log(l + snr) C > % log(l + snr) — gap

. o 1 4
achieved by Gaussian gap = - log (%e)
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Discrete is a good interferer.

2 .Pointto-point Gaussian noise Channel with State

Y = X + i+ Z ;
E[X?) < 1, Za ~ N(0,1),

T ~ discrete: |T| = N and d?nin(T) > 0

Discrete Interference

Gaussian Interference

C > I(Xg; vsnrXeq + hT + Zc;)

1
> 5 log(1 4+ snr) — gap

1

=~
gap = 7 log

2me - 12 |h|?Er
12 d*. (T) |h|2Er + 1 + snr

min

)

C > ](Xg; venrXqg + hilg + Zg)

11 1 snr
= —1lo
28 1+ |h|2Er




Discrete inputs in multi-user channels

More complex in multi-user scenarios

X1p
h Z €6 99
\ | sum-set
Xap

hiXip + hoXop = {h1x1p + hezap|r1 € Xip, 22 € Xop}

|h1X1p + hoXop| = [{h1z1p + hoxop|r1s € Xip, 22 € Xop }| ???

112 [D. Stotz and H. Bolcskei, “Characterizing degrees of freedom through additive combinatorics”
IEEE Transactions on Information Theory, (revised version: Apr. 2016), June 2015, submitted.]



New phenomenon

Example, BPSK:
Xip = Xop ={—1,+1}

(h1=Lho=

hiX1p + hoXop {3 —1,1,3}

M=Lh=b oy o 1)

“Cardinality is Sensitive to Channel Gain Values.”
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Overall proposition / tool

- cardinality of the sum-set {h;X + h,Y }

Proposition: Let X ~ PAM(|X|,dyinx)) and Y ~ PAM(]Y|, dpiny))-
Then for (hg,h,) € R?

|he X + h,Y| = |X||Y| almost everywhere (a.e.), (1)

 minimum distance of the sum-set

and dmin(hxX—I—th) > . ?

| 14



Cardinality

h,X 4+ h,Y| = |X]|]Y| almost everywhere (a.e.)

Set Values where cardinality is less

Union of lines has measure 0

| 15



Minimum distance

Example:h2=1, N1=N2=10

Very Irregular

Can we even have a
lower bound?

12

<1 (We)+11 1+
gaPow-B > 9 0g 6 9 0og

|16

snr d?

min(Xp)

|



Minimum distance, case |: no overlap

We have

Aenin(hy X +hyv) = WD ([ha]dmin(x)s [y dmin(y))
under the following conditions

either ‘Yth’dmm(Y) < |hx|dmin(X)7
or | X||hg|dmin(x) < |hyldminy) (shown below).
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Minimum distance, case 2: with overlap

Then, up to a set of (hy, h,) of measure no more than -, we have

Qenin(ho X +hyY) = By X1y - TN ([ | dimin(x) s [Py | dimin(yys Ehal hy 11X 1Y)

) _ v/2
IXEYTT Y 4 In(max(|X], |Y])

’hx|dmin(X) ’hy’dmin(Y)

Elhal by |, X[, y] += Max ( Y ) X

03

0.35
A A
| | - I X 0.25 |-
I I P L X+ hXs
| | 02}
| [ £
| I 0.15
| I
I A A | 0.1
EERNEIHNE
| i l 0.05
I I
| [
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Lower bound on drnin with m=0.1
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Usq d2 . | Use Boyn
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Applications of discrete
INpUts



Approximate capacity without codebooks

F1
[ J
% HK+G I
W1 —»| Encoder — Channel T T ‘I 2 b .
X7 (Y1, y2|z1, 22) F F /
Wy —»| Encoder 2 ) yon R. Etkin, D. ng, and H Wang, “Qaussian interference
2 R channel capacity to within one bit,” IEEE Trans. Inf.

T | Decoder 17, Theory, vol. 54, no. 12, pp. 5534-5562, Dec. 2008.
F, bt

Fy Fy
F

Y 11 o "
\ — o Decoder i One-sided” HK+
/ Wi —»| Encoder [——» Channel
P ed
¥ p(y1, y2|71, 72) F M MIXG |npU|'S
— W2 — Encoder 2» y.n .
2
T —| Decoder |1/, 3 34 bl‘l's
[ J
2 T T A. Dytso, D. Tuninetti, and N. Devroye, “On the two-user
2 interference channel with lack of knowledge of the interference
Fy Fy codebook at one receiver,” IEEE Trans. Inf. Theory, vol. 61, no.
3, pp. 1257-1276, March 2015.
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Approximate capacity without codebooks

Fy
Y’n
y X7 > Decoder > 11 +
W1 —| Encoder ——1—> Channel T ! TI N n OTS
X7 (Y1, y2|x1, x2) Fy k Mlxed InPUi'S
Wy —»| Encoder 2, vy
T —| Decoder 1, ConStant or Iog'log gqps
Fs T A. Dytso, D. Tuninetti, and N. Devroye, “Interference as Noise:
Fy Friend of Foe?” to appear in IEEE Trans. Inf. Theory, 2016.
Available on arXiv.
=V1—-6 Xip + V6 Xic,
0; € [O 1]
TINnoTS __ 0< Ry <I(X1; Y1) 1 Y
R = U { 0 < Ry < I(X2;Ya) with <),
N17N2751,52 X’[,G NN(O 1)
1 =1, 2.

discrete < public
Gaussian < private

Choice of N, 5i looks like
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Approximate optimality of TINnoTS in Gaussian-IC

Very Weak Weak | :Weak Il  Strong VeryStrong

' - up to an outage '

' of controllable measure

. 1/2 . 2/3 . 1 : 2 . o
Gaussian / Mixed / Mixed Discrete Discrete
XZ:\/1—5ZXZD+\/572XZ(;,ZE[12],

B DoF gain over

snrdB Gaussians with
TINnoTS!

oV
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Approximate optimality of TINnoTS in Gaussian-IC

Very Weak Weak | :Weak Il  Strong VeryStrong

' - up to an outage '

' of controllable measure
- >

0 o 1/2 . 2/3 . 1 . 2 . &/
Gaussian / Mixed / Mixed Discrete Discrete
X, =+/1—-06; Xip+/0; Xic, i € [1:2],

B Closed-form expressions
snrdB for number of points,
power splits and gap




Analytical
bounds on
gaps are
pessimistic!

strong interference, discrete
inputs with analytical lower
bound is red region!

Numerical evaluation

[aV]

5.5

5

4.5

4

2.5

1.5

0.5

_*_

Capacity Region

Achiev. Theorem 7
Achiev. Ozarow-Wyner-B
Achiev. DTD-ITA-A
Achiev. Monte Carl
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Approximate capacity of ICs with lack of
synchronization

*in networks, often assume all nodes are

synchronized
Frame-asynchronous IC Received signal at Rx 1
' o= (Ot
O Q « 2 A

4
.
o T
s .
S .
9 .
9 .
5 .
S .
> .
.
. .
. e
e
128
(20NN
. .

Symbols Xaiof codeword Xq Codewords are not synchr.omzed
Symbols are synchronized

mE O O - .
A A 2o
n J = v4
Symbols Xzj of codeword X5 -

Received signal at Rx 2

Mild asynchronism Total asynchronism Strong asynchronism
ﬁ =0 Ai€{0,1,... n-1} Lij = eaijn
n

*this may be unrealistic sometimes....
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Approximate capacity of ICs with lack of
synchronization

Treat Interference as Noise without Time
Sharing Inner Bound:

RIMNnOTS  _ | | 0 < Ry <I(Xy1; Y1)
in - YPx, x,=Px, Px, 0< Ry < I(X27 Y2)

No Time Sharing

*this is achievable by asynchronous G-IC, so our
approximate gap to capacity results apply even without
synchronization!
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Key ideas + open problems

 use non-Gaussian inputs: good inputs, good interferers
- general tools on bounding dmin, mutual information applicable elsewhere?

- mixed inputs hence approximately optimal for the block asynchronous G-I1C
and the codebook oblivious G-IC

- OPEN: better constellation than PAM? What about higher dimensions?

- OPEN: can we develop a smart set of multi-letter discrete inputs and
evaluate these in the capacity achieving expression for the G-1C?

sty

R. Ahlswede, “Multi-way communication channels,” in Proc. IEEE Int. Symp. Inf. Theory, March 1973, pp. 23-52.

0< R <

Ca PCIC")’I ¢ = limp—oo co (UPX?XSZPX?PXS { 0< Ry <

3|3
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Forced travel pics

unsolicited MENTORING advice:
TRAVEL!
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Practical codes for
interference channels?

132



Polar codes over interference channels?

¢
propose a polar coding scheme able to

achieve the H+K region for the |IC

—y
4

[L. Wang and E. Sasoglu, “Polar coding for interference networks,” in Proc. IEEE Int. Symp. Inf. Theory, Honolulu, Hawaii 2014.]

based on ideas in

[E. Arikan, “Polar coding for the slepian-wolf problem based on mono- tone chain rules,” in Proc. IEEE Int. Symp. Inf. Theory, Cambridge, MA, 2012, pp. 566-570.]

[S. H. Hassani and R. L. Urbanke, “Universal polar codes,” 2013. [Online]. Available: http://arxiv.org/abs/1307.7223 ]

Informal statement by Ruediger
Urbanke:"“any region achievable by
i.i.d. inputs usually can be shown to

be achievable by polar codes”
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Point to point codes for interference networks?

Young-Han Kim’s group has worked
extensively on this, see excellent slides:
http://circuit.ucsd.edu/~yhk/pdfs/swcm.pdf

Main ideas: high performance, loy  Hen

Block coding (relaying, feedback)
Superposition coding (without rate-splitting)
Staggered transmission

Sliding window and successive cancellation
decoding 134



http://circuit.ucsd.edu/~yhk/pdfs/swcm.pdf

Variations
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Z interference channel

p(y1|x1, x2)
p(y2|z2) hig

TP o) (o) i Bt
2 ncodaer ng Y2n ecoder W2 X;L h22 \T/ . k

A
. |
X in Yln A Encoder 1 Xl hi1 M ( )_,
ncoder DP(‘()d@I‘
= NP Cumen e Sy

Capacity unknown in general, except:

- sum-rate known for Gaussian Z-IC

[I. Sason, “On achievable rate regions for the Gaussian interference channel,” IEEE Trans. Inf. Theory, vol. 50, no. 6, pp. 1345-1356, Jun. 2004. ]

- sum-rate known when interference-free link is noise-free

[R. Ahlswede and N. Cai, “Codes with the identifiable parent property and the multiple-access channel,” in General Theory of Information Transfer
and Combinatorics (Lecture Notes in Computer Science). |
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Cognitive interference channel

X’rL
W]__>( Encoder 1 1

p(yla y2\$1, 332)

" (oo 1 o1
Decoder 1
Channel / 1

. Wz—»(Encoder 2 ng \YQ,,:(Decoder 2 )—>W2

I n t ro d u C e d : [N. Devroye, P. Mitran and V. Tarokh, “Achievable rates for cognitive radio channels,” IEEE Trans. on Info. Theory, vol. 52, no. 5, pp. 1813-1827, May 2006.] \

[S. Rini, D. Tuninetti and N. Devroye, “New inner and outer bounds for the discrete memoryless cognitive

State Of th e a r’t D M * interference channel and some capacity results ,” IEEE Trans. on Info. Theory, vol. 57, no. 7, pp. 4087-4109,
[}

July 2011.]

State of the art Gaussian (capacity
to Within a Constant gap): [S. Rini, D. Tuninetti and N. Devroye, “Inner and outer bounds for the

Gaussian cognitive interference channel and some new capacity

results,” IEEE Trans. on Info. Theory, vol. 58, no. 2, pp. 820-848, Feb.

2012.]

GDoF cognitive with more users:

[D. Maamari, D. Tuninetti, and N. Devroye, ** Approximate Sum-Capacity of K-user Cognitive
Interference Channels with Cumulative Message Sharing," IEEE Journal of Selected Areas in
Communications -- Cognitive Radio Series, Vol. 32, No. 3, pp. 654-666, March 2014.]
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Fig. 3. dx(o; K)/K for different clhannel models. The discontinuity at o« =
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Cognitive interference channel

X7 Yln A
W1—>( preoder | )\1A Channel /(Decoder 1 '——>W1
BC and IC [p(ylayzl‘h@)J

. W2—>(Encoder 2){ \YQ;(Decoder 2 )—»WQ

New feature (like Broadcast Channel):

Encoder 2 can use N

a) “dirty paper coding” to eliminate )
interference of W2at Rx |, or

b) “cooperate” in sending W1 to Rx |

Fig. 3. dx(a; K)/K for different channel models. The discontinuity at «
; 1

1 is not shown where the value is 3.
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Interference channel with generalized feedback

Yy 4 )
Y xz7| 2 o |y
=] e 4 —
Wo—>ENC2[—>| Z - [>{DEC2j>W:
<
Xl g5 = | _
Wi—>{ENC1 > & = [>{DECL > W,
S
= &

3
ﬁ
e

[S. Yang and D. Tuninetti, “Interference channel with generalized feedback (aka source cooperation) Part 1: achievable regions” IEEE Trans. on Info. Theory, Vo. 57, No. 5, pp.2686-2710, May 2011.]

[D. Tuninetti, “An outer bound for the memoryless two-user interference channel with general cooperation” Information Theory Workshop, pp. 217-221, 2012.]

general model that captures causal source
cooperation, all forms of feedback
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K-user interference channels

Interference alignment

[VR Cadambe and SA Jafar, “Interference alignment and the degrees of
freedom of the K user interference channel,” IEEE Transactions on
Information Theory, Vol. 54, No. 8, pp. 3425-3441, Aug. 2008.

DA
® 9
SN

VAV vv’
‘ Q P
ivi . A | V . I [ [4 1] V [M. Maddah-Ali, A. Motahari, and A. Khandani, “Communication over X channel: Signalling and multiplexing gain,”

“{' in Technical Report. UW-ECE-2006-12, University of Waterloo, July 2006.]

H[K K] . '
(a) K user interference channel ASk HeImUt + A)'I'n-

Each user can send up to half of interference-free rate

image taken from https:/sites.google.com/site/interferencealignment/home D O F — K/2

highly recommended site for interference alignment 140



https://sites.google.com/site/interferencealignment/home

Other variations

- with state, known at....!

- secrecy....!

- with cognition and state....!

- ergodic capacity.....!

- game-theoretic issues....?

- Wyner model ...!

- Zero-error capacity....!

- MIMO interference channel....?

- |C with various flavors of feedback....?

- |-MMSE approach to understanding the IC ....!
- |Cs with relays....?

- two-way ICs...... ? "

unsolicited advice: chip away at fundamental problems!



Forced UIC advertisement
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UIC 1s a public school 1in
downtown Chicago

U| c The University of lllinois
at Chicago .

Hosemont

O'Hare International
Airport
Wood Dale Norridge

Bensenville

a

Franklin Park

Elmhurst!l ~{ River Forest Pyt —
2 N . | -
Oak Park 2 TR "I" l r, _,\

@ at Chicago (UIC)... h I'un'"“' "m‘" | -

-

L &- ..l-’ § | - .
e AL W gy

Westchester Berwyn

A LV
‘.lxl‘ﬂ}"“ e ‘ ‘ :

Cicero
Oak Brook

Countryside Bedford Park

Darien Burr Ridge Burbank

Evergreen (-
OakLawn — 53 (20}

Chicago Ridge

143



“Trump cancels Chicago rally (UIC Pavilion)
protesters fill streets near UIC”
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UIC 1s a great place to visit

— home of the “"NICEST” lab

Ij;T;E NeTWOrxKs intTormation Communication!
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Natasha Hulvya Besma Daniela
Devroye Seferoglu Smida Tuninetti

— home of the best “Brutalist”

architecture 1n the world
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Key lessons learned

Simple channel model, what is it?

Many ways of treating interference, such as?

Is capacity known!

What is surprising?

|46



Open problems

Are Gaussian inputs optimal for the Gaussian |C?
depends what expression!

[S. Beigi, S. Liu, C. Nair, and M. Yazdanpanah, “Some results on the scalar Gaussian interference channel,” ISIT, July 2016.]

Progress on evaluating the multi-letter capacity
eX P I"e S S i O n ? [S. Beigi, S. Liu, C. Nair, and M. Yazdanpanah, “Some results on the scalar Gaussian interference channel,” ISIT, July 2016.]

Does the sum-capacity decrease or increase with the
symmetric interference coefficient (btw 0 and 1)?

[I. Sason, “On achievable rate regions for the Gaussian interference channel,” IEEE Trans. Inf. Theory, vol. 50, no. 6, pp. 1345-1356, Jun. 2004. ]
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Questions + discussions now, later, email
are always welcome

Natasha Devroye
devroye(@uic.edu
www.ece.uic.edu/Devroye

I may be looking for a post-doc January 2017

ELECTRICAL
ENGINEERING

AND
COMPUTER

O
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