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📱

What to do?

What is information 
theoretically optimal?

Open Problem: The capacity region of the 
interference channel
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Example 1: binary adder channel

�

�

W1

W2

Encoder 1

Encoder 2

Decoder 1

Decoder 2

Ŵ1

Ŵ2

(modulo 2 addition)

X2 2 {0, 1}

X1 2 {0, 1}

Y2 = X1 �X2

Y1 = X1 �X2

What rate pairs                       can be transmitted reliably?(log(#W1), log(#W2))

Y1 = Y2 = 0 ! (X1, X2) 2 {(0, 0), (1, 1)}
Y1 = Y2 = 1 ! (X1, X2) 2 {(0, 1), (1, 0)}

Can only transmit 1 bit in total 

X1

X2

Y

00

1

1 1

1

0

0
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Example 1: binary adder channel

�

�

W1

W2

Encoder 1

Encoder 2

Decoder 1

Decoder 2

Ŵ1

Ŵ2

(modulo 2 addition)

X2 2 {0, 1}

X1 2 {0, 1}

Y2 = X1 �X2

Y1 = X1 �X2

What rate pairs                       can be transmitted reliably?(log(#W1), log(#W2))

R1 = log(#W1)

R
2
=

l
o
g
(
#
W

2
)

C
2
=

1

Outer bound (individual)

C1 = 1

Fix then X2 = 0 Y1 = X1

Outer bound (sum)
Sometimes capacity known, and time sharing is optimal!
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Example 2:  AWGN channel

R1 = log(#W1)

R
2
=

l
o
g
(
#
W

2
)

Fix then X2 = 0 Y1 = h11X1 + Z1

C1 =

1

2

log(1 + h2
11P1)

C
2

Outer bound (individual)
When            are “big”h21, h12
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�

�

W1

W2

h11

h21

h12

h22

Encoder 1

Encoder 2

Decoder 1

Decoder 2

Ŵ1

Ŵ2

X1

X2

Z1 ⇠ N (0, 1)
Power P

Power P
Z2 ⇠ N (0, 1)

Y1 = h11X1 + h21X2 + Z1

Y2 = h21X1 + h22X2 + Z2

Sometimes capacity is known, and 

 decoding interference is optimal!



Goals of this lecture

1) understand what is understood 

2) understand 3 outer bound and 1 inner    
bound proof techniques

3) understand different ways of handling 
interference

4) ask questions and relate to your own research

forced jokes

forced travel pics

forced UIC advertisement
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Formal definition

• sender j = 1, 2 sends an independent message Wi to receiver j

W1

W2

Encoder 1

Xn
1

Xn
2 Y n

2

Y n
1

Encoder 2

Decoder 1

Decoder 2

p(y1, y2|x1, x2)

Channel
Ŵ1

Ŵ2

• lower case x is an instance of random variable X in calligraphic alphabet X

• a discrete memoryless interference channel (DM-IC) (X1⇥
X2, p(y1, y2|x1, x2),Y1⇥Y2) consists of 4 finite sets/alphabets

X1,X2,Y1,Y2 and a collection of conditional pmfs p(y1, y2|x1, x2)
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Formal definition
W1

W2

Encoder 1

Xn
1

Xn
2 Y n

2

Y n
1

Encoder 2

Decoder 1

Decoder 2

p(y1, y2|x1, x2)

Channel
Ŵ1

Ŵ2

• A (2

nR1
, 2

nR2
, n) code for the IC consists of:

1. Two message sets [1 : 2

nR1
], and [1 : 2

nR2
]

2. Two encoders:

w1 2 [1 : 2

nR1
] ! x

n
1 (w1)

w2 2 [1 : 2

nR2
] ! x

n
2 (w2)

3. Two decoders:

y

n
1 ! [1 : 2

nR1
] [ error

y

n
2 ! [1 : 2

nR2
] [ error

• we assume W1 and W2 are uniformly distributed on [1 : 2

nR1
] and [1 : 2

nR2
]

respectively
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Formal definition
W1

W2

Encoder 1

Xn
1

Xn
2 Y n

2

Y n
1

Encoder 2

Decoder 1

Decoder 2

p(y1, y2|x1, x2)

Channel
Ŵ1

Ŵ2

• Rate pair (R1, R2) is achievable if there exists a sequence of (2nR1 , 2nR2 , n) codes

with P (n)
e ! 0 as n ! 1

• The capacity region of the DM-IC is the closure of the set of achievable rate

pairs (R1, R2)

• Note: capacity region depends on p(y1, y2|x1, x2) only through the marginals

p(y1|x1, x2) and p(y2|x1, x2)

• average probability of error:

P (n)
e := P{(cW1, cW2) 6= (W1,W2)}
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Rate regions
W1

W2

Encoder 1

Xn
1

Xn
2 Y n

2

Y n
1

Encoder 2

Decoder 1

Decoder 2

p(y1, y2|x1, x2)

Channel
Ŵ1

Ŵ2

R1  A

A

B
R2  B

R1 = log(#W1)

R
2
=

l
o
g
(
#
W

2
)

R1 +R2  C
C

10



Reminder

11

Point-to-point capacity

Multiple-access channel (MAC) capacity region

R  C := max

p(x)
I(X;Y )

R1  A

A

B
R2  B

R1 = log(#W1)
R

2
=

l
o
g
(
#
W

2
)

R1 +R2  C
C

R1  I(X1;Y |X2, Q)

R2  I(X2;Y |X1, Q)

R1 +R2  I(X1, X2;Y |Q)

union taken over all p(q)p(x1|q)p(x2|q)

W1

W2

Encoder 1

Encoder 2

Decoder 1

Channel

Ŵ1

Ŵ2

p(y|x1, x2)

X1

X2

Y



What if the transmitters cooperate?

W1

W2

Encoder 1

Xn
1

Xn
2 Y n

2

Y n
1

Encoder 2

Decoder 1

Decoder 2

p(y1, y2|x1, x2)

Channel
Ŵ1

Ŵ2

Encoder 1

Y n
2

Y n
1

Decoder 1

Decoder 2

p(y1, y2|x1, x2)

Channel
Ŵ1

Ŵ2

W = (W1,W2)
Xn = (Xn

1 , X
n
2 )

becomes a 2Tx antenna broadcast channel (solved for AWGN)

W1

W2
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What if the receivers cooperate?

becomes a 2Rx antenna multiple access channel (solved)

W1

W2

Encoder 1

Xn
1

Xn
2 Y n

2

Y n
1

Encoder 2

Decoder 1

Decoder 2

p(y1, y2|x1, x2)

Channel
Ŵ1

Ŵ2

W1

W2

Encoder 1

Xn
1

Xn
2

Encoder 2

Decoder 1p(y1, y2|x1, x2)

Channel

Ŵ1

Ŵ2

Yn = (Y n
1 , Y n

2 )

It’s the interference that is d
ifficult!

Y n
1

Y n
2
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DM-IC:  Basic inner and outer bounds

“Single-user” outer bound:
• Maximal (achievable) individual rates:

R1  C1 := max

p(x1),x2

I(X1;Y1|X2 = x2), R2  C2 := max

p(x2),x1

I(X2;Y2|X1 = x1)

“Single-user” time-sharing inner bound:

• Union over all t 2 [0, 1] of: R1  t C1, R2  (1� t)C2

Treating interference as noise inner bound:
• Union over all p(q)p(x1|q)p(x2|q) of

R1  I(X1;Y1|Q), R2  I(X2;Y2|Q)

“Basic genie” outer bound: 
• Union over all p(q)p(x1|q)p(x2|q) of

R1  I(X1;Y1|X2, Q), R2  I(X2;Y2|X1, Q)

W1

W2

Encoder 1

Xn
1

Xn
2 Y n

2

Y n
1

Encoder 2

Decoder 1

Decoder 2

p(y1, y2|x1, x2)

Channel
Ŵ1

Ŵ2

FIX interference

GIVE interference

AVOID interference

“SUFFER” interference
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AWGN Gaussian IC

�

�

W1

W2

h11

h21

h12

h22

Encoder 1

Encoder 2

Decoder 1

Decoder 2

Ŵ1

Ŵ2

X1

X2 Y2

Y1

Z1 ⇠ N (0, 1)
Power P

Power P
Z2 ⇠ N (0, 1)

Average transmit power constraint: for all codewords x

n
1 (w1) and x

n
2 (w2),

nX

j=1

x

2
1j(w1)  nP,

nX

j=1

x

2
2j(w2)  nP,

S2 = h2
22P

I2 = h2
12P

S1 = h2
11P

I1 = h2
21P

Practically relevant
16



AWGN Gaussian IC

�

�

W1

W2

Encoder 1

Encoder 2

Decoder 1

Decoder 2

Ŵ1

Ŵ2
Y2

Y1

Z1 ⇠ N (0, 1)
Power 1

Power 1
Z2 ⇠ N (0, 1)

p
S1

p
S2

p
I2

p
I1

Average transmit power constraint: for all codewords x

n
1 (w1) and x

n
2 (w2),

1

n

nX

j=1

x

2
1j(w1)  1,

1

n

nX

j=1

x

2
2j(w2)  1,
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Gaussian-IC:  Basic inner and outer bounds

“Single-user” outer bound:
• Maximal (achievable) individual rates:

R1  C1 :=

1

2

log(1 + S1), R2  C2 :=

1

2

log(1 + S2)

�

�

W1

W2

Encoder 1

Encoder 2

Decoder 1

Decoder 2

Ŵ1

Ŵ2
Y2

Y1

Z1 ⇠ N (0, 1)
Power 1

Power 1
Z2 ⇠ N (0, 1)

p
S1

p
S2

p
I2

p
I1

Average transmit power constraint: for all codewords x

n
1 (w1) and x

n
2 (w2),

1

n

nX

j=1

x

2
1j(w1)  1,

1

n

nX

j=1

x

2
2j(w2)  1,

“Single-user” time-sharing (with power control) inner bound:
• Union over all ↵ 2 [0, 1]:

R1  ↵

2

log

✓
1 +

S1

↵

◆
, R2  (1� ↵)

2

log

✓
1 +

S2

(1� ↵)

◆

Treating interference as noise inner bound (with Gaussian inputs):

R1  1

2

log

✓
1 +

S1

1 + I1

◆
, R2  1

2

log

✓
1 +

S2

1 + I2

◆
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The main problem with the Gaussian-IC

What inputs are optimal?

�

�

W1

W2

Encoder 1

Encoder 2

Decoder 1

Decoder 2

Ŵ1

Ŵ2
Y2

Y1

Z1 ⇠ N (0, 1)
Power 1

Power 1
Z2 ⇠ N (0, 1)

p
S1

p
S2

p
I2

p
I1

Average transmit power constraint: for all codewords x

n
1 (w1) and x

n
2 (w2),

1

n

nX

j=1

x

2
1j(w1)  1,

1

n

nX

j=1

x

2
2j(w2)  1,

Max entropy and EPI: 
Gaussian inputs are best inputs 

but also worst noise

Tension between the 2 users!
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DM-IC:  Simultaneous decoding inner bound

“Compound MAC” inner bound: (force both to decode both)

Can be tightened….. how?

• Union over all p(q)p(x1|q)p(x2|q) of

R1  min{I(X1;Y1|X2, Q), I(X1;Y2|X2, Q)}
R2  min{I(X2;Y1|X1, Q), I(X2;Y2|X1, Q)}

R1 +R2  min{I(X1, X2;Y1|Q), I(X1, X2;Y2|Q)}

W1

W2

Encoder 1

Xn
1

Xn
2 Y n

2

Y n
1

Encoder 2

Decoder 1

Decoder 2

p(y1, y2|x1, x2)

Channel
Ŵ1

Ŵ2
cW1

cW2
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DM-IC:  Simultaneous decoding inner bound

“Compound MAC” inner bound: (force both to decode both)

Can be tightened….. how?

• Union over all p(q)p(x1|q)p(x2|q) of

R1  min{I(X1;Y1|X2, Q), I(X1;Y2|X2, Q)}
R2  min{I(X2;Y1|X1, Q), I(X2;Y2|X1, Q)}

R1 +R2  min{I(X1, X2;Y1|Q), I(X1, X2;Y2|Q)}

• Union over all p(q)p(x1|q)p(x2|q) of

R1  I(X1;Y1|X2, Q)

R2  I(X2;Y2|X1, Q)

R1 +R2  min{I(X1, X2;Y1|Q), I(X1, X2;Y2|Q)}
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Simple Inner Bounds

• Time-division-with-power-control inner bound: Set of all (R1, R2) such that

R1 < ↵C(S1/↵),

R2 < ↵̄C(S2/↵̄)

for some ↵ 2 [0, 1]

• Treat-interference-as-noise inner bound: Set of all (R1, R2) such that

R1 < C(S1/(1 + I1)) ,

R2 < C(S2/(1 + I2))

Note that this inner bound can be further improved via power control and time
sharing

• Simultaneous decoding inner bound: Set of all (R1, R2) such that

R1 < C(S1),

R2 < C(S2),

R1 +R2 < min{C(S1 + I1),C(S2 + I2)}
• Remark: These inner bounds are achieved by using good point-to-point AWGN

codes. In the simultaneous decoding inner bound, however, sophisticated
decoders are needed

LNIT: Interference Channels (2010-06-22 08:45) Page 6 – 17

Comparison of the Bounds

• We consider the symmetric case (S1 = S2 = S = 1 and I1 = I2 = I)

I = 0.2 I = 0.5

Simultaneous
decoding

TDMA

Treating
interference

as noise

R1

R2

R1

R2

LNIT: Interference Channels (2010-06-22 08:45) Page 6 – 18

I = 0.8 I = 1.1

R1

R2

R1

R2

LNIT: Interference Channels (2010-06-22 08:45) Page 6 – 19

Capacity Region of AWGN-IC Under Strong Interference

• The AWGN-IC is said to have strong interference if I2 � S1 and I1 � S2

• Theorem 2 [4]: The capacity region of the AWGN-IC with strong interference is
the set of rate pairs (R1, R2) such that

R1  C(S1),

R2  C(S2),

R1 +R2  min{C(S1 + I1),C(S2 + I2)}

• Achievability follows by the simultaneous decoding scheme

• The converse follows by noting that the above conditions are equivalent to the
conditions for strong interference for the DM-IC and showing that
X1,X2 ⇠ N(0, P ) optimize the mutual information terms

To show that the above conditions are equivalent to
I(X1 : Y1|X2)  I(X1;Y2|X2) and I(X2;Y2|X1)  I(X2;Y1|X1) for all
F (x1)F (x2)

LNIT: Interference Channels (2010-06-22 08:45) Page 6 – 20

images taken from [A. El Gamal and Y.H. Kim, “Lecture Notes on Network Information Theory,” http://arxiv.org/abs/1001.3404.] 

�

�

W1

W2

Encoder 1

Encoder 2

Decoder 1

Decoder 2

Ŵ1

Ŵ2
Y2

Y1

Z1 ⇠ N (0, 1)
Power 1

Power 1
Z2 ⇠ N (0, 1)

p
S1

p
S2

p
I2

p
I1

Average transmit power constraint: for all codewords x

n
1 (w1) and x

n
2 (w2),

1

n

nX

j=1

x

2
1j(w1)  1,

1

n

nX

j=1

x

2
2j(w2)  1,

low interference

high interference

inner bounds do not uniformly contain each other!

lowish interference

highish interference
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Let both Rxs cooperate in decoding both messages

Give user 1 signal as side information at Rx 2

Give user 2 signal as side information at Rx 1

DM-IC:  Sato’s outer bound

• Let R(p̃(y1, y2|x1, x2)) be the union over all p(q)p(x1|q)p(x2|q)p̃(y1, y2|x1, x2) of

R1  I(X1;Y1|X2, Q)

R2  I(X2;Y2|X1, Q)

R1 +R2  I(X1, X2;Y1, Y2|Q)}.

Then the intersection of the sets R(p̃(y1, y2|x1, x2)) over all p̃(y1, y2|x1, x2) with

the same marginals as p(y1, y2|x1, x2) is an outer bound for the DM-IC.

Handout 1: proof of Sato’s outer bound
23



single-letterizatio
n is the issue!

Handout 1: proof of Sato’s outer bound

1

Handouts for NASIT 2016
The Interference Channel

Natasha Devroye University of Illinois at Chicago, Chicago IL 60607, USA
Email: devroye@uic.edu

I. DETAILED STEPS 1: SATO’S OUTER BOUND FOR THE INTERFERENCE CHANNEL

Theorem 1 (Sato’s outer bound [1]). Let R(p̃(y1, y2|x1, x2)) be the union over all p(q)p(x1|q)p(x2|q)p̃(y1, y2|x1, x2) of

R1  I(X1; Y1|X2, Q)

R2  I(X2; Y2|X1, Q)

R1 + R2  I(X1, X2; Y1, Y2|Q)}.

Then the intersection of the sets R(p̃(y1, y2|x1, x2)) over all p̃(y1, y2|x1, x2) with the same marginals as p(y1, y2|x1, x2) is
an outer bound for the DM-IC.

Proof. Intuitively, the first bound corresponds to a point-to-point bound between transmitter 1 and receiver 1 when receiver
1 has been given (as a “genie” or side information) the signal X2 transmitter by transmitter 2. Similarly for the second bound.
The third bound may be seen as a multiple-access channel bound, where the two receivers are permitted to cooperate in
decoding both messages, i.e. they look and act like a single receiver with output (Y n

1 , Y n

2 ) that must decode both messages.
This is a straightforward proof, but we will go through all steps in detail just for practice.

nR1 = H(W1)
(a)
= H(W1|W2)
(b)
= H(W1|Xn

2 )
(c)
= H(W1|Y n

1 , Xn

2 ) + I(W1; Y
n

1 |Xn

2 )
(d)
 n✏n

1 + I(W1; Y
n

1 |Xn

2 )
(e)
= n✏n

1 + I(Xn

1 ; Y n

1 |Xn

2 )

(f)
 n✏n

1 +
nX

j=1

I(X1j

; Y1j

|X2j

)

(g)
= n✏n

1 + nI(X1; Y1|X2, Q),

where: (a) follows by independence of W1 and W2, (b) follows by the fact that Xn

2 is a function of W2, (c) follows by definition
of mutual information, (d) follows by Fano’s inequality, i.e. in a converse, one can only use the problem statement and the fact
that we are given a code whose probability of error ! 0 as n ! 1. In this case we know that P

e1 := Pr{ cW1 6= W1} ! 0 and
P

e2 := Pr{ cW2 6= W2} ! 0 as n ! 1 since the average error P
e

:= Pr{( cW1, cW2) 6= (W1, W2)} goes to zero. (e) follows as

The work of the authors was partially funded by NSF under awards 1216825 and 1053933. The contents are solely the responsibility of the author and do
not necessarily reflect the official views of the NSF.
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memoryless-ness of the channel!

negative
 term has all i

nputs in conditioning

Handout 1: proof of Sato’s outer bound
2

Xn

1 is a function of W1, and (f) follows by

I(Xn

1 ; Y n

1 |Xn

2 )
(h)
=

nX

j=1

I(X1j

; Y n

1 |Xn

2 , X11, · · · X1(j�1))

(i)


nX

j=1

I(X1j

; Y1j

|Xn

2 , X11, · · · X1(j�1))

(j)
=

nX

j=1

H(Y1j

|Xn

2 , X11, · · · X1(j�1)) � H(Y1j

|Xn

2 , X11, · · · X1(j�1), X1j

)

(k)


nX

j=1

H(Y1j

|X2j

) � H(Y1j

|Xn

2 , X11, · · · X1(j�1), X1j

)

(l)
=

nX

j=1

H(Y1j

|X2j

) � H(Y1j

|X2j

, X1j

)

where (h) follows by the chain rule for mutual information, (i) since we have dropped terms in the mutual information (non-
negativity of mutual information), (j) by definition, (k) as conditioning reduces entropy, (l) (KEY STEP) by the memorylessness
of the channel – this is where we needed equality, in the negative subtraction terms when we try to single-letterize. Finally,
(g) follows by taking Q to be a time-sharing random variable independent of all other random variables in the channel (hence
it is also an auxiliary random variable as it does not depend on channel random variables), uniformly distributed on [1 : n].
By extension, for arbitrary p(q), where Q takes on values in some finite set we have the Theorem.

II. DETAILED STEPS 2: STRONG INTERFERENCE CONVERSE

Theorem (capacity region in strong interference [2]). The capacity region of the interference channel (X1 ⇥
X2, p(y1, y2|x1, x2), Y1 ⇥ Y2)in strong interference is the set of rate pairs (R1, R2) such that

R1  I(X1; Y1|X2, Q) (1)
R2  I(X2; Y2|X1, Q) (2)

R1 + R2  min{I(X1, X2; Y1|Q), I(X1, X2; Y2|Q)} (3)

for some p(q, x1, x2) = p(q)p(x1|q)p(x2|q) where |Q|  4.
Proof of converse. First two single rate bound inequalities follow by the “basic genie” outer bound. For the last inequality,

we only need to show one of the inequalities by symmetry. The trick is to get a sum-rate bound in terms of a mutual information
term with only one output. This is done by using the strong interference condition.

n(R1 + R2) = H(W1) + H(W2)
(a)
 I(W1; Y

n

1 ) + I(W2; Y
n

2 ) + n✏
n

(b)
 I(Xn

1 ; Y n

1 ) + I(Xn

2 ; Y n

2 ) + n✏
n

(c)
 I(Xn

1 ; Y n

1 |Xn

2 ) + I(Xn

2 ; Y n

2 ) + n✏
n

(d)
 (Xn

1 ; Y n

2 |Xn

2 ) + I(Xn

2 ; Y n

2 ) + n✏
n

(e)
= I(Xn

1 , Xn

2 ; Y n

2 ) + n✏
n

(f)


nX

i]1

I(X1i

, X2i

; Y2i

) + n✏
n

(g)
= nI(X1, X2; Y2|Q) + n✏

n

where (a) follows by Fano’s inequality, (b) by the Markov chain W
i

! Xn

i

! Y n

i

, (c) I(Xn

1 ; Y n

1 )  I(Xn

1 ; Y n

1 , Xn

2 ) =
I(Xn

1 ; Xn

2 )+I(X1; Y n

1 |Xn

2 ) = I(Xn

1 ; Y n

1 |Xn

2 ), (d) by a Lemma from [2] that states that for a DM-IC under strong interference,
I(Xn

1 ; Y n

1 |Xn

2 )  I(Xn

1 ; Y n

x

|Xn

2 ) for all p(xn

1 )p(xn

2 ) and all n � 1, (e) by definition, (f) in a similar fashion as in the previous
single-letterization, an (g) by introducing the time-sharing auxiliary random variable Q.
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Are these ever tight? 
(inner = outer)

Single-user outer

Sato outer

Treat interference as noise

(Coded) time-sharing

Simultaneous decoding

(Successive interference cancellation)
26



I(X1;Y1|X2)  I(X1;Y2)

I(X2;Y2|X1)  I(X2;Y1)

A DM-IC is said to have very strong interference if

8p(x1)p(x2)

�

�

W1

W2

Encoder 1

Encoder 2

Decoder 1

Decoder 2

Ŵ1

Ŵ2
Y2

Y1

Z1 ⇠ N (0, 1)
Power 1

Power 1
Z2 ⇠ N (0, 1)

p
S1

p
S2

p
I2

p
I1
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I(X1;Y1|X2)  I(X1;Y2)

I(X2;Y2|X1)  I(X2;Y1)

A DM-IC is said to have very strong interference if

8p(x1)p(x2)

Theorem (capacity region under very strong interference). The

capacity region of the DM=IC under very strong interference is the set of rate

pairs (R1, R2) such that

R1  I(X1;Y1|X2, Q)

R2  I(X2;Y2|X1, Q)

for some p(q, x1, x2) = p(q)p(x1|q)p(x2|q).

Achievability? Successive interference cancellation!
Decode interference FIRST, then desired!

At Rx 2: R1  I(X1;Y2) then R2  I(X2;Y2|X1)

At Rx 1: R2  I(X2;Y1) then R1  I(X1;Y1|X2)
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I(X1;Y1|X2)  I(X1;Y2)

I(X2;Y2|X1)  I(X2;Y1)

A DM-IC is said to have very strong interference if

8p(x1)p(x2)

Theorem (capacity region under very strong interference). The

capacity region of the DM=IC under very strong interference is the set of rate

pairs (R1, R2) such that

R1  I(X1;Y1|X2, Q)

R2  I(X2;Y2|X1, Q)

for some p(q, x1, x2) = p(q)p(x1|q)p(x2|q).

Converse? Basic genie outer bounds (or Sato)
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I(X1;Y1|X2)  I(X1;Y2)

I(X2;Y2|X1)  I(X2;Y1)

A DM-IC is said to have very strong interference if

8p(x1)p(x2)

A DM-IC is said to have strong interference if

I(X1;Y1|X2)  I(X1;Y2|X2)

I(X2;Y2|X1)  I(X2;Y1|X1)
8p(x1)p(x2)

Very strong interference → strong interference 
Strong interference → very strong interference 
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[M. H. M. Costa and A. El Gamal, “The capacity region of the discrete memoryless interference channel with strong interference,” IEEE Trans. Inf. Theory, vol. 33, no. 
5, pp. 710–711, 1987.] 

Theorem (capacity region in strong interference). The capacity re-

gion of the interference channel (X1 ⇥ X2, p(y1, y2|x1, x2),Y1 ⇥ Y2)in strong in-

terference is the set of rate pairs (R1, R2) such that

R1  I(X1;Y1|X2, Q) (1)

R2  I(X2;Y2|X1, Q) (2)

R1 +R2  min{I(X1, X2;Y1|Q), I(X1, X2;Y2|Q)} (3)

for some p(q, x1, x2) = p(q)p(x1|q)p(x2|q) where |Q|  4.

Capacity of DM-IC under strong interference

I(X1;Y1|X2)  I(X1;Y2|X2)

I(X2;Y2|X1)  I(X2;Y1|X1)
8p(x1)p(x2)

Achievability? Simultaneous decoding inner bound
Converse? See handout 31



strong interference! one output!

2

Xn

1 is a function of W1, and (f) follows by

I(Xn

1 ; Y n

1 |Xn

2 )
(h)
=

nX

j=1

I(X1j

; Y n

1 |Xn

2 , X11, · · · X1(j�1))

(i)


nX

j=1

I(X1j

; Y1j

|Xn

2 , X11, · · · X1(j�1))

(j)
=

nX

j=1

H(Y1j

|Xn

2 , X11, · · · X1(j�1)) � H(Y1j

|Xn

2 , X11, · · · X1(j�1), X1j

)

(k)


nX

j=1

H(Y1j

|X2j

) � H(Y1j

|Xn

2 , X11, · · · X1(j�1), X1j

)

(l)
=

nX

j=1

H(Y1j

|X2j

) � H(Y1j

|X2j

, X1j

)

where (h) follows by the chain rule for mutual information, (i) since we have dropped terms in the mutual information (non-
negativity of mutual information), (j) by definition, (k) as conditioning reduces entropy, (l) (KEY STEP) by the memorylessness
of the channel – this is where we needed equality, in the negative subtraction terms when we try to single-letterize. Finally,
(g) follows by taking Q to be a time-sharing random variable independent of all other random variables in the channel (hence
it is also an auxiliary random variable as it does not depend on channel random variables), uniformly distributed on [1 : n].
By extension, for arbitrary p(q), where Q takes on values in some finite set we have the Theorem.

II. DETAILED STEPS 2: STRONG INTERFERENCE CONVERSE

Theorem (capacity region in strong interference [2]). The capacity region of the interference channel (X1 ⇥
X2, p(y1, y2|x1, x2), Y1 ⇥ Y2)in strong interference is the set of rate pairs (R1, R2) such that

R1  I(X1; Y1|X2, Q) (1)
R2  I(X2; Y2|X1, Q) (2)

R1 + R2  min{I(X1, X2; Y1|Q), I(X1, X2; Y2|Q)} (3)

for some p(q, x1, x2) = p(q)p(x1|q)p(x2|q) where |Q|  4.
Proof of converse. First two single rate bound inequalities follow by the “basic genie” outer bound. For the last inequality,

we only need to show one of the inequalities by symmetry. The trick is to get a sum-rate bound in terms of a mutual information
term with only one output. This is done by using the strong interference condition.

n(R1 + R2) = H(W1) + H(W2)
(a)
 I(W1; Y

n

1 ) + I(W2; Y
n

2 ) + n✏
n

(b)
 I(Xn

1 ; Y n

1 ) + I(Xn

2 ; Y n

2 ) + n✏
n

(c)
 I(Xn

1 ; Y n

1 |Xn

2 ) + I(Xn

2 ; Y n

2 ) + n✏
n

(d)
 I(Xn

1 ; Y n

2 |Xn

2 ) + I(Xn

2 ; Y n

2 ) + n✏
n

(e)
= I(Xn

1 , Xn

2 ; Y n

2 ) + n✏
n

(f)


nX

i]1

I(X1i

, X2i

; Y2i

) + n✏
n

(g)
= nI(X1, X2; Y2|Q) + n✏

n

where (a) follows by Fano’s inequality, (b) by the Markov chain W
i

! Xn

i

! Y n

i

, (c) I(Xn

1 ; Y n

1 )  I(Xn

1 ; Y n

1 , Xn

2 ) =
I(Xn

1 ; Xn

2 )+I(X1; Y n

1 |Xn

2 ) = I(Xn

1 ; Y n

1 |Xn

2 ), (d) by a Lemma from [2] that states that for a DM-IC under strong interference,
I(Xn

1 ; Y n

1 |Xn

2 )  I(Xn

1 ; Y n

x

|Xn

2 ) for all p(xn

1 )p(xn

2 ) and all n � 1, (e) by definition, (f) in a similar fashion as in the previous
single-letterization, an (g) by introducing the time-sharing auxiliary random variable Q.
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Symmetric Gaussian IC

Very strong interference:

�

�

W1

W2

Encoder 1

Encoder 2

Decoder 1

Decoder 2

Ŵ1

Ŵ2
Y2

Y1

Z1 ⇠ N (0, 1)
Power P

Power P
Z2 ⇠ N (0, 1)

1

1

a

a

a2 � 1 + P

capacity region known, decode interference fully first

Strong interference: a2 � 1

capacity region known, jointly decode interference and message

Weak interference: a2  1 Costa’s corner point known, LATER

sum-capacity known, Gaussian inputs+TIN

2a(1 + a2P )  1Very weak interference:
[V.S. Annapureddy and V.V. Veeravalli, Gaussian interference networks: Sum 
capacity in the low-interference regime and new outer bounds on the capacity 
region, Information Theory, IEEE Transactions on 55 (2009), no. 7, 3032 –3050.]

[A.S. Motahari and A.K. Khandani, Capacity bounds for the gaussian  interference 
channel, Information Theory, IEEE Transactions on 55  (2009), no. 2, 620 –643.]
[Xiaohu Shang, G. Kramer, and Biao Chen, A new outer bound and the noisy-
interference sum-rate capacity for gaussian interference channels, Information 
Theory, IEEE Transactions on 55 (2009), no. 2, 689 –699. ]

Decode ALL interference

Decode NO interference
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Decoding all or nothing 
(of the interference), the 
logical next step is…..
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Forced jokes
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Decoding all or nothing 
(of the interference), the 
logical next step is…..
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more later… for now, let us understand this 
important region

DMC: Han+Kobayashi inner bound

[T. S. Han and K. Kobayashi, “A new achievable rate region for the interference channel,” IEEE Trans. Inf. Theory, vol. 27, no. 1, pp. 49–60, 1981.]

Largest single-letter achievable rate region

+

 [H.-F. Chong, M. Motani, H. K. Garg, and H. El Gamal, “On the Han–Kobayashi region for the interference channel,” IEEE Trans. Inf. Theory, vol. 54, no. 7, pp. 3188–3195, July 2008. ]

Achieves capacity when we know it

Thought to perhaps be the capacity region in general, 
but NO!

[C. Nair,  L. Xia, M. Yazdanpanah, ``Sub-optimality of the Han-and-Kobayashi Achievable Region for Interference Channels,” Proc. of ISIT, 2015.]
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DMC: Han+Kobayashi inner bound +
[T. S. Han and K. Kobayashi, “A new achievable rate region for the interference 

channel,” IEEE Trans. Inf. Theory, vol. 27, no. 1, pp. 49–60, 1981.]

Theorem (Han+Kobayashi inner bound). A rate pair (R1, R2) is

achievable for a DM-IC (X1 ⇥ X2, p(y1, y2|x1, x2),Y1 ⇥ Y2) if it satisfies

R1  I(X1;Y1|U2, Q) (1)

R2  I(X2;Y2|U1, Q) (2)

R1 +R2  I(X1, U2;Y1|Q) + I(X2;Y2|U1, U2, Q) (3)

R1 +R2  I(X1;Y1|U1, U2, Q) + I(X2, U1;Y2|Q) (4)

R1 +R2  I(X1, U2;Y1|U1, Q) + I(X2, U1;Y2|U2, Q) (5)

2R1 +R2  I(X1, U2;Y1|Q) + I(X1;Y1|U1, U2, Q) + I(X2, U1;Y2|U2, Q) (6)

R1 + 2R2  I(X2, U1;Y2|Q) + I(X2;Y2|U1, U2, Q) + I(X1, U2;Y1|U1, Q) (7)

for some p(q, u1, u2, x1, x2) = p(q)p(u1, x1|q)p(u2, x2|q) where |U1|  |X1| + 4,

|U2|  |X2|+ 4, and |Q|  7.
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Handout 3: proof of H+K

Outline:

1) Split message into “public” and “private” parts
2) At each Tx, superpose public over private
3) At each Rx, decode both public messages and the 
desired private message

4) Rate region looks like two simultaneous 3 user 
MAC channels, one at each receiver

5)Fourier-Motzkin eliminate to put in terms of (R1, R2)
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“Public” = common = decoded by everyone 
“Private” = decoded only by intended 

1) Split message into “public” and “private” parts

W1

W2

Encoder 1

Xn
1

Xn
2 Y n

2

Y n
1

Encoder 2

Decoder 1

Decoder 2

p(y1, y2|x1, x2)

Channel
Ŵ1

Ŵ2

C1

C2

P2

P1

cP1

cP2

cC2

cC1

Rate R1 = R1p +R1c

Rate R2 = R2p +R2c

cC1

cC2

Idea: carefully split so can decode part of the interference
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2) At each Tx, superpose public over private
W1

W2

Encoder 1

Xn
1

Xn
2 Y n

2

Y n
1

Encoder 2

Decoder 1

Decoder 2

p(y1, y2|x1, x2)

Channel
Ŵ1

Ŵ2

C1

C2

P2

P1

cP1

cP2

cC2

cC1

Rate R1 = R1p +R1c

Rate R2 = R2p +R2c

cC1

cC2

Codebook generation: Fix p(q)p(u1, x1|q)p(u2, x2|q)

Generate a sequence qn ⇠
Qn

i=1 pQ(pi)

Tx 1 codebook: randomly and conditional independently generate 2

nR1c
se-

quences u

n
1 (w1c), w1c 2 [1 : 2

nR1c
], each according to

Qn
i=1 pU1|Q(u1i|qi). For

each u

n
1 (w1c), randomly and conditionally independently generate 2

nR1p
se-

quences x

n
1 (w1c, w1p), w1p 2 [1 : 2

nR1p
], each according to

Qn
i=1 pX1|U1,Q(x1i|u1i(w1c), qi)

(similarly for Tx 2 codebook)

Encoding: to send w1 = (w1c, w1p), encoder 1 transmits x

n
1 (w1c, w1p) (similarly

for encoder 2)

Decoding: upon receiving y

n
1 , decoder 1 finds the unique message pair (dw1c,dw1p)

such that (q

n
, u

n
1 (cu1c), u

n
2 (w2c), x

n
1 (dw1c,dw1p), y

n
1 ) are jointly typical for some

w2c 2 [1 : 2

nR2c
]. If no unique pair exists, the decoder declares an error.

Similarly for decoder 2.
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3) At each Rx, decode both public messages and the 
desired private message

Possible errors:

taken from [A. El Gamal and Y.H. Kim, “Lecture Notes on Network Information Theory,” http://arxiv.org/abs/1001.3404.] 

Count them and get probability from the packing lemma:

3

• Analysis of the probability of error: Assume message pair ((1, 1), (1, 1)) is sent.

We bound the average probability of error for each decoder. First consider

decoder 1

• We have 8 cases to consider (conditioning on qn

suppressed)

m10 m20 m11 Joint pmf

1 1 1 1 p(un

1 , xn

1 )p(un

2)p(yn

1 |xn

1 , un

2 )

2 1 1 � p(un

1 , xn

1 )p(un

2)p(yn

1 |un

1 , un

2)

3 � 1 � p(un

1 , xn

1 )p(un

2)p(yn

1 |un

2 )

4 � 1 1 p(un

1 , xn

1 )p(un

2)p(yn

1 |un

2 )

5 1 � � p(un

1 , xn

1 )p(un

2)p(yn

1 |un

1 )

6 � � 1 p(un

1 , xn

1 )p(un

2)p(yn

1 )

7 � � � p(un

1 , xn

1 )p(un

2)p(yn

1 )

8 1 � 1 p(un

1 , xn

1 )p(un

2)p(yn

1 |xn

1 )

• Cases 3,4 and 6,7 share same pmf, and case 8 does not cause an error
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• We are left with only 5 error events:

E10 := {(Qn, Un

1 (1), Un

2 (1),Xn

1 (1, 1), Y n

1 ) /2 T (n)
✏

},

E11 := {(Qn, Un

1 (1), Un

2 (1),Xn

1 (1, m11), Y
n

1 ) 2 T (n)
✏

for some m11 6= 1},

E12 := {(Qn, Un

1 (m10), U
n

2 (1),Xn

1 (m10, m11), Y
n

1 ) 2 T (n)
✏

for some m10 6= 1,m11},

E13 := {(Qn, Un

1 (1), Un

2 (m20),X
n

1 (1,m11), Y
n

1 ) 2 T (n)
✏

for some m20 6= 1,m11 6= 1},

E14 := {(Qn, Un

1 (m10), U
n

2 (m20),X
n

1 (m10, m11), Y
n

1 ) 2 T (n)
✏

for some m10 6= 1,m20 6= 1, m11}
Then, the average probability of error for decoder 1 is

P(E1) 
4X

j=0

P(E1j

)

• Now, we bound each probability of error term

1. By the LLN, P(E10) ! 0 as n ! 1
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Fig. 1. Error events, taken directly from [3].

III. DETAILED STEPS 3: PROBABILITY OF ERROR IN HAN+KOBAYASHI ACHIEVABLE RATE REGION

This error analysis is the same as that given in Abbas El Gamal and Young-Han Kim’s excellent book “Network Information
Theory” [3]. I am just extracting and expanding upon some of the parts here. In short, they unify and shorten many network
information theory achievability proofs through the use of the “packing lemma”, which reads as follows:

Packing Lemma [3]. Let (U, X, Y ) ⇠ p(u, x, y). Let (Ũn, Ỹ n) ⇠ p(ũn, ỹn) be a pair of arbitrarily distributed random
sequences (not necessarily according to

Q
n

I=1 p
U,Y

(ũ
i

, ỹ
i

)). Let Xn(m), m 2 A, where |A|  2nR, be random sequences,
each distributed according to

Q
n

i=1 p
X|U (x

i

|ũ1). Assume that Xn(m), m 2 A, is pairwise conditionally independent of Ỹ n

given Ũn, but is arbitrarily dependent on other Xn(m) sequences. Then, there exists �(✏) ! 0 as ✏ ! 0 such that

Pr{(Ũn, Xn(m), Ỹ n) 2 T n

✏

} ! 0 as n ! 1 if R < I(X; Y |U) � �(✏),

where T (n)
✏

is defined as the typical set

T (n)
✏

= T (n)
✏

(U, X, Y ) := {(un, xn, yn) : |⇡(u, x, y|un, xn, yn) � p(u, x, y)|  ✏ · p(u, x, y)},

where
⇡(u, x, y|un, xn, yn) =

|{i : (u
i

, x
i

, y
i

) = (u, x, y)|
n

for (u, x, y) 2 U ⇥ X ⇥ Y

Probability of error of the Han+Kobayashi achievability scheme. Recall that message w1c

, w1p

, w2c

, w2p

have rates
R1c

, R1p

, R2c

, R2p

, respectively. Assume (WLOG) that message pairs (w1c

, w1p

) = (1, 1) and (w2c

, w2p

) = (1, 1) are sent.
We look at each decoder separately and bound the average (over all codes randomly generated as such, and passed through
a memoryless channel ??? ) probability of error. We will first show that the following rates are achievable, and then use
Fourier-Motzkin elimination to show the final form (in terms of R1 and R2 only).

R1p

 I(X1; Y1|U1, U2, Q)

R1p

+ R1c

 I(X1; Y1|U2, Q)

R1p

+ R2c

 I(X1, U2; Y1|U1, Q)

R1p

+ R1c

+ R2c

 I(X1, U2; Y1|Q)

R2p

 I(X1; Y2|U1, U2, Q)

R2p

+ R2c

 I(X2; Y2|U1, Q)

R2p

+ R1c

 I(X2, U1; Y2|U2, Q)

R2p

+ R2c

+ R1c

 I(X2, U1; Y2|Q)

We look at the different types of errors that can occur. El Gamal and Kim very nicely enumerate all the possible errors in
a table, along with the output distribution that is induced with this type of error (replace w1c

= m10, w1p

= m11, w2c

= m20

and w2p

= m22 to go from my notation to theirs). What do you notice? Case 8 is not an error, and cases 3,4 and 6,7, have
the same pmf, and case 1 results only in an error if the true messages are not jointly typical with the output. Hence, we are
left with the following 5 errors:

The remainder of the proof follows by simple arguments; we cut-and-paste from [3] (the slides), which succinctly enumerates
the possible errors.

Each error term may then be bounded as follows (remember all we need to do is show that the probability of error vanishes
as n ! 1, which again, taken directly from [3] yields:

w1c w1pw2c
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3) At each Rx, decode both public messages and the 
desired private message

3

• Analysis of the probability of error: Assume message pair ((1, 1), (1, 1)) is sent.

We bound the average probability of error for each decoder. First consider

decoder 1

• We have 8 cases to consider (conditioning on qn

suppressed)

m10 m20 m11 Joint pmf

1 1 1 1 p(un

1 , xn

1 )p(un

2)p(yn

1 |xn

1 , un

2 )

2 1 1 � p(un

1 , xn

1 )p(un

2)p(yn

1 |un

1 , un

2)

3 � 1 � p(un

1 , xn

1 )p(un

2)p(yn

1 |un

2 )

4 � 1 1 p(un

1 , xn

1 )p(un

2)p(yn

1 |un

2 )

5 1 � � p(un

1 , xn

1 )p(un

2)p(yn

1 |un

1 )

6 � � 1 p(un

1 , xn

1 )p(un

2)p(yn

1 )

7 � � � p(un

1 , xn

1 )p(un

2)p(yn

1 )

8 1 � 1 p(un

1 , xn

1 )p(un

2)p(yn

1 |xn

1 )

• Cases 3,4 and 6,7 share same pmf, and case 8 does not cause an error
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• We are left with only 5 error events:

E10 := {(Qn, Un

1 (1), Un

2 (1),Xn

1 (1, 1), Y n

1 ) /2 T (n)
✏

},

E11 := {(Qn, Un

1 (1), Un

2 (1),Xn

1 (1, m11), Y
n

1 ) 2 T (n)
✏

for some m11 6= 1},

E12 := {(Qn, Un

1 (m10), U
n

2 (1),Xn

1 (m10, m11), Y
n

1 ) 2 T (n)
✏

for some m10 6= 1,m11},

E13 := {(Qn, Un

1 (1), Un

2 (m20),X
n

1 (1,m11), Y
n

1 ) 2 T (n)
✏

for some m20 6= 1,m11 6= 1},

E14 := {(Qn, Un

1 (m10), U
n

2 (m20),X
n

1 (m10, m11), Y
n

1 ) 2 T (n)
✏

for some m10 6= 1,m20 6= 1, m11}
Then, the average probability of error for decoder 1 is

P(E1) 
4X

j=0

P(E1j

)

• Now, we bound each probability of error term

1. By the LLN, P(E10) ! 0 as n ! 1
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Fig. 1. Error events, taken directly from [3].

III. DETAILED STEPS 3: PROBABILITY OF ERROR IN HAN+KOBAYASHI ACHIEVABLE RATE REGION

This error analysis is the same as that given in Abbas El Gamal and Young-Han Kim’s excellent book “Network Information
Theory” [3]. I am just extracting and expanding upon some of the parts here. In short, they unify and shorten many network
information theory achievability proofs through the use of the “packing lemma”, which reads as follows:

Packing Lemma [3]. Let (U, X, Y ) ⇠ p(u, x, y). Let (Ũn, Ỹ n) ⇠ p(ũn, ỹn) be a pair of arbitrarily distributed random
sequences (not necessarily according to

Q
n

I=1 p
U,Y

(ũ
i

, ỹ
i

)). Let Xn(m), m 2 A, where |A|  2nR, be random sequences,
each distributed according to

Q
n

i=1 p
X|U (x

i

|ũ1). Assume that Xn(m), m 2 A, is pairwise conditionally independent of Ỹ n

given Ũn, but is arbitrarily dependent on other Xn(m) sequences. Then, there exists �(✏) ! 0 as ✏ ! 0 such that

Pr{(Ũn, Xn(m), Ỹ n) 2 T n

✏

} ! 0 as n ! 1 if R < I(X; Y |U) � �(✏),

where T (n)
✏

is defined as the typical set

T (n)
✏

= T (n)
✏

(U, X, Y ) := {(un, xn, yn) : |⇡(u, x, y|un, xn, yn) � p(u, x, y)|  ✏ · p(u, x, y)},

where
⇡(u, x, y|un, xn, yn) =

|{i : (u
i

, x
i

, y
i

) = (u, x, y)|
n

for (u, x, y) 2 U ⇥ X ⇥ Y

Probability of error of the Han+Kobayashi achievability scheme. Recall that message w1c

, w1p

, w2c

, w2p

have rates
R1c

, R1p

, R2c

, R2p

, respectively. Assume (WLOG) that message pairs (w1c

, w1p

) = (1, 1) and (w2c

, w2p

) = (1, 1) are sent.
We look at each decoder separately and bound the average (over all codes randomly generated as such, and passed through
a memoryless channel ??? ) probability of error. We will first show that the following rates are achievable, and then use
Fourier-Motzkin elimination to show the final form (in terms of R1 and R2 only).

R1p

 I(X1; Y1|U1, U2, Q)

R1p

+ R1c

 I(X1; Y1|U2, Q)

R1p

+ R2c

 I(X1, U2; Y1|U1, Q)

R1p

+ R1c

+ R2c

 I(X1, U2; Y1|Q)

R2p

 I(X1; Y2|U1, U2, Q)

R2p

+ R2c

 I(X2; Y2|U1, Q)

R2p

+ R1c

 I(X2, U1; Y2|U2, Q)

R2p

+ R2c

+ R1c

 I(X2, U1; Y2|Q)

We look at the different types of errors that can occur. El Gamal and Kim very nicely enumerate all the possible errors in
a table, along with the output distribution that is induced with this type of error (replace w1c

= m10, w1p

= m11, w2c

= m20

and w2p

= m22 to go from my notation to theirs). What do you notice? Case 8 is not an error, and cases 3,4 and 6,7, have
the same pmf, and case 1 results only in an error if the true messages are not jointly typical with the output. Hence, we are
left with the following 5 errors:

The remainder of the proof follows by simple arguments; we cut-and-paste from [3] (the slides), which succinctly enumerates
the possible errors.

Each error term may then be bounded as follows (remember all we need to do is show that the probability of error vanishes
as n ! 1, which again, taken directly from [3] yields:

6

Bound C1: (genie at Rx 1 of Un

1 )

nR1  I(Xn

1 ; Y n

1 , Un

1 )

= I(Xn

1 ; Un

1 ) + I(Xn

1 ; Y n

1 |Un

1 )

= H(Un

1 ) � H(Un

1 |Xn

1 ) + H(Y n

1 |Un

1 ) � H(Y n

1 |Xn

1 , Un

1 )

= H(Tn

1 ) � H(Un

1 |Xn

1 ) + H(Y n

1 |Un

1 ) � H(Tn

2 )

 H(Tn

1 ) � H(Tn

2 ) �
nX

i=1

H(U1i

|X1i

) +
nX

i=1

H(Y1i

|U1i

)

Bound D1: (genie at Rx 1 of Xn

2 )

nR1  I(Xn

1 ; Y n

1 , Xn

2 )

= I(Xn

1 ; Xn

2 ) + I(Xn

1 ; Y n

1 |Xn

2 )

= H(Y n

1 |Xn

2 ) � H(Y n

1 |Xn

1 , Xn

2 )

= H(Y n

1 |Xn

2 ) � H(Tn

2 |Xn

2 )


nX

i=1

H(Y1i

|X2i

) �
nX

i=1

H(T2i

|X2i

)

By symmetry, we have the following 4 bounds on R2:
Bound A2:

nR2 
nX

i=1

H(Y2i

) � H(Tn

1 )

Bound B2: (genie at Rx 2 of Un

2 , Xn

1 )

nR2  H(Tn

2 ) �
nX

i=1

H(U2i

|X2i

) +
nX

i=1

H(Y2i

|U2i

, X1i

) �
nX

i=1

H(T1i

|X1i

)

Bound C2: (genie at Rx 2 of Un

2 )

nR2  H(Tn

2 ) � H(Tn

1 ) �
nX

i=1

H(U2i

|X2i

) +
nX

i=1

H(Y2i

|U2i

)

Bound D2: (genie at Rx 2 of Xn

1 )

nR2 
nX

i=1

H(Y2i

|X1i

) �
nX

i=1

H(T1i

|X1i

)

Then we obtain the bounds in the semi-deterministic channel outer bound theorem by looking at the following linear
combinations, and using a time-sharing random variable uniformly distributed on [1 : n]. Specifically, (4) is obtained from
D1, (5) from D2, (6) from A1+B2, (7) from B1+A2, (8) from C1+C2, (9) from A1+B1+C2, and (10) from A2+B2+C1, by
additionally noting that H(U2|X2) = H(T1|X2) and H(U1|X1) = H(T1|X2) based on the construction of U1 and U2.
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U is “correct” and jointly distributed with output Y
X is “incorrect” of rate R

R < I(X;Y |U)
Prob. that (X,U,Y) are jointly typical vanishes if

47



3) At each Rx, decode both public messages and the 
desired private message

Possible errors:

taken from [A. El Gamal and Y.H. Kim, “Lecture Notes on Network Information Theory,” http://arxiv.org/abs/1001.3404.] 

Count them and get probability from the packing lemma:

3

• Analysis of the probability of error: Assume message pair ((1, 1), (1, 1)) is sent.

We bound the average probability of error for each decoder. First consider

decoder 1

• We have 8 cases to consider (conditioning on qn

suppressed)

m10 m20 m11 Joint pmf

1 1 1 1 p(un

1 , xn

1 )p(un

2)p(yn

1 |xn

1 , un

2 )

2 1 1 � p(un

1 , xn

1 )p(un

2)p(yn

1 |un

1 , un

2)

3 � 1 � p(un

1 , xn

1 )p(un

2)p(yn

1 |un

2 )

4 � 1 1 p(un

1 , xn

1 )p(un

2)p(yn

1 |un

2 )

5 1 � � p(un

1 , xn

1 )p(un

2)p(yn

1 |un

1 )

6 � � 1 p(un

1 , xn

1 )p(un

2)p(yn

1 )

7 � � � p(un

1 , xn

1 )p(un

2)p(yn

1 )

8 1 � 1 p(un

1 , xn

1 )p(un

2)p(yn

1 |xn

1 )

• Cases 3,4 and 6,7 share same pmf, and case 8 does not cause an error
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• We are left with only 5 error events:

E10 := {(Qn, Un

1 (1), Un

2 (1),Xn

1 (1, 1), Y n

1 ) /2 T (n)
✏

},

E11 := {(Qn, Un

1 (1), Un

2 (1),Xn

1 (1, m11), Y
n

1 ) 2 T (n)
✏

for some m11 6= 1},

E12 := {(Qn, Un

1 (m10), U
n

2 (1),Xn

1 (m10, m11), Y
n

1 ) 2 T (n)
✏

for some m10 6= 1,m11},

E13 := {(Qn, Un

1 (1), Un

2 (m20),X
n

1 (1,m11), Y
n

1 ) 2 T (n)
✏

for some m20 6= 1,m11 6= 1},

E14 := {(Qn, Un

1 (m10), U
n

2 (m20),X
n

1 (m10, m11), Y
n

1 ) 2 T (n)
✏

for some m10 6= 1,m20 6= 1, m11}
Then, the average probability of error for decoder 1 is

P(E1) 
4X

j=0

P(E1j

)

• Now, we bound each probability of error term

1. By the LLN, P(E10) ! 0 as n ! 1

LNIT: Interference Channels (2010-06-22 08:45) Page 6 – 26

Fig. 1. Error events, taken directly from [3].

III. DETAILED STEPS 3: PROBABILITY OF ERROR IN HAN+KOBAYASHI ACHIEVABLE RATE REGION

This error analysis is the same as that given in Abbas El Gamal and Young-Han Kim’s excellent book “Network Information
Theory” [3]. I am just extracting and expanding upon some of the parts here. In short, they unify and shorten many network
information theory achievability proofs through the use of the “packing lemma”, which reads as follows:

Packing Lemma [3]. Let (U, X, Y ) ⇠ p(u, x, y). Let (Ũn, Ỹ n) ⇠ p(ũn, ỹn) be a pair of arbitrarily distributed random
sequences (not necessarily according to

Q
n

I=1 p
U,Y

(ũ
i

, ỹ
i

)). Let Xn(m), m 2 A, where |A|  2nR, be random sequences,
each distributed according to

Q
n

i=1 p
X|U (x

i

|ũ1). Assume that Xn(m), m 2 A, is pairwise conditionally independent of Ỹ n

given Ũn, but is arbitrarily dependent on other Xn(m) sequences. Then, there exists �(✏) ! 0 as ✏ ! 0 such that

Pr{(Ũn, Xn(m), Ỹ n) 2 T n

✏

} ! 0 as n ! 1 if R < I(X; Y |U) � �(✏),

where T (n)
✏

is defined as the typical set

T (n)
✏

= T (n)
✏

(U, X, Y ) := {(un, xn, yn) : |⇡(u, x, y|un, xn, yn) � p(u, x, y)|  ✏ · p(u, x, y)},

where
⇡(u, x, y|un, xn, yn) =

|{i : (u
i

, x
i

, y
i

) = (u, x, y)|
n

for (u, x, y) 2 U ⇥ X ⇥ Y

Probability of error of the Han+Kobayashi achievability scheme. Recall that message w1c

, w1p

, w2c

, w2p

have rates
R1c

, R1p

, R2c

, R2p

, respectively. Assume (WLOG) that message pairs (w1c

, w1p

) = (1, 1) and (w2c

, w2p

) = (1, 1) are sent.
We look at each decoder separately and bound the average (over all codes randomly generated as such, and passed through
a memoryless channel ??? ) probability of error. We will first show that the following rates are achievable, and then use
Fourier-Motzkin elimination to show the final form (in terms of R1 and R2 only).

R1p

 I(X1; Y1|U1, U2, Q)

R1p

+ R1c

 I(X1; Y1|U2, Q)

R1p

+ R2c

 I(X1, U2; Y1|U1, Q)

R1p

+ R1c

+ R2c

 I(X1, U2; Y1|Q)

R2p

 I(X1; Y2|U1, U2, Q)

R2p

+ R2c

 I(X2; Y2|U1, Q)

R2p

+ R1c

 I(X2, U1; Y2|U2, Q)

R2p

+ R2c

+ R1c

 I(X2, U1; Y2|Q)

We look at the different types of errors that can occur. El Gamal and Kim very nicely enumerate all the possible errors in
a table, along with the output distribution that is induced with this type of error (replace w1c

= m10, w1p

= m11, w2c

= m20

and w2p

= m22 to go from my notation to theirs). What do you notice? Case 8 is not an error, and cases 3,4 and 6,7, have
the same pmf, and case 1 results only in an error if the true messages are not jointly typical with the output. Hence, we are
left with the following 5 errors:

The remainder of the proof follows by simple arguments; we cut-and-paste from [3] (the slides), which succinctly enumerates
the possible errors.

Each error term may then be bounded as follows (remember all we need to do is show that the probability of error vanishes
as n ! 1, which again, taken directly from [3] yields:

w1c w1pw2c

2nR1p · 2�n(I(X1;Y1|U1,U2,Q)��(✏))
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symmetry at user 2

4) Rate region looks like two simultaneous 3 user MAC 
channels, one at each receiver

taken from [A. El Gamal and Y.H. Kim, “Lecture Notes on Network Information Theory,” http://arxiv.org/abs/1001.3404.] 

3

• Analysis of the probability of error: Assume message pair ((1, 1), (1, 1)) is sent.

We bound the average probability of error for each decoder. First consider

decoder 1

• We have 8 cases to consider (conditioning on qn

suppressed)

m10 m20 m11 Joint pmf

1 1 1 1 p(un

1 , xn

1 )p(un

2)p(yn

1 |xn

1 , un

2 )

2 1 1 � p(un

1 , xn

1 )p(un

2)p(yn

1 |un

1 , un

2)

3 � 1 � p(un

1 , xn

1 )p(un

2)p(yn

1 |un

2 )

4 � 1 1 p(un

1 , xn

1 )p(un

2)p(yn

1 |un

2 )

5 1 � � p(un

1 , xn

1 )p(un

2)p(yn

1 |un

1 )

6 � � 1 p(un

1 , xn

1 )p(un

2)p(yn

1 )

7 � � � p(un

1 , xn

1 )p(un

2)p(yn

1 )

8 1 � 1 p(un

1 , xn

1 )p(un

2)p(yn

1 |xn

1 )

• Cases 3,4 and 6,7 share same pmf, and case 8 does not cause an error
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• We are left with only 5 error events:

E10 := {(Qn, Un

1 (1), Un

2 (1),Xn

1 (1, 1), Y n

1 ) /2 T (n)
✏

},

E11 := {(Qn, Un

1 (1), Un

2 (1),Xn

1 (1, m11), Y
n

1 ) 2 T (n)
✏

for some m11 6= 1},

E12 := {(Qn, Un

1 (m10), U
n

2 (1),Xn

1 (m10, m11), Y
n

1 ) 2 T (n)
✏

for some m10 6= 1,m11},

E13 := {(Qn, Un

1 (1), Un

2 (m20),X
n

1 (1,m11), Y
n

1 ) 2 T (n)
✏

for some m20 6= 1,m11 6= 1},

E14 := {(Qn, Un

1 (m10), U
n

2 (m20),X
n

1 (m10, m11), Y
n

1 ) 2 T (n)
✏

for some m10 6= 1,m20 6= 1, m11}
Then, the average probability of error for decoder 1 is

P(E1) 
4X

j=0

P(E1j

)

• Now, we bound each probability of error term

1. By the LLN, P(E10) ! 0 as n ! 1
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Fig. 1. Error events, taken directly from [3].

III. DETAILED STEPS 3: PROBABILITY OF ERROR IN HAN+KOBAYASHI ACHIEVABLE RATE REGION

This error analysis is the same as that given in Abbas El Gamal and Young-Han Kim’s excellent book “Network Information
Theory” [3]. I am just extracting and expanding upon some of the parts here. In short, they unify and shorten many network
information theory achievability proofs through the use of the “packing lemma”, which reads as follows:

Packing Lemma [3]. Let (U, X, Y ) ⇠ p(u, x, y). Let (Ũn, Ỹ n) ⇠ p(ũn, ỹn) be a pair of arbitrarily distributed random
sequences (not necessarily according to

Q
n

I=1 p
U,Y

(ũ
i

, ỹ
i

)). Let Xn(m), m 2 A, where |A|  2nR, be random sequences,
each distributed according to

Q
n

i=1 p
X|U (x

i

|ũ1). Assume that Xn(m), m 2 A, is pairwise conditionally independent of Ỹ n

given Ũn, but is arbitrarily dependent on other Xn(m) sequences. Then, there exists �(✏) ! 0 as ✏ ! 0 such that

Pr{(Ũn, Xn(m), Ỹ n) 2 T n

✏

} ! 0 as n ! 1 if R < I(X; Y |U) � �(✏),

where T (n)
✏

is defined as the typical set

T (n)
✏

= T (n)
✏

(U, X, Y ) := {(un, xn, yn) : |⇡(u, x, y|un, xn, yn) � p(u, x, y)|  ✏ · p(u, x, y)},

where
⇡(u, x, y|un, xn, yn) =

|{i : (u
i

, x
i

, y
i

) = (u, x, y)|
n

for (u, x, y) 2 U ⇥ X ⇥ Y

Probability of error of the Han+Kobayashi achievability scheme. Recall that message w1c

, w1p

, w2c

, w2p

have rates
R1c

, R1p

, R2c

, R2p

, respectively. Assume (WLOG) that message pairs (w1c

, w1p

) = (1, 1) and (w2c

, w2p

) = (1, 1) are sent.
We look at each decoder separately and bound the average (over all codes randomly generated as such, and passed through
a memoryless channel ??? ) probability of error. We will first show that the following rates are achievable, and then use
Fourier-Motzkin elimination to show the final form (in terms of R1 and R2 only).

R1p

 I(X1; Y1|U1, U2, Q)

R1p

+ R1c

 I(X1; Y1|U2, Q)

R1p

+ R2c

 I(X1, U2; Y1|U1, Q)

R1p

+ R1c

+ R2c

 I(X1, U2; Y1|Q)

R2p

 I(X1; Y2|U1, U2, Q)

R2p

+ R2c

 I(X2; Y2|U1, Q)

R2p

+ R1c

 I(X2, U1; Y2|U2, Q)

R2p

+ R2c

+ R1c

 I(X2, U1; Y2|Q)

We look at the different types of errors that can occur. El Gamal and Kim very nicely enumerate all the possible errors in
a table, along with the output distribution that is induced with this type of error (replace w1c

= m10, w1p

= m11, w2c

= m20

and w2p

= m22 to go from my notation to theirs). What do you notice? Case 8 is not an error, and cases 3,4 and 6,7, have
the same pmf, and case 1 results only in an error if the true messages are not jointly typical with the output. Hence, we are
left with the following 5 errors:

The remainder of the proof follows by simple arguments; we cut-and-paste from [3] (the slides), which succinctly enumerates
the possible errors.

Each error term may then be bounded as follows (remember all we need to do is show that the probability of error vanishes
as n ! 1, which again, taken directly from [3] yields:

w1c w1pw2c

3

• Analysis of the probability of error: Assume message pair ((1, 1), (1, 1)) is sent.

We bound the average probability of error for each decoder. First consider

decoder 1

• We have 8 cases to consider (conditioning on qn

suppressed)

m10 m20 m11 Joint pmf

1 1 1 1 p(un

1 , xn

1 )p(un

2)p(yn

1 |xn

1 , un

2 )

2 1 1 � p(un

1 , xn

1 )p(un

2)p(yn

1 |un

1 , un

2)

3 � 1 � p(un

1 , xn

1 )p(un

2)p(yn

1 |un

2 )

4 � 1 1 p(un

1 , xn

1 )p(un

2)p(yn

1 |un

2 )

5 1 � � p(un

1 , xn

1 )p(un

2)p(yn

1 |un

1 )

6 � � 1 p(un

1 , xn

1 )p(un

2)p(yn

1 )

7 � � � p(un

1 , xn

1 )p(un

2)p(yn

1 )

8 1 � 1 p(un

1 , xn

1 )p(un

2)p(yn

1 |xn

1 )

• Cases 3,4 and 6,7 share same pmf, and case 8 does not cause an error
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• We are left with only 5 error events:

E10 := {(Qn, Un

1 (1), Un

2 (1),Xn

1 (1, 1), Y n

1 ) /2 T (n)
✏

},

E11 := {(Qn, Un

1 (1), Un

2 (1),Xn

1 (1, m11), Y
n

1 ) 2 T (n)
✏

for some m11 6= 1},

E12 := {(Qn, Un

1 (m10), U
n

2 (1),Xn

1 (m10, m11), Y
n

1 ) 2 T (n)
✏

for some m10 6= 1,m11},

E13 := {(Qn, Un

1 (1), Un

2 (m20),X
n

1 (1,m11), Y
n

1 ) 2 T (n)
✏

for some m20 6= 1,m11 6= 1},

E14 := {(Qn, Un

1 (m10), U
n

2 (m20),X
n

1 (m10, m11), Y
n

1 ) 2 T (n)
✏

for some m10 6= 1,m20 6= 1, m11}
Then, the average probability of error for decoder 1 is

P(E1) 
4X

j=0

P(E1j

)

• Now, we bound each probability of error term

1. By the LLN, P(E10) ! 0 as n ! 1
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Fig. 1. Error events, taken directly from [3].

III. DETAILED STEPS 3: PROBABILITY OF ERROR IN HAN+KOBAYASHI ACHIEVABLE RATE REGION

This error analysis is the same as that given in Abbas El Gamal and Young-Han Kim’s excellent book “Network Information
Theory” [3]. I am just extracting and expanding upon some of the parts here. In short, they unify and shorten many network
information theory achievability proofs through the use of the “packing lemma”, which reads as follows:

Packing Lemma [3]. Let (U, X, Y ) ⇠ p(u, x, y). Let (Ũn, Ỹ n) ⇠ p(ũn, ỹn) be a pair of arbitrarily distributed random
sequences (not necessarily according to

Q
n

I=1 p
U,Y

(ũ
i

, ỹ
i

)). Let Xn(m), m 2 A, where |A|  2nR, be random sequences,
each distributed according to

Q
n

i=1 p
X|U (x

i

|ũ1). Assume that Xn(m), m 2 A, is pairwise conditionally independent of Ỹ n

given Ũn, but is arbitrarily dependent on other Xn(m) sequences. Then, there exists �(✏) ! 0 as ✏ ! 0 such that

Pr{(Ũn, Xn(m), Ỹ n) 2 T n

✏

} ! 0 as n ! 1 if R < I(X; Y |U) � �(✏),

where T (n)
✏

is defined as the typical set

T (n)
✏

= T (n)
✏

(U, X, Y ) := {(un, xn, yn) : |⇡(u, x, y|un, xn, yn) � p(u, x, y)|  ✏ · p(u, x, y)},

where
⇡(u, x, y|un, xn, yn) =

|{i : (u
i

, x
i

, y
i

) = (u, x, y)|
n

for (u, x, y) 2 U ⇥ X ⇥ Y

Probability of error of the Han+Kobayashi achievability scheme. Recall that message w1c

, w1p

, w2c

, w2p

have rates
R1c

, R1p

, R2c

, R2p

, respectively. Assume (WLOG) that message pairs (w1c

, w1p

) = (1, 1) and (w2c

, w2p

) = (1, 1) are sent.
We look at each decoder separately and bound the average (over all codes randomly generated as such, and passed through
a memoryless channel ??? ) probability of error. We will first show that the following rates are achievable, and then use
Fourier-Motzkin elimination to show the final form (in terms of R1 and R2 only).

R1p

 I(X1; Y1|U1, U2, Q)

R1p

+ R1c

 I(X1; Y1|U2, Q)

R1p

+ R2c

 I(X1, U2; Y1|U1, Q)

R1p

+ R1c

+ R2c

 I(X1, U2; Y1|Q)

R2p

 I(X1; Y2|U1, U2, Q)

R2p

+ R2c

 I(X2; Y2|U1, Q)

R2p

+ R1c

 I(X2, U1; Y2|U2, Q)

R2p

+ R2c

+ R1c

 I(X2, U1; Y2|Q)

We look at the different types of errors that can occur. El Gamal and Kim very nicely enumerate all the possible errors in
a table, along with the output distribution that is induced with this type of error (replace w1c

= m10, w1p

= m11, w2c

= m20

and w2p

= m22 to go from my notation to theirs). What do you notice? Case 8 is not an error, and cases 3,4 and 6,7, have
the same pmf, and case 1 results only in an error if the true messages are not jointly typical with the output. Hence, we are
left with the following 5 errors:

The remainder of the proof follows by simple arguments; we cut-and-paste from [3] (the slides), which succinctly enumerates
the possible errors.

Each error term may then be bounded as follows (remember all we need to do is show that the probability of error vanishes
as n ! 1, which again, taken directly from [3] yields:
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5) Fourier-Motzkin eliminate to put in terms of 

taken from [A. El Gamal and Y.H. Kim, “Lecture Notes on Network Information Theory,” http://arxiv.org/abs/1001.3404.] 

3

• Analysis of the probability of error: Assume message pair ((1, 1), (1, 1)) is sent.

We bound the average probability of error for each decoder. First consider

decoder 1

• We have 8 cases to consider (conditioning on qn

suppressed)

m10 m20 m11 Joint pmf

1 1 1 1 p(un

1 , xn

1 )p(un

2)p(yn

1 |xn

1 , un

2 )

2 1 1 � p(un

1 , xn

1 )p(un

2)p(yn

1 |un

1 , un

2)

3 � 1 � p(un

1 , xn

1 )p(un

2)p(yn

1 |un

2 )

4 � 1 1 p(un

1 , xn

1 )p(un

2)p(yn

1 |un

2 )

5 1 � � p(un

1 , xn

1 )p(un

2)p(yn

1 |un

1 )

6 � � 1 p(un

1 , xn

1 )p(un

2)p(yn

1 )

7 � � � p(un

1 , xn

1 )p(un

2)p(yn

1 )

8 1 � 1 p(un

1 , xn

1 )p(un

2)p(yn

1 |xn

1 )

• Cases 3,4 and 6,7 share same pmf, and case 8 does not cause an error
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• We are left with only 5 error events:

E10 := {(Qn, Un

1 (1), Un

2 (1),Xn

1 (1, 1), Y n

1 ) /2 T (n)
✏

},

E11 := {(Qn, Un

1 (1), Un

2 (1),Xn

1 (1, m11), Y
n

1 ) 2 T (n)
✏

for some m11 6= 1},

E12 := {(Qn, Un

1 (m10), U
n

2 (1),Xn

1 (m10, m11), Y
n

1 ) 2 T (n)
✏

for some m10 6= 1,m11},

E13 := {(Qn, Un

1 (1), Un

2 (m20),X
n

1 (1,m11), Y
n

1 ) 2 T (n)
✏

for some m20 6= 1,m11 6= 1},

E14 := {(Qn, Un

1 (m10), U
n

2 (m20),X
n

1 (m10, m11), Y
n

1 ) 2 T (n)
✏

for some m10 6= 1,m20 6= 1, m11}
Then, the average probability of error for decoder 1 is

P(E1) 
4X

j=0

P(E1j

)

• Now, we bound each probability of error term

1. By the LLN, P(E10) ! 0 as n ! 1
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Fig. 1. Error events, taken directly from [3].

III. DETAILED STEPS 3: PROBABILITY OF ERROR IN HAN+KOBAYASHI ACHIEVABLE RATE REGION

This error analysis is the same as that given in Abbas El Gamal and Young-Han Kim’s excellent book “Network Information
Theory” [3]. I am just extracting and expanding upon some of the parts here. In short, they unify and shorten many network
information theory achievability proofs through the use of the “packing lemma”, which reads as follows:

Packing Lemma [3]. Let (U, X, Y ) ⇠ p(u, x, y). Let (Ũn, Ỹ n) ⇠ p(ũn, ỹn) be a pair of arbitrarily distributed random
sequences (not necessarily according to

Q
n

I=1 p
U,Y

(ũ
i

, ỹ
i

)). Let Xn(m), m 2 A, where |A|  2nR, be random sequences,
each distributed according to

Q
n

i=1 p
X|U (x

i

|ũ1). Assume that Xn(m), m 2 A, is pairwise conditionally independent of Ỹ n

given Ũn, but is arbitrarily dependent on other Xn(m) sequences. Then, there exists �(✏) ! 0 as ✏ ! 0 such that

Pr{(Ũn, Xn(m), Ỹ n) 2 T n

✏

} ! 0 as n ! 1 if R < I(X; Y |U) � �(✏),

where T (n)
✏

is defined as the typical set

T (n)
✏

= T (n)
✏

(U, X, Y ) := {(un, xn, yn) : |⇡(u, x, y|un, xn, yn) � p(u, x, y)|  ✏ · p(u, x, y)},

where
⇡(u, x, y|un, xn, yn) =

|{i : (u
i

, x
i

, y
i

) = (u, x, y)|
n

for (u, x, y) 2 U ⇥ X ⇥ Y

Probability of error of the Han+Kobayashi achievability scheme. Recall that message w1c

, w1p

, w2c

, w2p

have rates
R1c

, R1p

, R2c

, R2p

, respectively. Assume (WLOG) that message pairs (w1c

, w1p

) = (1, 1) and (w2c

, w2p

) = (1, 1) are sent.
We look at each decoder separately and bound the average (over all codes randomly generated as such, and passed through
a memoryless channel ??? ) probability of error. We will first show that the following rates are achievable, and then use
Fourier-Motzkin elimination to show the final form (in terms of R1 and R2 only).

R1p

 I(X1; Y1|U1, U2, Q)

R1p

+ R1c

 I(X1; Y1|U2, Q)

R1p

+ R2c

 I(X1, U2; Y1|U1, Q)

R1p

+ R1c

+ R2c

 I(X1, U2; Y1|Q)

R2p

 I(X1; Y2|U1, U2, Q)

R2p

+ R2c

 I(X2; Y2|U1, Q)

R2p

+ R1c

 I(X2, U1; Y2|U2, Q)

R2p

+ R2c

+ R1c

 I(X2, U1; Y2|Q)

We look at the different types of errors that can occur. El Gamal and Kim very nicely enumerate all the possible errors in
a table, along with the output distribution that is induced with this type of error (replace w1c

= m10, w1p

= m11, w2c

= m20

and w2p

= m22 to go from my notation to theirs). What do you notice? Case 8 is not an error, and cases 3,4 and 6,7, have
the same pmf, and case 1 results only in an error if the true messages are not jointly typical with the output. Hence, we are
left with the following 5 errors:

The remainder of the proof follows by simple arguments; we cut-and-paste from [3] (the slides), which succinctly enumerates
the possible errors.

Each error term may then be bounded as follows (remember all we need to do is show that the probability of error vanishes
as n ! 1, which again, taken directly from [3] yields:

(R1, R2)

Theorem (Han+Kobayashi inner bound). A rate pair (R1, R2) is

achievable for a DM-IC (X1 ⇥ X2, p(y1, y2|x1, x2),Y1 ⇥ Y2) if it satisfies

R1  I(X1;Y1|U2, Q) (1)

R2  I(X2;Y2|U1, Q) (2)

R1 +R2  I(X1, U2;Y1|Q) + I(X2;Y2|U1, U2, Q) (3)

R1 +R2  I(X1;Y1|U1, U2, Q) + I(X2, U1;Y2|Q) (4)

R1 +R2  I(X1, U2;Y1|U1, Q) + I(X2, U1;Y2|U2, Q) (5)

2R1 +R2  I(X1, U2;Y1|Q) + I(X1;Y1|U1, U2, Q) + I(X2, U1;Y2|U2, Q) (6)

R1 + 2R2  I(X2, U1;Y2|Q) + I(X2;Y2|U1, U2, Q) + I(X1, U2;Y1|U1, Q) (7)

for some p(q, u1, u2, x1, x2) = p(q)p(u1, x1|q)p(u2, x2|q) where |U1|  |X1| + 4,

|U2|  |X2|+ 4, and |Q|  7.

OLD

NEW
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Comments on H+K

1) Key difficulty?

Theorem (Han+Kobayashi inner bound). A rate pair (R1, R2) is

achievable for a DM-IC (X1 ⇥ X2, p(y1, y2|x1, x2),Y1 ⇥ Y2) if it satisfies

R1  I(X1;Y1|U2, Q) (1)

R2  I(X2;Y2|U1, Q) (2)

R1 +R2  I(X1, U2;Y1|Q) + I(X2;Y2|U1, U2, Q) (3)

R1 +R2  I(X1;Y1|U1, U2, Q) + I(X2, U1;Y2|Q) (4)

R1 +R2  I(X1, U2;Y1|U1, Q) + I(X2, U1;Y2|U2, Q) (5)

2R1 +R2  I(X1, U2;Y1|Q) + I(X1;Y1|U1, U2, Q) + I(X2, U1;Y2|U2, Q) (6)

R1 + 2R2  I(X2, U1;Y2|Q) + I(X2;Y2|U1, U2, Q) + I(X1, U2;Y1|U1, Q) (7)

for some p(q, u1, u2, x1, x2) = p(q)p(u1, x1|q)p(u2, x2|q) where |U1|  |X1| + 4,

|U2|  |X2|+ 4, and |Q|  7.
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Comments on H+K

1) Key difficulty?
2) Tight for a few classes of channels, up next

Theorem (Han+Kobayashi inner bound). A rate pair (R1, R2) is

achievable for a DM-IC (X1 ⇥ X2, p(y1, y2|x1, x2),Y1 ⇥ Y2) if it satisfies

R1  I(X1;Y1|U2, Q) (1)

R2  I(X2;Y2|U1, Q) (2)

R1 +R2  I(X1, U2;Y1|Q) + I(X2;Y2|U1, U2, Q) (3)

R1 +R2  I(X1;Y1|U1, U2, Q) + I(X2, U1;Y2|Q) (4)

R1 +R2  I(X1, U2;Y1|U1, Q) + I(X2, U1;Y2|U2, Q) (5)

2R1 +R2  I(X1, U2;Y1|Q) + I(X1;Y1|U1, U2, Q) + I(X2, U1;Y2|U2, Q) (6)

R1 + 2R2  I(X2, U1;Y2|Q) + I(X2;Y2|U1, U2, Q) + I(X1, U2;Y1|U1, Q) (7)

for some p(q, u1, u2, x1, x2) = p(q)p(u1, x1|q)p(u2, x2|q) where |U1|  |X1| + 4,

|U2|  |X2|+ 4, and |Q|  7.
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Comments on H+K

1) Key difficulty?
2) Tight for a few classes of channels, up next
3) As of 2015 and the great work of Chandra Nair, 
NOT tight in general!

Theorem (Han+Kobayashi inner bound). A rate pair (R1, R2) is

achievable for a DM-IC (X1 ⇥ X2, p(y1, y2|x1, x2),Y1 ⇥ Y2) if it satisfies

R1  I(X1;Y1|U2, Q) (1)

R2  I(X2;Y2|U1, Q) (2)

R1 +R2  I(X1, U2;Y1|Q) + I(X2;Y2|U1, U2, Q) (3)

R1 +R2  I(X1;Y1|U1, U2, Q) + I(X2, U1;Y2|Q) (4)

R1 +R2  I(X1, U2;Y1|U1, Q) + I(X2, U1;Y2|U2, Q) (5)

2R1 +R2  I(X1, U2;Y1|Q) + I(X1;Y1|U1, U2, Q) + I(X2, U1;Y2|U2, Q) (6)

R1 + 2R2  I(X2, U1;Y2|Q) + I(X2;Y2|U1, U2, Q) + I(X1, U2;Y1|U1, Q) (7)

for some p(q, u1, u2, x1, x2) = p(q)p(u1, x1|q)p(u2, x2|q) where |U1|  |X1| + 4,

|U2|  |X2|+ 4, and |Q|  7.
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Does H+K ever achieve 
capacity?
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• for every x1, y1(x1, t2) is a one-to-one function of t2

• for every x2, y2(x2, t1) is a one-to-one function of t1

Class of deterministic ICs

have capacity in general
X2

X1

Y2

Y1

T1

T2
t1(x1)

t2(x2)

y1(x1, t2)

y2(x2, t1)

deterministic

Class of semi-deterministic ICs

X2

X1

Y2

Y1

T1

T2

y1(x1, t2)

y2(x2, t1)

p(t1|x1)

p(t2|x2)

constant gap to capacity
probabilistic

recovers / generalizes

.[I. E. Telatar and D. N. C. Tse, “Bounds on the capacity 
region of a class of interference channels,” in Proc. 
IEEE International Symposium on Information 
Theory, Nice, France, June 2007.] 

[A. El Gamal and M. H. M. Costa, “The capacity 
region of a class of deterministic 
interference channels,” IEEE Trans. Inf. 
Theory, vol. 28, no. 2, pp. 343–346, 1982. ]
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• for every x1, y1(x1, t2) is a one-to-one function of t2

• for every x2, y2(x2, t1) is a one-to-one function of t1

Class of semi-deterministic ICs

X2

X1

Y2

Y1

T1

T2

y1(x1, t2)

y2(x2, t1)

p(t1|x1)

p(t2|x2) probabilistic

Gaussian is a special case!

Y1 =
p

S1X1 + T2

Y2 =
p

S2X2 + T1

T2 =
p
I1X2 + Z1

T1 =
p
I2X1 + Z2

�

�

W1

W2

Encoder 1

Encoder 2

Decoder 1

Decoder 2

Ŵ1

Ŵ2
Y2

Y1

Z1 ⇠ N (0, 1)
Power 1

Power 1
Z2 ⇠ N (0, 1)

p
S1

p
S2

p
I2

p
I1
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• for every x1, y1(x1, t2) is a one-to-one function of t2

• for every x2, y2(x2, t1) is a one-to-one function of t1

Class of semi-deterministic ICs

X2

X1

Y2

Y1

T1

T2

y1(x1, t2)

y2(x2, t1)

p(t1|x1)

p(t2|x2) probabilistic

Gaussian is a special case!
Deterministic is a special case!

X2

X1

Y2

Y1

T1

T2
t1(x1)

t2(x2)

y1(x1, t2)

y2(x2, t1)
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• for every x1, y1(x1, t2) is a one-to-one function of t2

• for every x2, y2(x2, t1) is a one-to-one function of t1

Inner bound: class of semi-deterministic ICs

X2

X1

Y2

Y1

T1

T2

y1(x1, t2)

y2(x2, t1)

p(t1|x1)

p(t2|x2) probabilistic

Theorem (inner bound of semi-deterministic IC) The following rate
pairs (R1, R2) are achievable (Han+Kobayashi scheme under restriction p(u1, u2|q, x1, x2) =
pT1|X1

(u1|x1)pT2|X2
(u2|x2):

R1  H(Y1|U2, Q)�H(T2|U2, Q) (1)

R2  H(Y2|U1, Q)�H(T1|U1, Q) (2)

R1 +R2  H(Y1|Q) +H(Y2|U1, U2, Q)�H(T1|U1, Q)�H(T2|U2, Q) (3)

R1 +R2  H(Y1|U1, U2, Q) +H(Y2|Q)�H(T1|U1, Q)�H(T2|U2, Q) (4)

R1 +R2  H(Y1|U1, Q) +H(Y2|U2, Q)�H(T1|U1, Q)�H(T2|U2, Q) (5)

2R1 +R2  H(Y1|Q) +H(Y1|U1, X2, Q) +H(Y2|U2, Q)�H(T1|U1, Q)� 2H(T2|U2, Q)
(6)

R1 + 2R2  H(Y2|Q) +H(Y2|U1, U2, Q) +H(Y1|U1, Q)� 2H(T1|U1, Q)�H(T2|U2, Q)
(7)

for some p(q, x1, x2) = p(q)p(x1|q)p(x2|q) and p(u1, u2|q, x1, x2) = pT1|X1
(u1|x1)pT2|X2

(u2|x2).

Han+Kobayash
i
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• for every x1, y1(x1, t2) is a one-to-one function of t2

• for every x2, y2(x2, t1) is a one-to-one function of t1

Outer bound: class of semi-deterministic ICs

X2

X1

Y2

Y1

T1

T2

y1(x1, t2)

y2(x2, t1)

p(t1|x1)

p(t2|x2) probabilistic

Theorem (outer bound of semi-deterministic IC) Every achievable

rate pair (R1, R2) must satisfy

R1  H(Y1|X2, Q)�H(T2|X2) (1)

R2  H(Y2|X1, Q)�H(T1|X1) (2)

R1 +R2  H(Y1|Q) +H(Y2|U2, X1, Q)�H(T1|X1)�H(T2|X2) (3)

R1 +R2  H(Y1|U1, X2, Q) +H(Y2|Q)�H(T1|X1)�H(T2|X2) (4)

R1 +R2  H(Y1|U1, Q) +H(Y2|U2, Q)�H(T1|X1)�H(T2|X2) (5)

2R1 +R2  H(Y1|Q) +H(Y1|U1, X2, Q) +H(Y2|U2, Q)�H(T1|X1)� 2H(T2|X2)

(6)

R1 + 2R2  H(Y2|Q) +H(Y2|U2, X1, Q) +H(Y1|U1, Q)� 2H(T1|X1)�H(T2|X2)

(7)

for some p(q, x1, x2) = p(q)p(x1|q)p(x2|q) and p(u1, u2|q, x1, x2) = pT1|X1
(u1|x1)pT2|X2

(u2|x2).

RO(Q,X1, X2)

NEAT TRICK! Clever sid
e information

Handout!
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Handout 4: outer bound semi-deterministic

Outline:

1) Showcases major difficulty in converses: single-
letterization (if this is desired…)

2) Neat trick of combining many multi-letter terms
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Handout 4: outer bound semi-deterministic
Define random variables U

n
1 and U

n
2 such that Uji is jointly distributed with

Xji according to pTj |Xj
(u|xji), conditionally independent of Tji given Xji for

every j = 1, 2 and every i 2 [1 : n].

5

IV. DETAILED STEPS 4: CONVERSE FOR CAPACITY REGION OF CLASS OF DETERMINISTIC IC AND SEMI-DETERMINISTIC
IC

Theorem (outer bound of semi-deterministic IC) Every achievable rate pair (R1, R2) must satisfy

R1  H(Y1|X2, Q) � H(T2|X2) (4)
R2  H(Y2|X1, Q) � H(T1|X1) (5)

R1 + R2  H(Y1|Q) + H(Y2|U2, X1, Q) � H(T1|X1) � H(T2|X2) (6)
R1 + R2  H(Y1|U1, X2, Q) + H(Y2|Q) � H(T1|X1) � H(T2|X2) (7)
R1 + R2  H(Y1|U1, Q) + H(Y2|U2, Q) � H(T1|X1) � H(T2|X2) (8)

2R1 + R2  H(Y1|Q) + H(Y1|U1, X2, Q) + H(Y2|U2, Q) � H(T1|X1) � 2H(T2|X2) (9)
R1 + 2R2  H(Y2|Q) + H(Y2|U2, X1, Q) + H(Y1|U1, Q) � 2H(T1|X1) � H(T2|X2) (10)

for some p(q, x1, x2) = p(q)p(x1|q)p(x2|q) and p(u1, u2|q, x1, x2) = p
T1|X1

(u1|x1)p
T2|X2

(u2|x2).
This converse is interesting as it showcases one of the major difficulties in converses – single-letterizing them. A single-

letterization is nice because not only does it “look” nicer and more intuitive, but the optimization to be carried out is often
easier. Nowadays, it is sort of assumed that unless ypu have a single-letter expression for capacity, that capacity is unknown.
This may change in the future as computational power increases, or if we find eaier ways to optimize multi-letter expressions,
but this is mere speculation on my part.

Let us attack the converse, which is taken from the simple and elegant [3], but originally appeared in [4], which is
essentially an extension of the ideas in [5]. Consider a sequence of (2nR1 , 2nR2) codes with P

(n)
e

! 0. Futhermore, let
Xn

1 , Xn

2 , Tn

1 , Tn

2 , Y n

1 , Y n

2 denote the random variables results from encoding and transmitting the independent messages W1

and W2. Define random variables Un

1 and Un

2 such that U
ji

is jointly distributed with X
ji

according to p
Tj |Xj

(u|x
ji

),
conditionally independent of T

ji

given X
ji

for every j = 1, 2 and every i 2 [1 : n].
Fano’s inequality, for j = 1, 2, yields:

nR
j

= H(W
j

) = I(W
j

; Y n

j

) + H(W
j

|Y n

j

)

 I(W
j

; Y n

j

) + n✏
n

 I(Xn

j

; Y n

j

) + n✏
n

This is a multi-letter outer bound for the capacity region. We now look for non-trivial single-letter outer bounds. The innovative
trick is to find several partially single-letterized outer bounds on R1 and R2 separately, some of which contain a multi-letter
term, and then to take linear combinations of these outer bounds to obtain single-letter bounds. We omit the +n✏

n

terms in
the following for simplicity (since this tends to 0 anyhow as n ! 1).

Bound A1:

nR1  I(Xn

1 ; Y n

1 )

= H(Y n

1 ) � H(Y n

1 |Xn

1 )

= H(Y n

1 ) � H(Tn

2 |Xn

1 )

= H(Y n

1 ) � H(Tn

2 )


nX

i=1

H(Y1i

) � H(Tn

2 )

Bound B1: (genie at Rx 1 of Un

1 , Xn

2 )

nR1  I(Xn

1 ; Y n

1 , Un

1 , Xn

2 )

= I(Xn

1 ; Un

1 ) + I(Xn

1 ; Xn

2 |Un

1 ) + I(Xn

1 ; Y n

1 |Un

1 , Xn

2 )

= H(Un

1 ) � H(Un

1 |Xn

1 ) + H(Y n

1 |Un

1 , Xn

2 ) � H(Y n

1 |Xn

1 , Un

1 , Xn

2 )
(a)
= H(Tn

1 ) � H(Un

1 |Xn

1 ) + H(Y n

1 |Un

1 , Xn

2 ) � H(Tn

2 |Xn

2 )

 H(Tn

1 ) �
nX

i=1

H(U1i

|X1i

) +
nX

i=1

H(Y1i

|U1i

, X2i

) �
nX

i=1

H(T2i

|X2i

)

Bound A1:

nR1  I(Xn
1 ;Y

n
1 )

= H(Y n
1 )�H(Y n

1 |Xn
1 )

= H(Y n
1 )�H(Tn

2 |Xn
1 )

= H(Y n
1 )�H(Tn

2 )


nX

i=1

H(Y1i)� H(Tn
2 )

X2

X1

Y2

Y1

T1

T2

y1(x1, t2)

y2(x2, t1)

p(t1|x1)

p(t2|x2)
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Handout 4: outer bound semi-deterministic

Bound B1: (genie at Rx 1 of Un
1 , X

n
2 )

nR1  I(Xn
1 ;Y

n
1 , Un

1 , X
n
2 )

= I(Xn
1 ;U

n
1 ) + I(Xn

1 ;X
n
2 |Un

1 ) + I(Xn
1 ;Y

n
1 |Un

1 , X
n
2 )

= H(Un
1 )�H(Un

1 |Xn
1 ) +H(Y n

1 |Un
1 , X

n
2 )�H(Y n

1 |Xn
1 , U

n
1 , X

n
2 )

(a)
= H(Tn

1 )�H(Un
1 |Xn

1 ) +H(Y n
1 |Un

1 , X
n
2 )�H(Tn

2 |Xn
2 )

 H(Tn
1 ) �

nX

i=1

H(U1i|X1i) +
nX

i=1

H(Y1i|U1i, X2i)�
nX

i=1

H(T2i|X2i)

Bound C1: (genie at Rx 1 of Un
1 )

nR1  I(Xn
1 ;Y

n
1 , Un

1 )

= I(Xn
1 ;U

n
1 ) + I(Xn

1 ;Y
n
1 |Un

1 )

= H(Un
1 )�H(Un

1 |Xn
1 ) +H(Y n

1 |Un
1 )�H(Y n

1 |Xn
1 , U

n
1 )

= H(Tn
1 )�H(Un

1 |Xn
1 ) +H(Y n

1 |Un
1 )�H(Tn

2 )

 H(Tn
1 ) � H(Tn

2 ) �
nX

i=1

H(U1i|X1i) +
nX

i=1

H(Y1i|U1i)

X2

X1

Y2

Y1

T1

T2

y1(x1, t2)

y2(x2, t1)

p(t1|x1)

p(t2|x2)

why do some terms single-
letterize but not others?
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Handout 4: outer bound semi-deterministic

Bound D1: (genie at Rx 1 of Xn
2 )

nR1  I(Xn
1 ;Y

n
1 , Xn

2 )

= I(Xn
1 ;X

n
2 ) + I(Xn

1 ;Y
n
1 |Xn

2 )

= H(Y n
1 |Xn

2 )�H(Y n
1 |Xn

1 , X
n
2 )

= H(Y n
1 |Xn

2 )�H(Tn
2 |Xn

2 )


nX

i=1

H(Y1i|X2i)�
nX

i=1

H(T2i|X2i)

by symmetry, obtain analogous bounds at Rx 2

X2

X1

Y2

Y1

T1

T2

y1(x1, t2)

y2(x2, t1)

p(t1|x1)

p(t2|x2)
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Handout 4: outer bound semi-deterministic
7

Bound A1: nR1 
nX

i=1

H(Y1i

) � H(Tn

2 )

Bound B1: nR1  H(Tn

1 ) �
nX

i=1

H(U1i

|X1i

) +
nX

i=1

H(Y1i

|U1i

, X2i

) �
nX

i=1

H(T2i

|X2i

)

Bound C1: nR1  H(Tn

1 ) � H(Tn

2 ) �
nX

i=1

H(U1i

|X1i

) +
nX

i=1

H(Y1i

|U1i

)

Bound D1: nR1 
nX

i=1

H(Y1i

|X2i

) �
nX

i=1

H(T2i

|X2i

)

Bound A2: nR2 
nX

i=1

H(Y2i

) � H(Tn

1 )

Bound B2: nR2  H(Tn

2 ) �
nX

i=1

H(U2i

|X2i

) +
nX

i=1

H(Y2i

|U2i

, X1i

) �
nX

i=1

H(T1i

|X1i

)

Bound C2: nR2  H(Tn

2 ) � H(Tn

1 ) �
nX

i=1

H(U2i

|X2i

) +
nX

i=1

H(Y2i

|U2i

)

Bound D2: nR2 
nX

i=1

H(Y2i

|X1i

) �
nX

i=1

H(T1i

|X1i

)
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Combine these in different ways and use Q time-sharing

X2

X1

Y2

Y1

T1

T2

y1(x1, t2)

y2(x2, t1)

p(t1|x1)

p(t2|x2)
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• for every x1, y1(x1, t2) is a one-to-one function of t2

• for every x2, y2(x2, t1) is a one-to-one function of t1

Outer bound: class of semi-deterministic ICs

X2

X1

Y2

Y1

T1

T2

y1(x1, t2)

y2(x2, t1)

p(t1|x1)

p(t2|x2) probabilistic

Theorem (outer bound of semi-deterministic IC) Every achievable

rate pair (R1, R2) must satisfy

R1  H(Y1|X2, Q)�H(T2|X2) (1)

R2  H(Y2|X1, Q)�H(T1|X1) (2)

R1 +R2  H(Y1|Q) +H(Y2|U2, X1, Q)�H(T1|X1)�H(T2|X2) (3)

R1 +R2  H(Y1|U1, X2, Q) +H(Y2|Q)�H(T1|X1)�H(T2|X2) (4)

R1 +R2  H(Y1|U1, Q) +H(Y2|U2, Q)�H(T1|X1)�H(T2|X2) (5)

2R1 +R2  H(Y1|Q) +H(Y1|U1, X2, Q) +H(Y2|U2, Q)�H(T1|X1)� 2H(T2|X2)

(6)

R1 + 2R2  H(Y2|Q) +H(Y2|U2, X1, Q) +H(Y1|U1, Q)� 2H(T1|X1)�H(T2|X2)

(7)

for some p(q, x1, x2) = p(q)p(x1|q)p(x2|q) and p(u1, u2|q, x1, x2) = pT1|X1
(u1|x1)pT2|X2

(u2|x2).

NEAT TRICK! Clever sid
e information

RO(Q,X1, X2)

Handout!
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• for every x1, y1(x1, t2) is a one-to-one function of t2

• for every x2, y2(x2, t1) is a one-to-one function of t1

GAP: Class of semi-deterministic ICs

X2

X1

Y2

Y1

T1

T2

y1(x1, t2)

y2(x2, t1)

p(t1|x1)

p(t2|x2) probabilistic

Theorem (gap for class of semi-detemerinistic IC) If (R1, R2) 2
RO(Q,X1, X2) then (R1 � I(X2;T2|U2, Q), R2 � I(X1;T1|U1, Q) is achievable.

.[I. E. Telatar and D. N. C. Tse, “Bounds on the capacity region of a class of interference channels,” in Proc. IEEE International Symposium on Information Theory, Nice, France, June 2007.] 

Theorem (gap for Gaussian IC) If (R1, R2) is in the outer boundRAWGN

O

then (R1 � 1/2, R2 � 1/2) is achievable.
[R. Etkin, D. Tse, and H. Wang, “Gaussian interference channel capacity to within one bit,” IEEE Trans. Inf. Theory, vol. 54, no. 12, pp. 5534–5562, Dec. 2008. ]

[A. El Gamal and M. H. M. Costa, “The capacity region of a class of deterministic interference channels,” IEEE Trans. Inf. Theory, vol. 28, no. 2, pp. 343–346, 1982. ]

Theorem (gap for class of deterministic ICs) If ti is a deterministic

function of xi, and the one-to-one constraints hold, then the inner and outer

bounds match and we have the capacity region of a class of deterministic ICs.

Compare H+K + new outer directly

Bound gap for Gaussian

When X to T is deterministic, then U=T and  I(X;T|U,Q)=0
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X2

X1

Y2

Y1

T1

T2
t1(x1)

t2(x2)

y1(x1, t2)

y2(x2, t1)

• for every x1, y1(x1, t2) is a one-to-one function of t2

• for every x2, y2(x2, t1) is a one-to-one function of t1

Capacity:  class of deterministic ICs

Theorem (capacity of class of deterministic IC) The capacity region

of the class of deterministic interference channels is the set of rate pairs (R1, R2)

such that

R1  H(Y1|T2, Q) (1)

R2  H(Y2|T1, Q) (2)

R1 +R2  H(Y1|Q) +H(Y2|T1, T2, Q) (3)

R1 +R2  H(Y1|T1, T2, Q) +H(Y2|Q) (4)

R1 +R2  H(Y1|T2, Q) +H(Y2|T1, Q) (5)

2R1 +R2  H(Y1|Q) +H(Y1|T1, T2, Q) +H(Y2|T2, Q) (6)

R1 + 2R2  H(Y2|Q) +H(Y2|T1, T2, Q) +H(Y + 1|T1, Q) (7)

for some p(q)p(x1|q)p(x2|q).
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Forced interference quotes
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“Do not let the things that you can’t do  
interfere with the things that you can do”

- John Wooden
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“I have never let schooling interfere  
with my education”

- Mark Twain
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Does H+K ever achieve 
capacity?

almost…..

The Gaussian IC
71



The AWGN-IC

�

�

W1

W2

Encoder 1

Encoder 2

Decoder 1

Decoder 2

Ŵ1

Ŵ2
Y2

Y1

Z1 ⇠ N (0, 1)
Power 1

Power 1
Z2 ⇠ N (0, 1)

p
S1

p
S2

p
I2

p
I1

 of practical relevance in wireless systems: 
cellular,  wireless local area networks (WiFi), 
ad hoc networks (wireless sensors or nodes)

Excellent survey of results on Gaussian IC in Introduction of [R. Bustin, H.V. Poor, and S. Shamai “The Effect of Maximal Rate Codes on the Interfering 
Message Rate,” http://arxiv.org/abs/1404.6690]
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AWGN: H+K achieves capacity to within 1/2 bit

�

�

W1

W2

Encoder 1

Encoder 2

Decoder 1

Decoder 2

Ŵ1

Ŵ2
Y2

Y1

Z1 ⇠ N (0, 1)
Power 1

Power 1
Z2 ⇠ N (0, 1)

p
S1

p
S2

p
I2

p
I1

Theorem (gap for Gaussian IC) If (R1, R2) is in the outer boundRAWGN

O

then (R1 � 1/2, R2 � 1/2) is achievable.

[R. Etkin, D. Tse, and H. Wang, “Gaussian interference channel capacity to within one bit,” IEEE Trans. Inf. Theory, vol. 54, no. 12, pp. 5534–5562, Dec. 2008. ]

Etkin, Tse, Wang show how to pick 
Gaussian inputs in H+K scheme

depends on the regime of operation
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AWGN: the “W” curve for the GDoF

D(�) :=

8
<

:(d1, d2) � R2
+ : di := lim

inr = snr�,
snr ! 1

Ri
1
2 log(1 + snr)

, i � [1 : 2], (R1, R2) is achievable

9
=

; .

R1

R2

RI

RO

R1 = R2

R1 = R2
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Fig. 11. Generalized degrees of freedom for two suboptimal schemes versus capacity. These suboptimal schemes are treating interference as noise and orthogo-
nalizing the users over time or frequency.

choice of private message power that achieves a symmetric rate
with bounded difference from the upper bound (9) is

, and this choice of private message power does not re-
sult in a gap that vanishes as .

In the strong interference regime, the symmetric capacity is
given by

(33)

which asymptotically approaches for as
.

Finally, in the very strong interference regime the symmetric
capacity is given by

(34)

which asymptotically approaches for .
We summarize the results of this subsection in the following

theorem.

Theorem 2: Let . For
and , the approximation given in

(35), shown at the bottom of the page, is asymptotically tight in
the sense that the difference between and the approxima-
tion goes to zero as go to infinity with fixed.

IV. WITHIN ONE BIT OF THE GENERAL CAPACITY REGION

In the previous section, we showed that a simple Han–
Kobayashi scheme can achieve to within one bit of the sym-
metric rate of the symmetric Gaussian interference channel.
We will show that this is also true for the whole capacity region
of the general two-user Gaussian interference channel (not
necessarily symmetric). Depending on the parameters of the
Gaussian interference channel ( , and ),
we can divide the analysis of the Gaussian interference channel
into the following three cases.

1) Weak interference channel:
In this case, the parameters of the Gaussian interference
channel satisfy and .

(35)

“W” curve for R1=R2

image taken from 

[R. Etkin, D. Tse, and H. Wang, 
“Gaussian interference channel 
capacity to within one bit,” IEEE 
Trans. Inf. Theory, vol. 54, no. 12, 
pp. 5534–5562, Dec. 2008. ] increasing interference

ge
ne

ra
liz

ed
 D

oF

highlights effect of interference rather than noise
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Fig. 11. Generalized degrees of freedom for two suboptimal schemes versus capacity. These suboptimal schemes are treating interference as noise and orthogo-
nalizing the users over time or frequency.

choice of private message power that achieves a symmetric rate
with bounded difference from the upper bound (9) is

, and this choice of private message power does not re-
sult in a gap that vanishes as .

In the strong interference regime, the symmetric capacity is
given by

(33)

which asymptotically approaches for as
.

Finally, in the very strong interference regime the symmetric
capacity is given by

(34)

which asymptotically approaches for .
We summarize the results of this subsection in the following

theorem.

Theorem 2: Let . For
and , the approximation given in

(35), shown at the bottom of the page, is asymptotically tight in
the sense that the difference between and the approxima-
tion goes to zero as go to infinity with fixed.

IV. WITHIN ONE BIT OF THE GENERAL CAPACITY REGION

In the previous section, we showed that a simple Han–
Kobayashi scheme can achieve to within one bit of the sym-
metric rate of the symmetric Gaussian interference channel.
We will show that this is also true for the whole capacity region
of the general two-user Gaussian interference channel (not
necessarily symmetric). Depending on the parameters of the
Gaussian interference channel ( , and ),
we can divide the analysis of the Gaussian interference channel
into the following three cases.

1) Weak interference channel:
In this case, the parameters of the Gaussian interference
channel satisfy and .

(35)

AWGN: the “W” curve for the GDoF

Regimes

image + formula taken from 

[R. Etkin, D. Tse, and H. Wang, 
“Gaussian interference channel 
capacity to within one bit,” IEEE 
Trans. Inf. Theory, vol. 54, no. 12, 
pp. 5534–5562, Dec. 2008. ]

Very weak Mixed Strong Very strong

Very weak: treating interference as noise is sometimes sum-capacity optimal, capacity partially known

[X. Shang, G. Kramer, and B. Chen, “A new outer bound and the noisy-interference sum-rate  capacity for Gaussian interference channels,” IEEE Trans. Inf. 
Theory, vol. 55, no. 2, pp. 689–699, Feb. 2009.]

[V. S. Annapureddy and V. V. Veeravalli, “Gaussian interference networks: Sum capacity in the low interference regime and new outer bounds on the capacity 
region,” IEEE Trans. Inf. Theory, vol. 55, no. 7, pp. 3032–3050, July 2009. ]

[A. S. Motahari and A. K. Khandani, “Capacity bounds for the Gaussian interference channel,” IEEE Trans. Inf. Theory, vol. 55, no. 2, pp. 620–643, Feb. 
2009. ] 75

Regimes
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made can be thought of as computing analogous limits for the
achievable rates and upper bounds. Since the lower and upper
bounds on the symmetric capacity we derived earlier differ by
at most one bit, they allow us to precisely characterize .
For , this is plotted in Fig. 9. corresponds to
the strong and very strong interference regimes, and since the
capacity is known in these regimes, we can compute in
a straightforward way.

In the very strong interference case, each user can decode the
interfering message before decoding his own message [2]. After
decoding the interference and subtracting it from the received
signal, the user effectively gets an AWGN channel for commu-
nicating his own message. It follows that the symmetric capacity
in the very strong interference case is

(21)

The channel is in the very strong interference situation whenever
. Taking logs and assuming

, the very strong interference condition becomes
. In this regime, we obtain , and therefore,

interference does not reduce the available degrees of freedom of
the channel.

In the strong interference regime, each receiver is able to de-
code both messages. The capacity region of the interference
channel is given by the intersection of the capacity regions of
the two MACs formed by the two transmitters and each of the
receivers. In the symmetric case, the sum capacity of both MACs
is the same and the corresponding symmetric capacity is given
by

(22)

The symmetric channel is in the strong interference situation
whenever it is not in very strong interference and ,
which after taking logs becomes

This condition and (22) together with the assumption
imply that . It follows

that under strong interference the generalized degrees of
freedom are

(23)

We now have the complete picture shown in (24) at the bottom
of the page, and

(25)

The generalized degrees of freedom are plotted in Fig. 11,
together with the performance of the baseline strategies of or-
thogonalizing the users (in frequency or time) and treating inter-
ference as noise. Note that orthogonalizing between the links, in
which each link achieves half the degrees of freedom, is strictly
suboptimal except when and . Treating interfer-
ence as noise, on the other hand, is strictly suboptimal except
for .

Note that there are five regimes in which the qualitative be-
haviors of the capacity are different. The first three regimes fall
into the weak interference regime, and the characterization of
the symmetric capacity in these regimes is a consequence of the
new results that we obtained. In these regimes, the interference
is not strong enough to be decoded in its entirety. In fact, in
regime 1, where the interference is very weak, treating interfer-
ence as noise is optimal. In regimes 2 and 3, where the inter-
ference is not very weak, decoding it partially can significantly
improve performance.

Interestingly, the capacity is not monotonically decreasing
with in the weak interference regime. Increasing has
two opposing effects: more common information can be de-
coded and canceled but less private information can be sent
under the constraint . Depending on which of these
two effects dominates, the capacity increases or decreases with

.
In regime 1, where treating interference as noise is optimal,

the common messages carry negligible information. In this
regime, the loss in the private rate due to the increase in
makes the capacity decrease with . However, once interfer-
ence becomes strong enough to reach regime 2, the users can
start using common information to partially cancel interfer-
ence. As the interference level increases, more and more of this
common information can be decoded and partially canceled,
and this effects dominates the behavior of capacity with .
Therefore, capacity increases with in regime 2. However,
as increases further to reach regime 3, the gains obtained
by partially canceling interference through the common mes-
sages are not enough to offset the loss of rate in the private
information. In this regime, capacity decreases with until

(24)



5544 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 54, NO. 12, DECEMBER 2008

Fig. 11. Generalized degrees of freedom for two suboptimal schemes versus capacity. These suboptimal schemes are treating interference as noise and orthogo-
nalizing the users over time or frequency.

choice of private message power that achieves a symmetric rate
with bounded difference from the upper bound (9) is

, and this choice of private message power does not re-
sult in a gap that vanishes as .

In the strong interference regime, the symmetric capacity is
given by

(33)

which asymptotically approaches for as
.

Finally, in the very strong interference regime the symmetric
capacity is given by

(34)

which asymptotically approaches for .
We summarize the results of this subsection in the following

theorem.

Theorem 2: Let . For
and , the approximation given in

(35), shown at the bottom of the page, is asymptotically tight in
the sense that the difference between and the approxima-
tion goes to zero as go to infinity with fixed.

IV. WITHIN ONE BIT OF THE GENERAL CAPACITY REGION

In the previous section, we showed that a simple Han–
Kobayashi scheme can achieve to within one bit of the sym-
metric rate of the symmetric Gaussian interference channel.
We will show that this is also true for the whole capacity region
of the general two-user Gaussian interference channel (not
necessarily symmetric). Depending on the parameters of the
Gaussian interference channel ( , and ),
we can divide the analysis of the Gaussian interference channel
into the following three cases.

1) Weak interference channel:
In this case, the parameters of the Gaussian interference
channel satisfy and .

(35)

AWGN: the “W” curve for the GDoF

Regimes

image + formula taken from 

[R. Etkin, D. Tse, and H. Wang, 
“Gaussian interference channel 
capacity to within one bit,” IEEE 
Trans. Inf. Theory, vol. 54, no. 12, 
pp. 5534–5562, Dec. 2008. ]

Very weak Mixed Strong Very strong

Very weak: treating interference as noise is sometimes sum-capacity optimal, capacity partially known

Strong: jointly decoding both messages at both receivers is capacity optimal, capacity known
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made can be thought of as computing analogous limits for the
achievable rates and upper bounds. Since the lower and upper
bounds on the symmetric capacity we derived earlier differ by
at most one bit, they allow us to precisely characterize .
For , this is plotted in Fig. 9. corresponds to
the strong and very strong interference regimes, and since the
capacity is known in these regimes, we can compute in
a straightforward way.

In the very strong interference case, each user can decode the
interfering message before decoding his own message [2]. After
decoding the interference and subtracting it from the received
signal, the user effectively gets an AWGN channel for commu-
nicating his own message. It follows that the symmetric capacity
in the very strong interference case is

(21)

The channel is in the very strong interference situation whenever
. Taking logs and assuming

, the very strong interference condition becomes
. In this regime, we obtain , and therefore,

interference does not reduce the available degrees of freedom of
the channel.

In the strong interference regime, each receiver is able to de-
code both messages. The capacity region of the interference
channel is given by the intersection of the capacity regions of
the two MACs formed by the two transmitters and each of the
receivers. In the symmetric case, the sum capacity of both MACs
is the same and the corresponding symmetric capacity is given
by

(22)

The symmetric channel is in the strong interference situation
whenever it is not in very strong interference and ,
which after taking logs becomes

This condition and (22) together with the assumption
imply that . It follows

that under strong interference the generalized degrees of
freedom are

(23)

We now have the complete picture shown in (24) at the bottom
of the page, and

(25)

The generalized degrees of freedom are plotted in Fig. 11,
together with the performance of the baseline strategies of or-
thogonalizing the users (in frequency or time) and treating inter-
ference as noise. Note that orthogonalizing between the links, in
which each link achieves half the degrees of freedom, is strictly
suboptimal except when and . Treating interfer-
ence as noise, on the other hand, is strictly suboptimal except
for .

Note that there are five regimes in which the qualitative be-
haviors of the capacity are different. The first three regimes fall
into the weak interference regime, and the characterization of
the symmetric capacity in these regimes is a consequence of the
new results that we obtained. In these regimes, the interference
is not strong enough to be decoded in its entirety. In fact, in
regime 1, where the interference is very weak, treating interfer-
ence as noise is optimal. In regimes 2 and 3, where the inter-
ference is not very weak, decoding it partially can significantly
improve performance.

Interestingly, the capacity is not monotonically decreasing
with in the weak interference regime. Increasing has
two opposing effects: more common information can be de-
coded and canceled but less private information can be sent
under the constraint . Depending on which of these
two effects dominates, the capacity increases or decreases with

.
In regime 1, where treating interference as noise is optimal,

the common messages carry negligible information. In this
regime, the loss in the private rate due to the increase in
makes the capacity decrease with . However, once interfer-
ence becomes strong enough to reach regime 2, the users can
start using common information to partially cancel interfer-
ence. As the interference level increases, more and more of this
common information can be decoded and partially canceled,
and this effects dominates the behavior of capacity with .
Therefore, capacity increases with in regime 2. However,
as increases further to reach regime 3, the gains obtained
by partially canceling interference through the common mes-
sages are not enough to offset the loss of rate in the private
information. In this regime, capacity decreases with until
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Fig. 11. Generalized degrees of freedom for two suboptimal schemes versus capacity. These suboptimal schemes are treating interference as noise and orthogo-
nalizing the users over time or frequency.

choice of private message power that achieves a symmetric rate
with bounded difference from the upper bound (9) is

, and this choice of private message power does not re-
sult in a gap that vanishes as .

In the strong interference regime, the symmetric capacity is
given by

(33)

which asymptotically approaches for as
.

Finally, in the very strong interference regime the symmetric
capacity is given by

(34)

which asymptotically approaches for .
We summarize the results of this subsection in the following

theorem.

Theorem 2: Let . For
and , the approximation given in

(35), shown at the bottom of the page, is asymptotically tight in
the sense that the difference between and the approxima-
tion goes to zero as go to infinity with fixed.

IV. WITHIN ONE BIT OF THE GENERAL CAPACITY REGION

In the previous section, we showed that a simple Han–
Kobayashi scheme can achieve to within one bit of the sym-
metric rate of the symmetric Gaussian interference channel.
We will show that this is also true for the whole capacity region
of the general two-user Gaussian interference channel (not
necessarily symmetric). Depending on the parameters of the
Gaussian interference channel ( , and ),
we can divide the analysis of the Gaussian interference channel
into the following three cases.

1) Weak interference channel:
In this case, the parameters of the Gaussian interference
channel satisfy and .

(35)

AWGN: the “W” curve for the GDoF

Regimes

image + formula taken from 

[R. Etkin, D. Tse, and H. Wang, 
“Gaussian interference channel 
capacity to within one bit,” IEEE 
Trans. Inf. Theory, vol. 54, no. 12, 
pp. 5534–5562, Dec. 2008. ]

Very weak Mixed Strong Very strong

Very weak: treating interference as noise is sometimes sum-capacity optimal, capacity partially known

Very strong: first decode interference then desired is capacity optimal, capacity known

Strong: jointly decode both messages at both receivers is capacity optimal, capacity known
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made can be thought of as computing analogous limits for the
achievable rates and upper bounds. Since the lower and upper
bounds on the symmetric capacity we derived earlier differ by
at most one bit, they allow us to precisely characterize .
For , this is plotted in Fig. 9. corresponds to
the strong and very strong interference regimes, and since the
capacity is known in these regimes, we can compute in
a straightforward way.

In the very strong interference case, each user can decode the
interfering message before decoding his own message [2]. After
decoding the interference and subtracting it from the received
signal, the user effectively gets an AWGN channel for commu-
nicating his own message. It follows that the symmetric capacity
in the very strong interference case is

(21)

The channel is in the very strong interference situation whenever
. Taking logs and assuming

, the very strong interference condition becomes
. In this regime, we obtain , and therefore,

interference does not reduce the available degrees of freedom of
the channel.

In the strong interference regime, each receiver is able to de-
code both messages. The capacity region of the interference
channel is given by the intersection of the capacity regions of
the two MACs formed by the two transmitters and each of the
receivers. In the symmetric case, the sum capacity of both MACs
is the same and the corresponding symmetric capacity is given
by

(22)

The symmetric channel is in the strong interference situation
whenever it is not in very strong interference and ,
which after taking logs becomes

This condition and (22) together with the assumption
imply that . It follows

that under strong interference the generalized degrees of
freedom are

(23)

We now have the complete picture shown in (24) at the bottom
of the page, and

(25)

The generalized degrees of freedom are plotted in Fig. 11,
together with the performance of the baseline strategies of or-
thogonalizing the users (in frequency or time) and treating inter-
ference as noise. Note that orthogonalizing between the links, in
which each link achieves half the degrees of freedom, is strictly
suboptimal except when and . Treating interfer-
ence as noise, on the other hand, is strictly suboptimal except
for .

Note that there are five regimes in which the qualitative be-
haviors of the capacity are different. The first three regimes fall
into the weak interference regime, and the characterization of
the symmetric capacity in these regimes is a consequence of the
new results that we obtained. In these regimes, the interference
is not strong enough to be decoded in its entirety. In fact, in
regime 1, where the interference is very weak, treating interfer-
ence as noise is optimal. In regimes 2 and 3, where the inter-
ference is not very weak, decoding it partially can significantly
improve performance.

Interestingly, the capacity is not monotonically decreasing
with in the weak interference regime. Increasing has
two opposing effects: more common information can be de-
coded and canceled but less private information can be sent
under the constraint . Depending on which of these
two effects dominates, the capacity increases or decreases with

.
In regime 1, where treating interference as noise is optimal,

the common messages carry negligible information. In this
regime, the loss in the private rate due to the increase in
makes the capacity decrease with . However, once interfer-
ence becomes strong enough to reach regime 2, the users can
start using common information to partially cancel interfer-
ence. As the interference level increases, more and more of this
common information can be decoded and partially canceled,
and this effects dominates the behavior of capacity with .
Therefore, capacity increases with in regime 2. However,
as increases further to reach regime 3, the gains obtained
by partially canceling interference through the common mes-
sages are not enough to offset the loss of rate in the private
information. In this regime, capacity decreases with until
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Fig. 11. Generalized degrees of freedom for two suboptimal schemes versus capacity. These suboptimal schemes are treating interference as noise and orthogo-
nalizing the users over time or frequency.

choice of private message power that achieves a symmetric rate
with bounded difference from the upper bound (9) is

, and this choice of private message power does not re-
sult in a gap that vanishes as .

In the strong interference regime, the symmetric capacity is
given by

(33)

which asymptotically approaches for as
.

Finally, in the very strong interference regime the symmetric
capacity is given by

(34)

which asymptotically approaches for .
We summarize the results of this subsection in the following

theorem.

Theorem 2: Let . For
and , the approximation given in

(35), shown at the bottom of the page, is asymptotically tight in
the sense that the difference between and the approxima-
tion goes to zero as go to infinity with fixed.

IV. WITHIN ONE BIT OF THE GENERAL CAPACITY REGION

In the previous section, we showed that a simple Han–
Kobayashi scheme can achieve to within one bit of the sym-
metric rate of the symmetric Gaussian interference channel.
We will show that this is also true for the whole capacity region
of the general two-user Gaussian interference channel (not
necessarily symmetric). Depending on the parameters of the
Gaussian interference channel ( , and ),
we can divide the analysis of the Gaussian interference channel
into the following three cases.

1) Weak interference channel:
In this case, the parameters of the Gaussian interference
channel satisfy and .

(35)

AWGN: the “W” curve for the GDoF

Regimes

image + formula taken from 

[R. Etkin, D. Tse, and H. Wang, 
“Gaussian interference channel 
capacity to within one bit,” IEEE 
Trans. Inf. Theory, vol. 54, no. 12, 
pp. 5534–5562, Dec. 2008. ]

Very weak Mixed Strong Very strong

Very weak: treating interference as noise is sometimes capacity optimal, capacity partially known

Very strong: first decode interference then desired is capacity optimal, capacity known

Strong: jointly decode both messages at both receivers is capacity optimal, capacity known

Mixed 1: partially decode interference H+K is gDoF optimal — larger INR, cancel more, capacity unknown
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made can be thought of as computing analogous limits for the
achievable rates and upper bounds. Since the lower and upper
bounds on the symmetric capacity we derived earlier differ by
at most one bit, they allow us to precisely characterize .
For , this is plotted in Fig. 9. corresponds to
the strong and very strong interference regimes, and since the
capacity is known in these regimes, we can compute in
a straightforward way.

In the very strong interference case, each user can decode the
interfering message before decoding his own message [2]. After
decoding the interference and subtracting it from the received
signal, the user effectively gets an AWGN channel for commu-
nicating his own message. It follows that the symmetric capacity
in the very strong interference case is

(21)

The channel is in the very strong interference situation whenever
. Taking logs and assuming

, the very strong interference condition becomes
. In this regime, we obtain , and therefore,

interference does not reduce the available degrees of freedom of
the channel.

In the strong interference regime, each receiver is able to de-
code both messages. The capacity region of the interference
channel is given by the intersection of the capacity regions of
the two MACs formed by the two transmitters and each of the
receivers. In the symmetric case, the sum capacity of both MACs
is the same and the corresponding symmetric capacity is given
by

(22)

The symmetric channel is in the strong interference situation
whenever it is not in very strong interference and ,
which after taking logs becomes

This condition and (22) together with the assumption
imply that . It follows

that under strong interference the generalized degrees of
freedom are

(23)

We now have the complete picture shown in (24) at the bottom
of the page, and

(25)

The generalized degrees of freedom are plotted in Fig. 11,
together with the performance of the baseline strategies of or-
thogonalizing the users (in frequency or time) and treating inter-
ference as noise. Note that orthogonalizing between the links, in
which each link achieves half the degrees of freedom, is strictly
suboptimal except when and . Treating interfer-
ence as noise, on the other hand, is strictly suboptimal except
for .

Note that there are five regimes in which the qualitative be-
haviors of the capacity are different. The first three regimes fall
into the weak interference regime, and the characterization of
the symmetric capacity in these regimes is a consequence of the
new results that we obtained. In these regimes, the interference
is not strong enough to be decoded in its entirety. In fact, in
regime 1, where the interference is very weak, treating interfer-
ence as noise is optimal. In regimes 2 and 3, where the inter-
ference is not very weak, decoding it partially can significantly
improve performance.

Interestingly, the capacity is not monotonically decreasing
with in the weak interference regime. Increasing has
two opposing effects: more common information can be de-
coded and canceled but less private information can be sent
under the constraint . Depending on which of these
two effects dominates, the capacity increases or decreases with

.
In regime 1, where treating interference as noise is optimal,

the common messages carry negligible information. In this
regime, the loss in the private rate due to the increase in
makes the capacity decrease with . However, once interfer-
ence becomes strong enough to reach regime 2, the users can
start using common information to partially cancel interfer-
ence. As the interference level increases, more and more of this
common information can be decoded and partially canceled,
and this effects dominates the behavior of capacity with .
Therefore, capacity increases with in regime 2. However,
as increases further to reach regime 3, the gains obtained
by partially canceling interference through the common mes-
sages are not enough to offset the loss of rate in the private
information. In this regime, capacity decreases with until
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Fig. 11. Generalized degrees of freedom for two suboptimal schemes versus capacity. These suboptimal schemes are treating interference as noise and orthogo-
nalizing the users over time or frequency.

choice of private message power that achieves a symmetric rate
with bounded difference from the upper bound (9) is

, and this choice of private message power does not re-
sult in a gap that vanishes as .

In the strong interference regime, the symmetric capacity is
given by

(33)

which asymptotically approaches for as
.

Finally, in the very strong interference regime the symmetric
capacity is given by

(34)

which asymptotically approaches for .
We summarize the results of this subsection in the following

theorem.

Theorem 2: Let . For
and , the approximation given in

(35), shown at the bottom of the page, is asymptotically tight in
the sense that the difference between and the approxima-
tion goes to zero as go to infinity with fixed.

IV. WITHIN ONE BIT OF THE GENERAL CAPACITY REGION

In the previous section, we showed that a simple Han–
Kobayashi scheme can achieve to within one bit of the sym-
metric rate of the symmetric Gaussian interference channel.
We will show that this is also true for the whole capacity region
of the general two-user Gaussian interference channel (not
necessarily symmetric). Depending on the parameters of the
Gaussian interference channel ( , and ),
we can divide the analysis of the Gaussian interference channel
into the following three cases.

1) Weak interference channel:
In this case, the parameters of the Gaussian interference
channel satisfy and .

(35)

AWGN: the “W” curve for the GDoF

Regimes
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[R. Etkin, D. Tse, and H. Wang, 
“Gaussian interference channel 
capacity to within one bit,” IEEE 
Trans. Inf. Theory, vol. 54, no. 12, 
pp. 5534–5562, Dec. 2008. ]

Very weak Mixed Strong Very strong

Very weak: treating interference as noise is sometimes capacity optimal, capacity partially known

Very strong: first decode interference then desired is capacity optimal, capacity known

Strong: jointly decode both messages at both receivers is capacity optimal, capacity known

Mixed 1: partially decode interference H+K is gDoF optimal — larger INR, cancel more, capacity unknown

Mixed 2: partially decode interference H+K is gDoF optimal — larger INR hurts, capacity unknown
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made can be thought of as computing analogous limits for the
achievable rates and upper bounds. Since the lower and upper
bounds on the symmetric capacity we derived earlier differ by
at most one bit, they allow us to precisely characterize .
For , this is plotted in Fig. 9. corresponds to
the strong and very strong interference regimes, and since the
capacity is known in these regimes, we can compute in
a straightforward way.

In the very strong interference case, each user can decode the
interfering message before decoding his own message [2]. After
decoding the interference and subtracting it from the received
signal, the user effectively gets an AWGN channel for commu-
nicating his own message. It follows that the symmetric capacity
in the very strong interference case is

(21)

The channel is in the very strong interference situation whenever
. Taking logs and assuming

, the very strong interference condition becomes
. In this regime, we obtain , and therefore,

interference does not reduce the available degrees of freedom of
the channel.

In the strong interference regime, each receiver is able to de-
code both messages. The capacity region of the interference
channel is given by the intersection of the capacity regions of
the two MACs formed by the two transmitters and each of the
receivers. In the symmetric case, the sum capacity of both MACs
is the same and the corresponding symmetric capacity is given
by

(22)

The symmetric channel is in the strong interference situation
whenever it is not in very strong interference and ,
which after taking logs becomes

This condition and (22) together with the assumption
imply that . It follows

that under strong interference the generalized degrees of
freedom are

(23)

We now have the complete picture shown in (24) at the bottom
of the page, and

(25)

The generalized degrees of freedom are plotted in Fig. 11,
together with the performance of the baseline strategies of or-
thogonalizing the users (in frequency or time) and treating inter-
ference as noise. Note that orthogonalizing between the links, in
which each link achieves half the degrees of freedom, is strictly
suboptimal except when and . Treating interfer-
ence as noise, on the other hand, is strictly suboptimal except
for .

Note that there are five regimes in which the qualitative be-
haviors of the capacity are different. The first three regimes fall
into the weak interference regime, and the characterization of
the symmetric capacity in these regimes is a consequence of the
new results that we obtained. In these regimes, the interference
is not strong enough to be decoded in its entirety. In fact, in
regime 1, where the interference is very weak, treating interfer-
ence as noise is optimal. In regimes 2 and 3, where the inter-
ference is not very weak, decoding it partially can significantly
improve performance.

Interestingly, the capacity is not monotonically decreasing
with in the weak interference regime. Increasing has
two opposing effects: more common information can be de-
coded and canceled but less private information can be sent
under the constraint . Depending on which of these
two effects dominates, the capacity increases or decreases with

.
In regime 1, where treating interference as noise is optimal,

the common messages carry negligible information. In this
regime, the loss in the private rate due to the increase in
makes the capacity decrease with . However, once interfer-
ence becomes strong enough to reach regime 2, the users can
start using common information to partially cancel interfer-
ence. As the interference level increases, more and more of this
common information can be decoded and partially canceled,
and this effects dominates the behavior of capacity with .
Therefore, capacity increases with in regime 2. However,
as increases further to reach regime 3, the gains obtained
by partially canceling interference through the common mes-
sages are not enough to offset the loss of rate in the private
information. In this regime, capacity decreases with until
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Fig. 11. Generalized degrees of freedom for two suboptimal schemes versus capacity. These suboptimal schemes are treating interference as noise and orthogo-
nalizing the users over time or frequency.

choice of private message power that achieves a symmetric rate
with bounded difference from the upper bound (9) is

, and this choice of private message power does not re-
sult in a gap that vanishes as .

In the strong interference regime, the symmetric capacity is
given by

(33)

which asymptotically approaches for as
.

Finally, in the very strong interference regime the symmetric
capacity is given by

(34)

which asymptotically approaches for .
We summarize the results of this subsection in the following

theorem.

Theorem 2: Let . For
and , the approximation given in

(35), shown at the bottom of the page, is asymptotically tight in
the sense that the difference between and the approxima-
tion goes to zero as go to infinity with fixed.

IV. WITHIN ONE BIT OF THE GENERAL CAPACITY REGION

In the previous section, we showed that a simple Han–
Kobayashi scheme can achieve to within one bit of the sym-
metric rate of the symmetric Gaussian interference channel.
We will show that this is also true for the whole capacity region
of the general two-user Gaussian interference channel (not
necessarily symmetric). Depending on the parameters of the
Gaussian interference channel ( , and ),
we can divide the analysis of the Gaussian interference channel
into the following three cases.

1) Weak interference channel:
In this case, the parameters of the Gaussian interference
channel satisfy and .

(35)

Very strong: first decode interference then desired is capacity optimal, capacity known
Strong: jointly decode both messages at both receivers is capacity optimal, capacity known

Mixed 1: partially decode interference H+K is gDoF optimal — larger INR, cancel more, capacity unknown
Mixed 2: partially decode interference H+K is gDoF optimal — larger INR hurts, capacity unknown

Use Han+Kobayashi scheme with private level set such that received at same 
level as noise at undesired receiver

Simple, almost optimal but not necessarily the best, in these challenging regimes
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Very weak: treating interference as noise is sometimes sum-capacity optimal, capacity partially known
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Some other GDoF comparisons
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Fig. 3. Csym for various linear deterministic ICs as a function of � := q
p .

This tells us that allowing partial adaptation is useless – i.e. may as well not adapt. Interestingly, the

same holds true even for full adaptation for � > 2/3. This was also concluded for the linear deterministic

one-way interference channel with interfering feedback links in [20]; what is interesting is that we can

just as well squeeze in extra information messages in the feedback link (in the two-way interference

channel model) rather than use the backwards links for feedback. The symmetric sum-capacity for the

fully adaptive two-way IC remains open for � < 2/3; it is solved for partial adaptation.

Recently, the work in [23] has considered a one-way interference channel with interfering feedback

links (again forming an interference channel), a generalization of some of the deterministic interference

channels with feedback considered in [20], where the feedback link spends fraction ⇥ of its time sending

feedback, and uses the remaining (1 � ⇥) for other things (such as for example sending independent

backwards messages, though adaptation as in (1) is not considered). This is quite different from our

model which integrates sending feedback and messages over all links and does not force this separation.

While the symmetric sum-capacity for this one-way interference channel with interfering feedback links

is obtained in [23] in our notation for � ⇥ 1, it is a function of this parameter ⇥ and is thus not plotted

here.
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Is H+K capacity achieving in general? NO!
[C. Nair,  L. Xia, M. Yazdanpanah, ``Sub-optimality of the Han-and-Kobayashi Achievable Region for Interference Channels,” Proc. of ISIT, 2015.]

1) Simplified channel model, Z-IC

2 CZI Channel 2

for some pmf p(q)p(u1, x1|q)p(u2, x2|q), where |U1|  |X1| + 4, |U2|  |X2| + 4, and |Q|  7. The set of
achievable rate pairs form the Han–Kobayashi achievable region, or HK region, and is denoted by R

hk

.

The capacity region is known under a small set of interference instantiations such as strong interference
and injective deterministic interference. The sum capacity is established for a larger class of channels such
as Gaussian interference channel with mixed or very weak interference. In all the cases mentioned above
the capacity region (or the sum capacity) matches the one given by R

hk

. Furthermore, it was not known
whether R

hk

is the capacity region C or not. In this paper, we show that there are channel instances where
R

hk

( C; thus showing the sub-optimality of the HK region.
The main ingenuity of our work lies in the choice of the channel realizations because the computation

of the HK region is not particularly straightforward. We study a class of interference channels, defined
as CZI channels in the next section, where the evaluation of R

hk

becomes significantly simplified1. We
take particular channels inside this class and compute a (normalized) two-letter achievable region of the
corresponding two-letter product channel. We show that there are many examples where the (normalized)
two-letter achievable region considered is strictly larger than R

hk

, which indicates R
hk

( C.

2 CZI Channel

We say that an interference channel has clean Z interference (CZI) if one of the sub channels is a clean
channel. We choose the channel from X2 to Y2 to be clean as depicted in Figure 2 and study its HK region.

M1

M2

Encoder 1

Encoder 2

Xn

1

Xn

2

q(y1|x1, x2)
Y n

1

Y n

2 = Xn

2

Decoder 1

Decoder 2

M̂1

M̂2

Fig. 2: Discrete memoryless CZI channel

The following proposition reveals an equivalent characterization of the HK region for CZI channels which
simplifies its evaluation.

Proposition 1. The HK region of a CZI channel is identical to the set of rate pairs (R1, R2) that satisfy

R1 < I(X1;Y1|U2, Q), (8)

R2 < H(X2|Q), (9)

R1 +R2 < I(X1, U2;Y1|Q) +H(X2|U2, Q) (10)

for some pmf p(q)p(u2|q)p(x2|u2)p(x1|q), where |U2|  |X2| and |Q|  2.

Proof. First of all, it is a simple exercise to note that the HK region of a CZI channel reduces to the three
constraints above by setting U1 = �. Hence, the above region is a subset of the HK region.

Conversely, (8) is identical to (1) of the HK region. (9) and (10) are respectively looser constraints than
(2) and (3) of the HK region, which makes the above region larger than the original HK region. Thus proving
equivalence.

Note that the changes in cardinality of U2 andQ follow from standard applications of cardinality reduction
techniques all while the underlying region remains the same. Therefore, we do not have to take these changes
into account when talking about the two regions’ equivalence.

1 An earlier attempt was made by some of the authors [3] along very similar lines where the sum-capacity of very weak
interference channels was studied. However, they were unable to identify examples where the (normalized) two-letter achievable
sum-rate of a two-letter product channel becomes larger than the original Rhk. Note that CZI channels considered here are a
further subclass of very weak interference channels; on the other hand we study a weighted sum-rate rather than the sum-rate.
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2) Characterize max sum-rate for H+K along 
the direction �R1 +R22 CZI Channel 4

Lemma 1. For a CZI channel, for all � > 1

max
R

hk

(�R1 +R2) = max
p1(x1)p2(x2)

n

I(X1, X2;Y1) + C
p2(x2)

⇥

H(X2)� I(X2;Y1|X1) + (�� 1)I(X1;Y1)
⇤

o

, (11)

where C
x

[f(x)] of f(x) denotes the upper concave envelope of f(x) over x. [4]

Proof. For any (R1, R2) 2 R
hk

, there must exist a distribution p(q)p2(u2, x2|q)p1(x1|q) such that

�R1 +R2  (�� 1)I(X1;Y1|U2, Q) + I(X1, U2;Y1|Q) +H(X2|U2, Q)

= I(X1, X2;Y2|Q) +H(X2|U2, Q)� I(X2;Y2|U2, X1, Q) + (�� 1)I(X1;Y1|U2, Q)

(d)
= I(X1, X2;Y2|Q) + C

p2(x2|q)

⇥

H(X2|Q)� I(X2;Y1|X1, Q) + (�� 1)I(X1;Y1|Q)
⇤

,

where (d) follows directly from the definition of the upper concave envelope. Since Q computes an average,
and since the average is less than the maximum, we obtain that

max
R

hk

(�R1 +R2)  max
p1(x1)p2(x2)

n

I(X1, X2;Y1) + C
p2(x2)

⇥

H(X2)� I(X2;Y1|X1) + (�� 1)I(X1;Y1)
⇤

o

.

On the other hand, for any p2(u2, x2)p1(x1), the following rate pair

(R1, R2) = (I(X1;Y1|U2), H(X2|U2) + I(U2;Y1))

belongs to R
hk

as it satisfies the constraints. Thus,

max
R

hk

(�R1 +R2) � max
p2(u2,x2)p1(x1)

n

�I(X1;Y1|U2) +H(X2|U2) + I(U2;Y1)
o

= max
p2(u2,x2)p1(x1)

n

I(X1, U2;Y1) +H(X2|U2) + (�� 1)I(X1;Y1|U2)
o

= max
p2(u2,x2)p1(x1)

n

I(X1, X2;Y1) +H(X2|U2)� I(X2;Y1|U2, X1) + (�� 1)I(X1;Y1|U2)
o

(e)
= max

p2(x2)p1(x1)
I(X1, X2;Y1) + C

p2(x2)

⇥

H(X2)� I(X2;Y1|X1) + (�� 1)I(X1;Y1)
⇤

,

where (e) also follows directly from the definition of the upper concave envelope, see [4]. This establishes
the converse and completes the proof of the lemma.

By viewing the channel use across two consecutive time-slots as the channel use of a single time-slot of
the corresponding product channel, we obtain what is usually termed the two-letter realization of the original
channel. For the two letter product channel of a CZI channel, the transition probability satisfies

q̃(y11y12|x11, x12x21, x22) = q(y11|x11x21)q(y12|x12, x22),

where q is the transition probability of the CZI channel.

Proposition 3. The set of rate pairs satisfying

R1 =
1

2
I(X11, X12;Y11, Y12|Q),

R2 =
1

2
H(X21, H22|Q),

for some pmf p(q)p(x11, x12|q)p(x21x22|q) with |Q|  2 is achievable by the original channel.

Proof. This rate pair is precisely the treating interference as noise rate pair of the two-letter channel, and
the normalization by 1

2 is due to the fact that we code over two time-slots of the original channel.

We denote this (normalized) two-letter HK region as R
two

.

4 Appendix 8

To find the point where the tangent line meets the function, (q̂), we need to solve the following equation

f(p, q̂)� f(p, 0)

q̂
=

@f(p, q)

@q

�

�

�

q̂

.

Because the function is initially convex and then concave, the above equation will have at most one solution
q̂ 6= 0. One can verify that q̂ = 1� 2p is the required solution, and this completes the proof.

Define F (p, q) for (p, q) 2 [0, 1]⇥ [0, 1] as

8

>

<

>

:

h
b

(q + p

2 q̄)� pq̄ + f(p, q) q � min{0, 1� 2p}
h
b

(q + p

2 q̄)� pq̄

+ f(p,1�2p)�f(p,0)
1�2p q + f(p, 0) o.w.,

(16)

where f(p, q) is defined in (13).
From Lemma 2 and (14), we know that

max
R

hk

(2R1 +R2) = max
p,q

F (p, q). (17)

A tedious exercise shows that the concave envelope of F (p, q) w.r.t. (p, q) matches the function value F (p0, q0)
at3 (p0, q0) = (0.507829413, 0.436538150). Hence an upper bound on max

R
hk

(2R1 + R2) is given by maximum

value of the supporting hyperplane to F (p, q) at p0, q0, which is in turn upper bounded by F (p0, q0)+ |a|+ |b|
where a = @F

@p

�

�

�

p0

, and b = @F

@q

�

�

�

q0

. Evaluating the values we obtain an upper bound given by

max
R

hk

(2R1 +R2)  1.107577. (18)

On the other hand consider the following point in R
two

given by

R1 =
1

2
I(X11, X12;Y11, Y12), R2 =

1

2
H(X21, H22|Q),

where P ((X11, X12) = (0, 0)) = p0, P ((X11, X12) = (1, 1)) = 1 � p0, and P ((X21, X22) = (0, 0)) =
0.36q0, P ((X21, X22) = (0, 1)) = P ((X21, X22) = (1, 0)) = 0.64q0, P ((X21, X22) = (1, 1)) = 1 � 1.64q0.
For this choice of distribution we get 2R1 +R2 = 1.1080356, which is strictly larger than the bound given in
(18). This establishes the sub-optimality of the Han–Kobayashi region for the particular example considered
in the Appendix.

As mentioned in Section 2.2 the distribution of (X21, X22) that outperforms the one-letter region is not
the product distribution; but more surprisingly one is doing repetition coding on X11, X12.
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3) Look at two-letter treating interference as 
noise region

2 CZI Channel 4

Lemma 1. For a CZI channel, for all � > 1

max
R

hk

(�R1 +R2) = max
p1(x1)p2(x2)

n

I(X1, X2;Y1) + C
p2(x2)

⇥

H(X2)� I(X2;Y1|X1) + (�� 1)I(X1;Y1)
⇤

o

, (11)

where C
x

[f(x)] of f(x) denotes the upper concave envelope of f(x) over x. [4]

Proof. For any (R1, R2) 2 R
hk

, there must exist a distribution p(q)p2(u2, x2|q)p1(x1|q) such that

�R1 +R2  (�� 1)I(X1;Y1|U2, Q) + I(X1, U2;Y1|Q) +H(X2|U2, Q)

= I(X1, X2;Y2|Q) +H(X2|U2, Q)� I(X2;Y2|U2, X1, Q) + (�� 1)I(X1;Y1|U2, Q)

(d)
= I(X1, X2;Y2|Q) + C

p2(x2|q)

⇥

H(X2|Q)� I(X2;Y1|X1, Q) + (�� 1)I(X1;Y1|Q)
⇤

,

where (d) follows directly from the definition of the upper concave envelope. Since Q computes an average,
and since the average is less than the maximum, we obtain that

max
R

hk

(�R1 +R2)  max
p1(x1)p2(x2)

n

I(X1, X2;Y1) + C
p2(x2)

⇥

H(X2)� I(X2;Y1|X1) + (�� 1)I(X1;Y1)
⇤

o

.

On the other hand, for any p2(u2, x2)p1(x1), the following rate pair

(R1, R2) = (I(X1;Y1|U2), H(X2|U2) + I(U2;Y1))

belongs to R
hk

as it satisfies the constraints. Thus,

max
R

hk

(�R1 +R2) � max
p2(u2,x2)p1(x1)

n

�I(X1;Y1|U2) +H(X2|U2) + I(U2;Y1)
o

= max
p2(u2,x2)p1(x1)

n

I(X1, U2;Y1) +H(X2|U2) + (�� 1)I(X1;Y1|U2)
o

= max
p2(u2,x2)p1(x1)

n

I(X1, X2;Y1) +H(X2|U2)� I(X2;Y1|U2, X1) + (�� 1)I(X1;Y1|U2)
o

(e)
= max

p2(x2)p1(x1)
I(X1, X2;Y1) + C

p2(x2)

⇥

H(X2)� I(X2;Y1|X1) + (�� 1)I(X1;Y1)
⇤

,

where (e) also follows directly from the definition of the upper concave envelope, see [4]. This establishes
the converse and completes the proof of the lemma.

By viewing the channel use across two consecutive time-slots as the channel use of a single time-slot of
the corresponding product channel, we obtain what is usually termed the two-letter realization of the original
channel. For the two letter product channel of a CZI channel, the transition probability satisfies

q̃(y11y12|x11, x12x21, x22) = q(y11|x11x21)q(y12|x12, x22),

where q is the transition probability of the CZI channel.

Proposition 3. The set of rate pairs satisfying

R1 =
1

2
I(X11, X12;Y11, Y12|Q),

R2 =
1

2
H(X21, H22|Q),

for some pmf p(q)p(x11, x12|q)p(x21x22|q) with |Q|  2 is achievable by the original channel.

Proof. This rate pair is precisely the treating interference as noise rate pair of the two-letter channel, and
the normalization by 1

2 is due to the fact that we code over two time-slots of the original channel.

We denote this (normalized) two-letter HK region as R
two

.
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4) Find computable channel for 
which two-letter TIN 
outperforms i.i.d. HK

4 Appendix 6

Tab. 1: Table of counter-examples

� channel max
R

hk

(�R1 +R2) max
R

two

(�R1 +R2)

2



1 0.5
1 0

�

1.107516 1.108141

2.5



0.204581 0.364813
0.030209 0.992978

�

1.159383 1.169312

3



0.591419 0.865901
0.004021 0.898113

�

1.241521 1.255814

3



0.356166 0.073253
0.985504 0.031707

�

1.292172 1.311027

3



0.287272 0.459966
0.113711 0.995405

�

1.117253 1.123151

4



0.429804 0.147712
0.948192 0.002848

�

1.181392 1.196189

4



0.068730 0.443630
0.011377 0.954887

�

1.223409 1.243958

5



0.969199 0.564440
0.954079 0.061409

�

1.351229 1.372191

5



0.943226 0.447252
0.950791 0.024302

�

1.231254 1.250564

6



0.943292 0.045996
0.589551 0.202487

�

1.069405 1.076932

6



0.714431 0.019375
0.955918 0.448539

�

1.528508 1.541781

7



0.058449 0.558649
0.194915 0.959172

�

1.424974 1.452769

7



0.033312 0.876067
0.286125 0.992825

�

1.179438 1.187867

10



0.307723 0.874843
0.032090 0.710535

�

1.370830 1.388674

15



0.946802 0.311909
0.730770 0.155075

�

1.391596 1.406325

100



0.382410 0.081474
0.584797 0.241840

�

3.754016 3.789316

100



0.673979 0.194596
0.781192 0.285216

�

1.711938 1.730715

3 Conclusion 5

2.1 Sub-optimality of the HK region

In this part we provide several CZI channels for which, for some fixed (� > 1), max
R

two

(�R1 + R2) becomes

larger than max
R

hk

(�R1 +R2), which proves the sub-optimality of the HK region.

Examples are of channels with binary input and output. A 2⇥ 2 matrix is used to represent the channel:

q(y1|x1, x2) =



P (Y1 = 0|X1, X2 = 0, 0) P (Y1 = 0|X1, X2 = 0, 1)
P (Y1 = 0|X1, X2 = 1, 0) P (Y1 = 0|X1, X2 = 1, 1)

�

.

The fact that X2 is binary allows us to compute the upper concave envelope in Lemma 1 with extremely
high precision.

The channels in Table 1 are obtained using numerical methods. We prove, as a demonstration, in the
Appendix that the di↵erence in rates of the first channel listed above is not due to numerical errors and
that the maximum single-letter rate is indeed strictly smaller than the maximum (normalized) two-letter
rate achieved by the corresponding two-letter product channel.

2.2 Intuition and a natural modification

In this section, we present an intuition as well as a coding strategy motivated by this intuition that indicates
how one may improve on the Han–Kobayashi encoding scheme.

The counterexamples we generated in the last section had the following feature: even though � was
strictly larger than one, the optimal U2 that yielded max

R
hk

(�R1 + R2) was still the trivial random variable;

implying that there were distributions p1(x1) and p2(x2) such that

R1 = I(X1;Y1), R2 = I(X2;Y2) = H(X2)

yielded the maximum weighted sum-rate.
Suppose we now go to the two-letter product channel and take the product distribution of the marginals

that yielded the one letter maximum as the transmitter distribution, clearly we would get the same rate. It is
an easy exercise to verify that I(X1;Y1) is convex in X2 (utilizing the fact that X1 and X2 are independent).
Thus a perturbation of the product distribution into two distributions that preserve the average would
reduce R2 = 1

2H(X21, X22) but increase R1 = 1
2I(X11, X12;Y11, Y12). Since we are interested in �R1 + R2

with � > 1, it is conceivable that such a perturbation would increase the weighted sum-rate.
Note that X2 acts like a state variable on the communication of the channel between X1 and Y1. If the

channel from X1 ! Y1, with X2 as the state, is not memoryless, we know that the optimal code distributions
on Xn

1 are not independent distributions.
For instance, if one creates Xn

2 according to a first order Markov process, the channel from Xn

1 to Y n

1

becomes a channel whose state varies like a first order Markov process. For such a coding strategy, one could
achieve R2 = H̄(X2), R1 = C̄(X1;Y1), where H̄(X2) denotes the entropy rate of the Markov process Xn

2

and C̄(X1;Y1) denotes the capacity of the channel whose state varies according to Xn

2 .
Note that in general C̄(X1;Y1) does not have a closed form and is quite hard to compute; but this scheme,

as opposed to block coding, appears to the authors to be a natural fit for interference channels. It would
also explain why i.i.d. coding (in the sense of Han–Kobayashi) might not be optimal for a CZI channel.

3 Conclusion

We have shown in the paper that Han–Kobayashi achievable region is strictly sub-optimal, which makes
finding new ways of modeling achievable regions for interference channels almost a necessity in the future.

4 Appendix

Analysis of a particular example

Consider the CZI channel where Figure 3 the depicts q(y1|x1, x2) as two point to point channels X1 ! Y1

for di↵erent choices of X2. Our purpose is to show the details of computation R
hk

when � = 2.

� = 2Analytical for

4 Appendix 8

To find the point where the tangent line meets the function, (q̂), we need to solve the following equation

f(p, q̂)� f(p, 0)

q̂
=

@f(p, q)

@q

�

�

�

q̂

.

Because the function is initially convex and then concave, the above equation will have at most one solution
q̂ 6= 0. One can verify that q̂ = 1� 2p is the required solution, and this completes the proof.

Define F (p, q) for (p, q) 2 [0, 1]⇥ [0, 1] as

8

>

<

>

:

h
b

(q + p

2 q̄)� pq̄ + f(p, q) q � min{0, 1� 2p}
h
b

(q + p

2 q̄)� pq̄

+ f(p,1�2p)�f(p,0)
1�2p q + f(p, 0) o.w.,

(16)

where f(p, q) is defined in (13).
From Lemma 2 and (14), we know that

max
R

hk

(2R1 +R2) = max
p,q

F (p, q). (17)

A tedious exercise shows that the concave envelope of F (p, q) w.r.t. (p, q) matches the function value F (p0, q0)
at3 (p0, q0) = (0.507829413, 0.436538150). Hence an upper bound on max

R
hk

(2R1 + R2) is given by maximum

value of the supporting hyperplane to F (p, q) at p0, q0, which is in turn upper bounded by F (p0, q0)+ |a|+ |b|
where a = @F

@p

�

�

�

p0

, and b = @F

@q

�

�

�

q0

. Evaluating the values we obtain an upper bound given by

max
R

hk

(2R1 +R2)  1.107577. (18)

On the other hand consider the following point in R
two

given by

R1 =
1

2
I(X11, X12;Y11, Y12), R2 =

1

2
H(X21, H22|Q),

where P ((X11, X12) = (0, 0)) = p0, P ((X11, X12) = (1, 1)) = 1 � p0, and P ((X21, X22) = (0, 0)) =
0.36q0, P ((X21, X22) = (0, 1)) = P ((X21, X22) = (1, 0)) = 0.64q0, P ((X21, X22) = (1, 1)) = 1 � 1.64q0.
For this choice of distribution we get 2R1 +R2 = 1.1080356, which is strictly larger than the bound given in
(18). This establishes the sub-optimality of the Han–Kobayashi region for the particular example considered
in the Appendix.

As mentioned in Section 2.2 the distribution of (X21, X22) that outperforms the one-letter region is not
the product distribution; but more surprisingly one is doing repetition coding on X11, X12.
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P ((X11, X12) = (0, 0)) = p0

P ((X11, X12) = (1, 1)) = 1� p0

P ((X21, X22) = (0, 0)) = 0.36q0

P ((X21, X22) = (0, 1)) = P ((X21, X22) = (1, 0)) = 0.64q0

P ((X21, X22) = (1, 1)) = 1� 1.64q0

repetition coding!

memory

�R1 +R2
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Intuition:

      acts as a state for              channel

i.i.d. distributions on     are not optimal if state 
has memory

All known capacity results use H+K….

X2 X1 ! Y1

X1
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2) Costa’s corner point conjecture
images taken from slides of [I. Sason, ``On the Corner Points of the Capacity Region of a Two-User Gaussian Interference Channel,” Proc. of ISIT, 2014.]

Introduction

Corner Points of the Capacity Region

For a 2-user GIC, the rate pairs where one user sends its data at the
single-user capacity, and the other at the largest rate for which reliable
communication is possible are called corner points.
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images taken from slides of [I. Sason, ``On the Corner Points of the Capacity Region of a Two-User Gaussian Interference Channel,” Proc. of ISIT, 2014.]
New Results

Conjecture (Originated by Costa, 1985)

For a two-user GIC with positive cross-link gains, let

C1 !
1

2
log(1 + P1), C2 !

1

2
log(1 + P2)

be the capacities of the single-user AWGN channels, and

R∗
1 !

1

2
log

(

1 +
a21P1

1 + P2

)

, R∗
2 !

1

2
log

(

1 +
a12P2

1 + P1

)

.

Then, the following is conjectured to hold for reliable communication:

1 If R2 ≥ C2 − ε, then R1 ≤ R∗
1 + δ1(ε) where limε→0 δ1(ε) = 0.

2 If R1 ≥ C1 − ε, then R2 ≤ R∗
2 + δ2(ε) where limε→0 δ2(ε) = 0.

Interpretation of this conjecture for weak GIC

If one user transmits at its maximal possible rate, the other user should
decrease its rate such that both decoders can reliably decode its message.

I. Sason (Technion) ISIT 2014 July 2014. 6 / 17

Introduction

Two-User Gaussian Interference Channel (GIC)

Model in standard form:

Y1 = X1 +
√
a12 X2 + Z1

Y2 =
√
a21 X1 +X2 + Z2

The cross-link gains a12 and a21 are fixed in time.

Input and output signals are real-valued.

No cooperation between transmitters.

Power constraints: 1
n

∑n
i=1 E[X

2
1,i] ≤ P1 and 1

n

∑n
i=1 E[X

2
2,i] ≤ P2.

Z1, Z2 ∼ N (0, 1) i.i.d. and independent of the inputs X1 and X2.

No cooperation between receivers.

Full synchronization ⇒ capacity region is convex.

I. Sason (Technion) ISIT 2014 July 2014. 2 / 17

Gaussian IC:

Maximal P2P rates

Maximal treat-interference as noise rates

New Results

Conjecture (Originated by Costa, 1985)

For a two-user GIC with positive cross-link gains, let

C1 !
1

2
log(1 + P1), C2 !

1

2
log(1 + P2)

be the capacities of the single-user AWGN channels, and

R∗
1 !

1

2
log

(

1 +
a21P1

1 + P2

)

, R∗
2 !

1

2
log

(

1 +
a12P2

1 + P1

)

.

Then, the following is conjectured to hold for reliable communication:

1 If R2 ≥ C2 − ε, then R1 ≤ R∗
1 + δ1(ε) where limε→0 δ1(ε) = 0.

2 If R1 ≥ C1 − ε, then R2 ≤ R∗
2 + δ2(ε) where limε→0 δ2(ε) = 0.

Interpretation of this conjecture for weak GIC

If one user transmits at its maximal possible rate, the other user should
decrease its rate such that both decoders can reliably decode its message.

I. Sason (Technion) ISIT 2014 July 2014. 6 / 17

Recent result: Costa’s corner point conjecture
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Recent result: Costa’s corner point conjecture

Recent progress by Sason:

And finally proven by:

[I. Sason, ``On the Corner Points of the Capacity Region of a Two-User Gaussian Interference Channel,” Proc. of ISIT, 2014.]

[Y. Polyanskiy and Y. Wu "Wasserstein continuity of entropy and outer bounds for 
interference channels," http://arxiv:1504.04419]

[R. Bustin, H.V. Poor, and S. Shamai “The Effect of Maximal Rate Codes on the Interfering Message Rate,” http://arxiv.org/abs/1404.6690

idea: similar to gDoF analysis, shows asymptotic tightness of new bounds on corner point

idea: use properties of the MMSE of good channel codes

idea: new converse which relates differential entropies to Wasserstein distances and bounds 
these using Talagrand’s inequality

90

http://arxiv:1504.04419
http://arxiv.org/abs/1404.6690


BREAK!
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Variations, extensions 
and implications

92



Overview

Variations of the IC

Alex Dysto Daniela Tuninetti Natasha Devroye

93

Discrete inputs in Gaussian interference channel: 
“good” codes and “good” interferers

some slides taken from Alex Dytso’s Ph.D. defense, May 2016



ICs with lack of codebook knowledge

Encoder Decoder

p(y|x)
Channel

W Ŵ
Xn Y n

F

F

F

0

BBBBBBBB@

W ! Xn

1 ! X1, X2, . . . , Xn

2 ! X1, X2, . . . , Xn

.

.

.
|W | ! X1, X2, . . . , Xn

1

CCCCCCCCA

“F” is the codebook, known to all Tx,Rx
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ICs with lack of codebook knowledge

W
F

Ŵ

F

F

F

F

F

F

F

•in networks, often assume nodes know all 
codebooks of ALL other nodes 

•this may be unrealistic sometimes….
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IC with one  
oblivious Rx

A. Dytso, N. Devroye, and D. Tuninetti, “On the capacity of interference channels with partial codebook knowledge,” ISIT 2013  

A. Dytso, D. Tuninetti and N. Devroye, ``On the Two-User Interference Channel With Lack of Knowledge of the Interference Codebook at 
One Receiver,'' IEEE Transactions on Information Theory, Vol. 61, No. 3, pp. 1256-1276, March 2015.

A. Dytso, D. Tuninetti and N. Devroye. “On Gaussian Interference Channels with Mixed Gaussian and Discrete Inputs,” ISIT 2014

A. Dytso, D. Tuninetti and N. Devroye “Interference as Noise: Friend of Foe?”  IEEE Trans. on Info Theory, June 2016.

IC with two  
oblivious Rx

ChannelEncoder 1

W1

F2

F1

F2

Decoder 1

F1 F2

p(y1, y2|x1, x2)

Xn
1

Xn
2 Y n

2

Y n
1

Encoder 2 Decoder 2

W2 Ŵ2

Ŵ1

F1

ChannelEncoder 1

W1

F2

F1

F2

Decoder 1

F1 F2

p(y1, y2|x1, x2)

Xn
1

Xn
2 Y n

2

Y n
1

Encoder 2 Decoder 2

W2 Ŵ2

Ŵ1

F1

ICs with lack of codebook knowledge

Our motivation:
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Past work: lack of codebooks leads to non-
Gaussians outperforming Gaussians

97

A. Sanderovich, S. Shamai, Y. Steinberg, and G. Kramer, “Communication 
via decentralized processing,” IT July 2008.

1. Upper and lower bounds, which coincide for deterministic channels
2. Gaussian noise: optimizing input unknown
3. Gaussian noise: example where BPSK outperforms Gaussian inputs P

Y
1
,Y

2
|X

Y n
1

Y n
2

Xn

W ŴEncoder

Decoder

Relay

Relay
F F

F

F

W
F

Ŵ

F

F

F

F

F

F

F

A. Sanderovich, S. Shamai, Y. Steinberg, and G. Kramer, “Communication 
via decentralized processing,” IT July 2008.

 Gaussian noise: example where BPSK outperforms Gaussian inputs 

F1

F2

F2

W1
Xn

1
Y n

1

W2
Xn

2

P

Y
1
,Y

2
,Y

3
|X

1
,X

2
,X

3
(y

1
,
y

2
,
y

3
|x

1
,
x

2
,
x

3
)

Encoder

Encoder

Relay

Decoder

Decoder

Ŵ1

Ŵ2

Y n
3

Y n
2

F1

F2

F1

F2

F2F1

F1 F2

O. Simeone, E. Erkip, and S. Shamai, “On codebook information for 
interference relay channels with out-of-band relaying,” IT May 2011.

1. Primitive relay channel: capacity with compress forward
2. IC+R+Oblivious receivers: capacity with compress forward and TIN
3. Gaussian noise: optimizing input unknown

CIC-OR =
[

PQPX1|QPX2|Q

⇢
R1  I(X1;Y1|Q)
R2  I(X2;Y2|Q)

�

Ask Aylin

[Ye Tian and Aylin Yener, Relaying for Multiuser Networks in the Absence of 

Codebook Information, IEEE Transactions on Information Theory, 61(3), pp. 

1247-1256, Mar. 2015.]



Discrete inputs in Gaussian channels — deeper?

98

• E. Abbe and L. Zheng, “A coordinate 
system for Gaussian networks,” IT 
2012.

• E. Calvo, J. Fonollosa, and J. Vidal, 
“On the totally asynchronous 
interference channel with single-user 
receivers,” ISIT 2009

Other supporting arguments

• No gDoF Gain 

• Discrete input 
conclusions are 
simulation based



Questions

99

•loss in performance due to lack of codebook 
knowledge? due to lack of synchronization?

•are there inputs that outperform Gaussians 
in the AWGN IC under these conditions?

•can we show analytical gains?



How we tackle discrete inputs for G-IC

100

• we show discrete inputs in TINnoTS performs well!

• neat, general tools to bound minimum distance of sum-sets, and mutual 
information achieved by discrete RVs in Gaussian noise along the way

RTINnoTS

in

=
S

PX1X2=PX1PX2

⇢
0  R

1

 I(X
1

;Y
1

)
0  R

2

 I(X
2

;Y
2

)

�

• simpler scheme — Treating Interference as Noise with no Time Sharing:

• best inner bound for Gaussian IC is the complex H+K scheme

S. Li, Y.-C. Huang, T. Liu, and H.D. Pfister, “On the limits of treating interference as noise in the 
two-user Gaussian symmetric interference channel,” ISIT 2015.Similar results as

Ask Henry



Capacity is actually known…. sort of

101

C = lim

n!1
co

0

@
[

PXn
1Xn

2
=PXn

1
PXn

2

⇢
(R1,R2) :

0  R1  1
nI(Xn

1 ;Y n
1 )

0  R2  1
nI(Xn

2 ;Y n
2 )

�1

A

Interference Channel (IC)

ChannelEncoder 1

W1

F2

F1

F2

Decoder 1

F1 F2

p(y1, y2|x1, x2)

Xn
1

Xn
2 Y n

2

Y n
1

Encoder 2 Decoder 2

W2 Ŵ2

Ŵ1

F1

Uncomputable

|X1 ⇥ X2|nComplexity



Treating interference as noise inner bound

102

How far away is TINnoTS from capacity?

Capacity: C = limn!1 co

✓S
PXn

1 Xn
2

=PXn
1

PXn
2

⇢
0  R1  1

nI(Xn
1 ;Y n

1 )

0  R2  1
nI(Xn

2 ;Y n
2 )

�◆

R. Ahlswede, “Multi-way communication channels,” in Proc. IEEE Int. Symp. Inf. Theory, March 1973, pp. 23–52.

Treat Interference as Noise Inner Bound:
RTIN+TS

in = co

✓S
PX1X2=PX1PX2

⇢
0  R1  I(X1;Y1)

0  R2  I(X2;Y2)

�◆

RTINnoTS

in

=
S

PX1X2=PX1PX2

⇢
0  R

1

 I(X
1

;Y
1

)
0  R

2

 I(X
2

;Y
2

)

�

With Time Sharing

No Time Sharing

i.i.d. inputs

Is it really “treating interference as noise”?



Gaussian channels with discrete inputs
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Y1 =
p
snrX1 +

p
inrX2 + Z1

Y2 =
p
inrX1 +

p
snrX2 + Z2

�

�

Xn
1

Xn
2

Y n
1

Y n
2

p
snr

p
snr

p
inr

p
inr

F1

F2

Zn
1

Zn
2

F2

Ŵ1

Ŵ2

Enc.

Enc.

Dec.

Dec.

F2

F1

W1

W2

F1

Z1, Z2 ⇠ N (0, 1)
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• instead of taking X1 and X2 to be Gaussian, take them to be discrete

• difficulty: how to evaluate mutual information expressions with discrete 
and Gaussian mixtures



Tools for Discrete 
Inputs
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Discrete+mixed inputs

• Discrete input XD ⇠ P (XD) =
|X|X

i=1

pi�(xi)

x

XD � PAM(N), |X| = N,pi =

1

N

for all i ⇥ [1, ...,N]

• PAM input

dmin(XD

) = min
xi,xj :i 6=j

kx
i

� x

i

k• Minimum distance

X
mix

=
p
1� �XD +

p
�XG,

� 2 [0, 1],

XG ⇠ N (0, 1)

E[X2

D]  1

• Mixed inputs
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Bounds on mutual information

We define:
I(X;Ysnr) = I(X, snr)

E
⇥
(X � E[X|Ysnr])

2
⇤
= mmse(X, snr)

[H(XD)� gap]+  I(XD, snr)  H(XD)Interested in:

Want  the tightest version of the “gap” term 
for a given PMF

Y =
p
snrX + Z,

Z ⇠ N (0, 1)
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Bounds on mutual information

[H(XD)� gap]+  I(XD, snr)  H(XD)

gapOW-A  ⇠ log
1

⇠
+ (1� ⇠) log

1

1� ⇠
+ ⇠ log(N � 1) , ⇠ := 2Q

✓p
snrdmin(XD)

2

◆Ozarow-Wyner-A

gapOW-B  1

2

log

⇣⇡e
6

⌘
+

1

2

log

 
1 +

12

snr d2min(XD)

!
L. Ozarow and A. Wyner, “On the capacity of the Gaussian 
channel with a finite number of input levels,” IEEE Trans. Inf. 
Theory, vol. 36, no. 6, pp. 1426–1428, Nov 1990.

Ozarow-Wyner-B

2

4� log

0

@
X

(i,j)2[1:N ]2

pipjp
4⇡

e

� snr(x
i

�x

j

)2

4

1

A� 1

2

log (2⇡e)

3

5
+

 I(XD, snr)  H(XD)

DTD-ITA`14-A

gapITA  1

2

log

⇣
e

2

⌘
+ log

 
1 + (N � 1)e

�
snrd2

min(XD)
4

!

Dytso, A.; Tuninetti, D.; Devroye, N., "On discrete alphabets for the two-
user Gaussian interference channel with one receiver lacking knowledge 
of the interfering codebook,"  ITA, 2014 , vol., no., pp.1,8, 9-14 Feb. 2014

DTD-ITA`14-B
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Comparison of bounds

Input: PAM with 
number of points

SNRdB
0 10 20 30 40 50 60 70 80 90 100 110

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Ozarow-Wyner-B
Ozarow-Wyner-A
DTD-ITA14-A
DTD-ITA14-B
shaping loss

SNRdB
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16
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20

Ozarow-Wyner-B
Ozarow-Wyner-A
DTD-ITA14-A
DTD-ITA14-B
Capacity

N = b
p
1 + snrc ) H(X) = log(N) ⇡ 1

2

log(1 + snr)

shaping loss of uniform lattice
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Why is discrete good? Examples.

Y =
⇤

snrX + hT + ZG :

E[X2] � 1, ZG ⇥ N (0, 1),

T ⇥ discrete: |T | = N and d2
min(T ) > 0

2.Point-to-point Gaussian noise Channel with State

Channel State is 
Unknown at 

Transmitter and 
Receiver

good state / interferer

good inputY =
⇤

snrX + ZG :

E[X2] � 1, ZG ⇥ N (0, 1)

1.Point-to-point Gaussian noise Channel
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Discrete is a good input.

1.Point-to-point Gaussian noise Channel
Y =

⇤
snrX + ZG :

E[X2] � 1, ZG ⇥ N (0, 1)

Capacity with PAM:
N = b

p
1 + snrc

C � 1

2

log(1 + snr)� gap

gap =

1

2

log

✓
4⇡e

3

◆
C =

1

2

log(1 + snr)

achieved by Gaussian
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Discrete is a good interferer.

Y =
⇤

snrX + hT + ZG :

E[X2] � 1, ZG ⇥ N (0, 1),

T ⇥ discrete: |T | = N and d2
min(T ) > 0

2.Point-to-point Gaussian noise Channel with State

C � I(XG;
p
snrXG + hTG + ZG)

=

1

2

log

✓
1 +

snr

1 + |h|2ET

◆Gaussian Interference

C � I(XG;
p
snrXG + hT + ZG)

� 1

2

log(1 + snr)� gap

gap =

1

2

log


2⇡e

12

✓
1 +

12

d2min(T )

|h|2ET
|h|2ET + 1 + snr

◆�

Discrete Interference
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Discrete inputs in multi-user channels 

h1X1D + h2X2D = {h1x1D + h2x2D|x1 2 X1D, x2 2 X2D}

More complex in multi-user scenarios

�

X1D

X2D

h1

h2

Z

Y

|h1X1D + h2X2D| = |{h1x1D + h2x2D|x1 � X1D, x2 � X2D}| ???
dmin(h1X1D + h2X2D) = min{|si � sj | : si, sj ⇥ h1X1D + h2X2D, i ⇤= j} ???

“sum-set”

112
Ask Helmut!

[D. Stotz and H. Bölcskei, “Characterizing degrees of freedom through additive combinatorics”
IEEE Transactions on Information Theory, (revised version: Apr. 2016), June 2015, submitted.]



New phenomenon

Example, BPSK:
X1D = X2D = {�1,+1}

h1X1D + h2X2D
(h1=1,h2=2)

= {3,�1, 1, 3}
(h1=1,h2=1)

= {1, 0,�1}

“Cardinality is Sensitive to Channel Gain Values.”
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Overall proposition / tool

• cardinality of the sum-set


• minimum distance of the sum-set

Proposition: Let X ⇠ PAM(|X|, dmin(X)) and Y ⇠ PAM(|Y |, dmin(Y )).

Then for (h
x

, h
y

) 2 R2

|h
x

X + h
y

Y | = |X||Y | almost everywhere (a.e.), (1)

and dmin(h
x

X+h
y

Y ) � ......?

{h
x

X + h
y

Y }
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Cardinality

h1

h2

Set Values where cardinality is less

Union of lines has measure 0

Proposition: Let X ⇠ PAM(|X|, dmin(X)) and Y ⇠ PAM(|Y |, dmin(Y )).

Then for (h
x

, h
y

) 2 R2

|h
x

X + h
y

Y | = |X||Y | almost everywhere (a.e.), (1)
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Minimum distance

Very Irregular 

Example:h2=1,  N1=N2=10

Can we even have a 
lower bound? 

gapOW-B  1

2

log

⇣⇡e
6

⌘
+

1

2

log

 
1 +

12

snr d2min(XD)

!

h1
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d m
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0
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0.15

0.2

0.25

0.3

0.35
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Minimum distance, case 1: no overlap

h1
2 3 4 5 6 7 8 9 10 11 12

d m
in

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Bound 1 HoldsBound 1 Does
Not Hold

We have

dmin(h
x

X+h

y

Y ) = min

�
|h

x

|dmin(X), |hy

|dmin(Y )

�

under the following conditions

either |Y ||h
y

|dmin(Y )  |h
x

|dmin(X),

or |X||h
x

|dmin(X)  |h
y

|dmin(Y ) (shown below).
16

}hxX }hxX }hxX}hxX

}hyY

|hx|dmin(X)|hy|dmin(Y )

Fig. 2: Structure of the sum-set under the conditions in Proposition 2.

2 3 4 5 6 7 8 9 10 11 12
0

0.05

0.1

0.15

0.2

0.25

0.3

hx

d m
in

 

 

Actual dmin

Lower bound on dmin with m=0.1

Lower bound on dmin with m=0.4

Lower bound on dmin with m=0.7

No Outage Set

Use Prop. 2Use Prop. 3
Prop. 2 is not valid

Need Outage Set

Fig. 3: Minimum distance (blue line) for the sum-set hxX + hyY as a function of hx for fixed

hy = 1 and for X ⇠ Y ⇠ PAM (10, 1). On the right of the vertical green line Proposition 2 is

valid. On the left of the vertical green line Proposition 3 must be used; in this case, the

minimum distance lower bound in (20a) holds for set of hx’s for which the blue line is above

the red / cyan / green line, where the red, cyan and green lines represent a different value for

the measure of the outage set.

July 1, 2015 DRAFT
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Minimum distance, case 2: with overlap

dmin

h11X1

h11X1 + h12X2

Then, up to a set of (h
x

, h
y

) of measure no more than �, we have

dmin(h
x

X+h

y

Y ) � 
�,|X|,|Y | ·min

�
|h

x

|dmin(X), |hy

|dmin(Y ), ⇠|h
x

|,|h
y

|,|X|,|Y |
�
,


�,|X|,|Y | :=

�/2

1 + ln(max(|X|, |Y |)) ,

⇠|h
x

|,|h
y

|,|X|,|Y | := max

✓ |h
x

|dmin(X)

|Y | ,
|h

y

|dmin(Y )

|X|

◆
,

h1

2 3 4 5 6 7 8 9 10 11 12

d m
in

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Actual dmin
Lower bound on dmin with m=0.1
Lower bound on dmin with m=0.4
Lower bound on dmin with m=0.7 Need Outage Set No Outage set

Use  Bound 1Use Bound 2
Bound 1 is not valid
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Applications of discrete 
inputs
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Approximate capacity without codebooks

HK+Gaussian Inputs 
1/2 bit

R. Etkin, D. Tse, and H. Wang, “Gaussian interference 
channel capacity to within one bit,” IEEE Trans. Inf. 
Theory, vol. 54, no. 12, pp. 5534–5562, Dec. 2008.

A. Dytso, D. Tuninetti, and N. Devroye, “On the two-user 
interference channel with lack of knowledge of the interference 
codebook at one receiver,” IEEE Trans. Inf. Theory, vol. 61, no. 
3, pp. 1257–1276, March 2015.

“One-sided” HK+  
Mixed Inputs  

 3.34 bits

ChannelEncoder

Encoder

Decoder

F1

W1

W2

F2

F1

F2

Decoder

F1 F2p(y1, y2|x1, x2)

Xn
1

Xn
2

Y n
2

Y n
1

Ŵ1

Ŵ2

ChannelEncoder

Encoder

Decoder

F1

W1

W2

F2

F1

F2

Decoder

F1 F2p(y1, y2|x1, x2)

Xn
1

Xn
2

Y n
2

Y n
1

Ŵ1

Ŵ2
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Approximate capacity without codebooks

A. Dytso, D. Tuninetti, and N. Devroye, “Interference as Noise: 
Friend of Foe?” to appear in IEEE Trans. Inf. Theory, 2016. 
Available on  arXiv.

TINnoTS +  
Mixed Inputs  

 constant or log-log gaps

ChannelEncoder

Encoder

Decoder

F1

W1

W2

F2

F1

F2

Decoder

F1 F2p(y1, y2|x1, x2)

Xn
1

Xn
2

Y n
2

Y n
1

Ŵ1

Ŵ2

RTINnoTS

in

=
[

N1,N2,�1,�2

⇢
0  R

1

 I(X
1

;Y
1

)
0  R

2

 I(X
2

;Y
2

)

�
with

Xi =
p
1� �i XiD +

p
�i XiG,

�i 2 [0, 1],

XiD ⇠ PAM(Ni) ,

XiG ⇠ N (0, 1),

i = 1, 2.

Choice of Ni, δi looks like discrete ⟺ 
Gaussian ⟺ private

public
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Approximate optimality of TINnoTS in Gaussian-IC

Very Weak

↵

Weak I Weak II Strong VeryStrong

1/2 2/3 1 2

gap = 1/2 gap = 3.79 gap = 1.25gap = O(log log(min(S, I))

up to an outage

of controllable measure

Gaussian Mixed Mixed Discrete Discrete
Xi =

p
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Numerical evaluation
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Approximate capacity of ICs with lack of 
synchronization

•in networks, often assume all nodes are 
synchronized

•this may be unrealistic sometimes….

of the random indices F1 and F2 of the transmitter codebooks, as in Fig. 2, similar to [16–18]. In [48],
for the case where only one Rx is oblivious / lacks codebook knowledge, we derived a novel outer bound
for a class of injective semi-deterministic IC; interestingly, we were able to characterize the capacity
region of the real-valued Gaussian noise channel to within 1/2 bit, but we were not able to determine the
set of optimal input distributions attaining such a gap. In [14], by having one Tx use a discrete input
(see motivating example in the previous section) we were able to show that, even without codebook
knowledge at one Rx, we may achieve arbitrarily close to the gDoF, or to within O(log(log(SNR))), of
the rate region outer bound of the IC with full codebook knowledge.

Our preliminary work highlights the following interesting new phenomena: 1) partial codebook knowl-
edge need not dramatically decrease the capacity of the IC; 2) inputs that are a mixture of discrete and
Gaussian parts may outperform i.i.d. Gaussian inputs; 3) the general lower bound in eq.(2), combined
with lower bounds on the cardinality and minimum distance of sum-sets, as well as with careful choices
of parameters in the discrete-Gaussian mixture, was crucial in obtaining analytical additive gap to ca-
pacity and gDoF results. While our initial results point to some surprising and new phenomena, much
remains to be done to obtain a comprehensive picture of the impact of codebook knowledge not only on
the capacity of networks, but also on what types of coding schemes may be useful in practice.

2.2 Theme 2: removing the assumption of global synchronism

In many existing communication systems, the synchronization of data streams is designed and imple-
mented separately from their encoding and decoding for error protection and correction. As such, most
information theoretic analysis of communication systems assumes that Txs and Rxs are synchronized.
For point-to-point systems this means that the Rx knows when the desired communication symbols start
and end. For networks, synchronization usually means that the multiple Txs and Rxs are both codeword
(frame) and symbol synchronous (see Fig. 3). This separation of synchronization and error correction
simplifies the system design, but is costly since some resources must be dedicated to synchronization.

Frame-asynchronous IC

 

 
Received signal at Rx 1

Symbol-asynchronous IC

Received signal at Rx 2

Δ1

Δ2

Codewords are not synchronized Symbols X1i of codeword X1 
n

Symbols X2j of codeword X2 
n

Symbols are synchronized 

Received signal at Rx 1

Received signal at Rx 2
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Inspired by continuous waveform channels

Lij = e���� 
Discrete-time channel has memory

Figure 3: Types of asynchronism to be considered for the interference channel.

Past work. Typically, in point-to-point channels, frame-synchronization is achieved by having the sender
periodically transmit dedicated pilot symbols which carry no data followed by separately encoded data
streams [101–103]. In the recent work [4, 5, 104, 105], the problem of jointly synchronizing and com-
municating data is considered; the work is motivated by bursty communication systems where frequent
re-synchronization may form a significant fraction of the total communication time. In [4, 5, 105] it is
shown that training-based schemes do not achieve the asynchronous capacity in general. In [4] a message
is encoded into a codeword and is sent over a memoryless channel; the start time of the transmission is
randomly and uniformly distributed over a transmission window of size A = e↵n, where ↵ is the “asyn-
chronism exponent” and n the block length (if the scaling of the window size is sub-exponential in n

8
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Approximate capacity of ICs with lack of 
synchronization

Treat Interference as Noise without Time 
Sharing Inner Bound:

RTINnoTS
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No Time Sharing

•this is achievable by asynchronous G-IC, so our 
approximate gap to capacity results apply even without 
synchronization!
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Key ideas + open problems

• use non-Gaussian inputs: good inputs, good interferers


• general tools on bounding dmin, mutual information applicable elsewhere?


• mixed inputs hence approximately optimal for the block asynchronous G-IC 
and the codebook oblivious G-IC

• OPEN: better constellation than PAM? What about higher dimensions?

Capacity: C = limn!1 co
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R. Ahlswede, “Multi-way communication channels,” in Proc. IEEE Int. Symp. Inf. Theory, March 1973, pp. 23–52.

• OPEN: can we develop a smart set of multi-letter discrete inputs and 
evaluate these in the capacity achieving expression for the G-IC?
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Forced travel pics

unsolicited MENTORING advice: 
TRAVEL!
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Post-Ph.D., pre tenure track
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On the tenure track
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Practical codes for 
interference channels?

132



Polar codes over interference channels?

Informal statement by Ruediger 
Urbanke: “any region achievable by 
i.i.d. inputs usually can be shown to 

be achievable by polar codes”

[E. Arıkan, “Polar coding for the slepian-wolf problem based on mono- tone chain rules,” in Proc. IEEE Int. Symp. Inf. Theory, Cambridge, MA, 2012, pp. 566–570.]

[S. H. Hassani and R. L. Urbanke, “Universal polar codes,” 2013. [Online]. Available: http://arxiv.org/abs/1307.7223 ]

[L. Wang and E. Sasoglu, “Polar coding for interference networks,” in Proc. IEEE Int. Symp. Inf. Theory,  Honolulu, Hawaii 2014.]

propose a polar coding scheme able to 
achieve the H+K region for the IC

based on ideas in
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Point to point codes for interference networks?

Young-Han Kim’s group has worked 
extensively on this, see excellent slides: 

http://circuit.ucsd.edu/~yhk/pdfs/swcm.pdf

Main ideas: high performance, low complexity

Block coding (relaying, feedback)
Superposition coding (without rate-splitting)
Staggered transmission

Sliding window  and successive cancellation 
decoding 134

Other thoughts:

Ask Henry+Krishna?

http://circuit.ucsd.edu/~yhk/pdfs/swcm.pdf


Variations
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Z interference channel
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[N. Liu and A. Goldsmith, “Capacity regions and bounds for a class of Z interference channels”, IEEE Trans. on Info Theory, Vol. 55, No. 11, pp. 4986- 4994, Nov. 2009.] 

Capacity unknown in general, except:

- sum-rate known for Gaussian Z-IC

- sum-rate known when interference-free link is noise-free

[I. Sason, “On achievable rate regions for the Gaussian interference channel,” IEEE Trans. Inf. Theory, vol. 50, no. 6, pp. 1345–1356, Jun. 2004. ]

[R. Ahlswede and N. Cai, “Codes with the identifiable parent property and the multiple-access channel,” in General Theory of Information Transfer 
and Combinatorics (Lecture Notes in Computer Science). ]
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Cognitive interference channel

W1

W2

Encoder 1

Xn
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p(y1, y2|x1, x2)

Channel
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[N. Devroye, P. Mitran and V. Tarokh, “Achievable rates for cognitive radio channels,” IEEE Trans. on Info. Theory, vol. 52, no. 5, pp. 1813-1827, May 2006.]

[S. Rini, D. Tuninetti and N. Devroye, “New inner and outer bounds for the discrete memoryless cognitive 
interference channel and some capacity results ,” IEEE Trans. on Info. Theory, vol. 57, no. 7, pp. 4087-4109, 
July 2011.]

[S. Rini, D. Tuninetti and N. Devroye, “Inner and outer bounds for the 
Gaussian cognitive interference channel and some new capacity 
results,” IEEE Trans. on Info. Theory, vol. 58, no. 2, pp. 820-848, Feb. 
2012.]

Introduced:

State of the art DM:
State of the art Gaussian (capacity 
to within a constant gap):

GDoF, cognitive with more users:
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the transmit signals be

Xj = Uj , j ∈ [1 : K − 1],

XK =

[
Ini 0ni×[nd−ni]+

0[nd−ni]+×ni
0[nd−ni]+×[nd−ni]+

]⎛

⎝
K−1∑

j=1

Uj

⎞

⎠

+

[
0nc×ni 0ni×[nd−ni]+

0[nd−ni]+×ni
I[nd−ni]+

]
UK ,

so that
K∑

j=1

Xj =

[
0ni×ni 0ni×[nd−ni]+

0[nd−ni]+×ni
I[nd−ni]+

]⎛

⎝
K∑

j=1

Uj

⎞

⎠ ,

where 0n×m indicates the all zero matrix of dimension n×m
and In the identity matrix of dimension n. With these choices,
the signal at receiver ℓ, ℓ ∈ [1 : K], is

Yℓ = (Sm−nd + Sm−ni)Xℓ + Sm−ni

⎛

⎝
K∑

j=1

Xj

⎞

⎠

= (Sm−nd + Sm−ni)Xℓ, m = max{nd, ni}.

Since the matrix Sm−nd + Sm−ni is full rank for nd ̸= ni,
receiver ℓ, ℓ ∈ [1 : K], decodes Uℓ from (Sm−nd +
Sm−ni)−1Yℓ = Xℓ. Hence receiver ℓ, ℓ ∈ [1 : K−1], decodes
m = max{nd, ni} bits since Xℓ = Uℓ, while receiver K
decodes the lower [nd − ni]+ bits of UK from XK .

Interestingly, receivers from 1 to K − 1 are interference
free, while receiver K decodes ni bits of the “interference
function”

∑K−1
j=1 Uj . Notice that cognition is only needed at

one transmitter in all interference regimes. This implies that
this sum-capacity result holds for all cognitive channels where
user i is cognizant of any subset (including the empty set) of
the messages of users with index less than i. We suspect that
the fact that only the last user need cognition of all the other
messages is a consequence of: 1) the extreme symmetry in
the channel model (which is needed for analytical tractability),
which naturally aligns the interfering signals at all users. Thus,
if the most cognitive user cancels interference at one receiver,
it essentially cancels it at all receivers by symmetry. 2) the
LDA channel model in which “coherent” gains often seen in
Gaussian channels, when two users have the same message
may beamform that message to a particular receiver at higher
rates, is not possible. That is, the modulo 2 addition at a bit-
wise level prohibits such coherent gains and as such it may not
be useful to share the messages with other transmitters since
the last fully cognitive user is already eliminating interference
and additional gains are not possible. We note that these are
heuristic rather than rigorous statements, and we do not expect
this to hold for Gaussian channels where coherent gains are
possible.

F. Comparison between Different Channel Models
We compare the symmetric sum-capacity of channels with

different levels of cognition. Our base line for comparison is
the K-user interference channel without any cognition, whose
sum-capacity is [21]

d(IFC)
Σ (α;K) =

K

2
d(IFC)
Σ (α; 2) (12)
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Fig. 3. dΣ(α;K)/K for different channel models. The discontinuity at α =
1 is not shown where the value is 1

K .

and where d(IFC)
Σ (α; 2) is the so-called W-curve of [17] except

for a discontinuity at α = 1 where d(IFC)
Σ (α;K) = 1 for all

K [21]. Note that, except at α = 1, the normalized sum-
capacity 1

K d(IFC)
Σ (α;K) does not depend on K .

At the other extreme of message cognition, consider the
case where all users are cognitive of all messages. In this case
the channel is equivalent to a MIMO-BC with K transmit
antennas and K single-antenna receivers. The system may
zero-force the interference to obtain

d(BC)
Σ (α;K) = Kmax{1,α}, (13)

except for a discontinuity at α = 1 where d(BC)
Σ (α;K) = 1,

since in this case all the receivers are statistically equivalent
and time-sharing is optimal. When α ̸= 1, the normalized
sum-capacity 1

K d(BC)
Σ (α;K) does not depend on K .

The sum-capacity of the symmetric LDC K-CIFC-CMS is
given by (11), which is a function of K even after normaliza-
tion by K , i.e.,

1

K
d(CIFC−CMS)
Σ (α;K) =max{1,α}− α

K
. (14)

This has the interesting interpretation that CMS looses α/K
with respect to d(BC)

Σ (α;K)/K . In other words, as the number
of cognitive users increases the CMS sum-capacity approaches
the sum-capacity of a fully coordinated broadcast channel,
which is intuitive.

Fig. 3 shows the sum-capacity normalized by the number
of users for different channel models; we do not show the
discontinuity at α = 1. We note the increase in performance
in all interference regimes when compared to that of the 2-
user CIFC-CMS and the K-user interference channel, but a
loss with respect to the K-user broadcast channel (BC) with
K transmit antennas and K single antenna receivers.

[D. Maamari, D. Tuninetti, and N. Devroye, ``Approximate Sum-Capacity of K-user Cognitive 
Interference Channels with Cumulative Message Sharing,'' IEEE Journal of Selected Areas in 

Communications -- Cognitive Radio Series, Vol. 32, No. 3, pp. 654-666, March 2014.]
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Ŵ2W1 ,

660 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 32, NO. 3, MARCH 2014

the transmit signals be

Xj = Uj , j ∈ [1 : K − 1],

XK =

[
Ini 0ni×[nd−ni]+

0[nd−ni]+×ni
0[nd−ni]+×[nd−ni]+

]⎛

⎝
K−1∑

j=1

Uj

⎞

⎠

+

[
0nc×ni 0ni×[nd−ni]+

0[nd−ni]+×ni
I[nd−ni]+

]
UK ,

so that
K∑

j=1

Xj =

[
0ni×ni 0ni×[nd−ni]+

0[nd−ni]+×ni
I[nd−ni]+

]⎛

⎝
K∑

j=1

Uj

⎞

⎠ ,

where 0n×m indicates the all zero matrix of dimension n×m
and In the identity matrix of dimension n. With these choices,
the signal at receiver ℓ, ℓ ∈ [1 : K], is
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receiver ℓ, ℓ ∈ [1 : K], decodes Uℓ from (Sm−nd +
Sm−ni)−1Yℓ = Xℓ. Hence receiver ℓ, ℓ ∈ [1 : K−1], decodes
m = max{nd, ni} bits since Xℓ = Uℓ, while receiver K
decodes the lower [nd − ni]+ bits of UK from XK .

Interestingly, receivers from 1 to K − 1 are interference
free, while receiver K decodes ni bits of the “interference
function”

∑K−1
j=1 Uj . Notice that cognition is only needed at

one transmitter in all interference regimes. This implies that
this sum-capacity result holds for all cognitive channels where
user i is cognizant of any subset (including the empty set) of
the messages of users with index less than i. We suspect that
the fact that only the last user need cognition of all the other
messages is a consequence of: 1) the extreme symmetry in
the channel model (which is needed for analytical tractability),
which naturally aligns the interfering signals at all users. Thus,
if the most cognitive user cancels interference at one receiver,
it essentially cancels it at all receivers by symmetry. 2) the
LDA channel model in which “coherent” gains often seen in
Gaussian channels, when two users have the same message
may beamform that message to a particular receiver at higher
rates, is not possible. That is, the modulo 2 addition at a bit-
wise level prohibits such coherent gains and as such it may not
be useful to share the messages with other transmitters since
the last fully cognitive user is already eliminating interference
and additional gains are not possible. We note that these are
heuristic rather than rigorous statements, and we do not expect
this to hold for Gaussian channels where coherent gains are
possible.

F. Comparison between Different Channel Models
We compare the symmetric sum-capacity of channels with

different levels of cognition. Our base line for comparison is
the K-user interference channel without any cognition, whose
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K [21]. Note that, except at α = 1, the normalized sum-
capacity 1

K d(IFC)
Σ (α;K) does not depend on K .

At the other extreme of message cognition, consider the
case where all users are cognitive of all messages. In this case
the channel is equivalent to a MIMO-BC with K transmit
antennas and K single-antenna receivers. The system may
zero-force the interference to obtain

d(BC)
Σ (α;K) = Kmax{1,α}, (13)

except for a discontinuity at α = 1 where d(BC)
Σ (α;K) = 1,

since in this case all the receivers are statistically equivalent
and time-sharing is optimal. When α ̸= 1, the normalized
sum-capacity 1

K d(BC)
Σ (α;K) does not depend on K .

The sum-capacity of the symmetric LDC K-CIFC-CMS is
given by (11), which is a function of K even after normaliza-
tion by K , i.e.,

1
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Σ (α;K) =max{1,α}− α

K
. (14)

This has the interesting interpretation that CMS looses α/K
with respect to d(BC)

Σ (α;K)/K . In other words, as the number
of cognitive users increases the CMS sum-capacity approaches
the sum-capacity of a fully coordinated broadcast channel,
which is intuitive.

Fig. 3 shows the sum-capacity normalized by the number
of users for different channel models; we do not show the
discontinuity at α = 1. We note the increase in performance
in all interference regimes when compared to that of the 2-
user CIFC-CMS and the K-user interference channel, but a
loss with respect to the K-user broadcast channel (BC) with
K transmit antennas and K single antenna receivers.

BC and IC

New feature (like Broadcast Channel):

Encoder 2 can use 
a) “dirty paper coding” to eliminate 

interference of W2 at Rx 1, or 
b) “cooperate” in sending W1 to Rx 1 
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Interference channel with generalized feedback
2

Willems’ work in the context of wireless cellular networks has
been popularized by Sendonaris, Erkip and Aazhang [27]. A
huge body of work followed [27], which we will not attempt
to summarize here for space limitations.
Although the MAC-GF has proved to be instrumental in

understanding the potential of user cooperation in networks,
it is not as well suited for studying cooperation in peer-
to-peer networks. In this work we extend the classical IFC
model to account for overheard information, or generalized
feedback. Recall that the capacity region of a general IFC
is still unknown and the largest achievable region is due to
Han and Kobayashi [17]. We can say that in IFCs cooperation
takes place in the following way [17]: each transmitter splits
its message in two parts and encodes them in such a way that
one part is decodable also at the non-intended destination.
Recently, Fah et al. [4] observed that, although a receiver
partly decodes the message intended for the other receiver,
a decoding error on that message does not necessarily result
in an error in decoding its own message. For a fixed code,
the Fah-Garg-Motani region improves over the Han-Kobayashi
region. However, when all the possible codes are considered,
the two regions coincide [4].
Special cases of our model have appeared in the literature.

IFCs with common information were analyzed in [19], and
strong interference conditions were given under which the
capacity region coincides with that of a compound MAC. IFCs
with degraded message set where studied in [20] for strong
IFCs and in [31] for weak IFCs. We shall see how our result
related to known results.
On a last note, IFC-GF for the special case where the

generalized feedback is a degraded version of the channel
outputs were studied in [15], where a general outer bound
based on dependence-balance [18] arguments where found. In
this work we are however only interested in achievable regions.
The rest of the paper is organized as follows: in Section II

we formally introduce the IFC-GF model; in Section III we
propose a coding strategy that combines the ideas of (i)
information splitting (introduced by Han and Kobayashi for
IFC without feedback), (ii) block Markov superposition coding
(introduced by Cover and Leung for multiaccess channels with
perfect feedback), and (iii) backward decoding (introduced by
Willems in the context of multiaccess channels with cribbing
encoders), we also comment on special cases of our general
model; in Section IV we give numerical example for the case
of Gaussian IFC-GF. We conclude the paper with remarks on
some possible outer bounds for the capacity region of IFC-GF.

II. NETWORK MODEL AND BACKGROUND

An IFC-GF consists of two input alphabets (X1,X2), four
output alphabets (Y1,Y2,Y3,Y4) and a channel transition
probability PY1 Y2 Y3 Y4|X1 X2 . We assume that all the alphabets
are finite sets and that the channel is memoryless. Figure 1
shows a general IFC-GF with two transmitters and two re-
ceivers.
Each transmitter u, u ∈ {1, 2}, has a message Wu for

receiver u. The messages are independent and uniformly
distributed over the set {1, · · · , en Ru}, where n denotes the
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Fig. 1. Interference Channel with Generalized Feedback.

codeword length and Ru the transmission rate in nats per
channel use. At time t, t ∈ {1, · · · , n}, encoder u maps its
message Wu and its past channel observations into a channel
input symbolXu,t = fu,t(Wu, Y t−1

u ), for some functions fu,t,
u ∈ {1, 2} and t ∈ {1, · · · , n}. At time n, decoder u outputs
the estimate Ŵu = gu(Y n

u+2), of its intended message Wu,
for some functions gu,t. The probability of error at decoder
u, u ∈ {1, 2}, is Pr[Ŵu ̸= Wu]. The capacity region is
the closure of the set of rate pairs (R1, R2), for which the
receivers can decode their message with arbitrarily small error
probability as the block size n → ∞ [28].

We shall conclude this section by revising the largest known
achievable region for IFCs without feedback. This will make
the exposition of our coding strategy easier. Classical IFCs
without feedback have Y1 = Y2 = 0. The largest known
achievable region for IFCs without feedback is the so-called
Han-Kobayashi region [17], which reformulated into Motani-
et al.’s compact form [4] is as follows.

• Coodbook generation: Generate a codewordQn of length
n, generating each element i.i.d according to

∏n
t=1 PQ(·).

For the codeword Qn = qn, generate enR10 independent
codewords Un

1 (j), j ∈ {1, · · · , enR10}, generating each
element i.i.d according to

∏n
t=1 PU1|Q(·|qt). For the

codeword Qn = qn, and each of the codeword U n
1 (j) =

un
1 (j), generate enR11 i.i.d codewords Xn

1 (i, j), i ∈
{1, · · · , enR11}, generating each element i.i.d according
to

∏n
t=1 PX1|U1,Q(·|u1,t(j), qt).

For the codeword Qn = qn, generate enR20 independent
codewords Un

2 (j), j ∈ {1, · · · , enR20}, generating each
element i.i.d according to

∏n
t=1 PU2|Q(·|qt). For the

codeword Qn = qn, and each of the codeword U n
2 (j) =

un
2 (j), generate enR22 i.i.d codewords Xn

2 (i, j), i ∈
{1, · · · , enR22}, generating each element i.i.d according
to

∏n
t=1 PX2|U2,Q(·|u2,t(j), qt).

• Encoding: The message Wu ∈ {1, ..., enRu}, u ∈
{1, 2}, is divided into two parts (Wu0, Wuu): Wu0 ∈
{1, ..., enRu0} is the “shared information” decoded at both
receivers while Wuu ∈ {1, ..., enRuu} is the “private
information” decoded only at the intended receiver, with
Ru = Ru0 + Ruu.
In order to send the messages (W10, W11), (W20, W22),

[S. Yang and D. Tuninetti, “Interference channel with generalized feedback (aka source cooperation) Part 1: achievable regions” IEEE Trans. on Info. Theory, Vo. 57, No. 5,  pp. 2686-2710, May 2011.]

[D. Tuninetti, “An outer bound for the memoryless two-user interference channel with general cooperation” Information Theory Workshop, pp. 217-221, 2012.]

general model that captures causal source 
cooperation, all forms of feedback
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K-user interference channels

[VR Cadambe and  SA Jafar, “Interference alignment and the degrees of 
freedom of the K user interference channel,” IEEE Transactions on 
Information Theory, Vol.  54, No. 8, pp. 3425-3441, Aug. 2008.

Interference alignment

image taken from https://sites.google.com/site/interferencealignment/home

highly recommended site for interference alignment 

[M. Maddah-Ali, A. Motahari, and A. Khandani, “Communication over X channel: Signalling and multiplexing gain,” 
in Technical Report. UW-ECE-2006-12, University of Waterloo, July 2006.]

Each user can send up to half of interference-free rate

DoF = K/2
140

Ask Helmut + Aylin!

https://sites.google.com/site/interferencealignment/home


Other variations
- with state, known at….?
- secrecy….?
- with cognition and state….?
- ergodic capacity…..?
- game-theoretic issues….?
- Wyner model …?
- zero-error capacity….?
- MIMO interference channel….?
- IC with various flavors of feedback….?
- I-MMSE approach to understanding the IC ….?
- ICs with relays….?
- two-way ICs……?
unsolicited advice: chip away at fundamental problems!
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Forced UIC advertisement
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UIC is a public school in 
downtown Chicago

9/28/2015 University of Illinois at Chicago (UIC) Richard J. Daley Library - Google Maps

https://www.google.co.jp/maps/place/University+of+Illinois+at+Chicago+(UIC)+Richard+J.+Daley+Library/@41.8249214,-87.8204528,11z/data=!4m2!3m1!1s0x88... 1/2

Map data ©2015 Google 5 km 

University of Illinois at Chicago (UIC) Richard J. Daley Library
4.2 삻삻삻삻 11 reviews

Library

801 S Morgan St, Chicago, IL 60607, United States

library.uic.edu

+1 312-996-2726

University of Illinois at Chicago (UIC) Richard J. Daley Library
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“Trump cancels Chicago rally (UIC Pavilion); 
protesters fill streets near UIC”
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UIC is a great place to visit

- home of the “NICEST” lab

Natasha 
Devroye

Hulya 
Seferoglu

Besma 
Smida

Daniela 
Tuninetti

- home of the best “Brutalist” 
architecture in the world
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Key lessons learned

Simple channel model, what is it?

Many ways of treating interference, such as?

Is capacity known?

What is surprising?
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Open problems

Are Gaussian inputs optimal for the Gaussian IC? 
depends what expression!

[S. Beigi, S. Liu, C. Nair, and M. Yazdanpanah, “Some results on the scalar Gaussian interference channel,” ISIT, July 2016.]

Progress on evaluating the multi-letter capacity 
expression?

Does the sum-capacity decrease or increase with the 
symmetric interference coefficient (btw 0 and 1)?

[I. Sason, “On achievable rate regions for the Gaussian interference channel,” IEEE Trans. Inf. Theory, vol. 50, no. 6, pp. 1345–1356, Jun. 2004. ]

[S. Beigi, S. Liu, C. Nair, and M. Yazdanpanah, “Some results on the scalar Gaussian interference channel,” ISIT, July 2016.]
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Questions + discussions now, later, email 
are always welcome

Natasha Devroye 
devroye@uic.edu 
www.ece.uic.edu/Devroye

I may be looking for a post-doc January 2017

148

mailto:devroye@uic.edu
http://www.ece.uic.edu/Devroye

