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N
Introduction

Message passing algorithms
e Remarkably successful in coding theory
o Used to design capacity-achieving codes/decoders for a variety of channels

e Tools have been developed to analyze their performance




Two main goals

Goal 1

Review some developments in modern coding theory and show how to analyze the

performance of a simple peeling decoder for the BEC and p-ary symmetric
channels.
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Two main goals

Goal 1

Review some developments in modern coding theory and show how to analyze the
performance of a simple peeling decoder for the BEC and p-ary symmetric
channels.

Goal 2

Show that the following problems have the same structure as channel coding
problems and show how to use the peeling decoder to solve them.

Problems
e Uncoordinated massive multiple access
e Sparse Fourier transform (SFT) computation
e Sparse Walsh-Hadamard transform computation

e Compressed sensing

o Data stream computing
o Group testing
o Compressive phase retrieval
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Remembering Sir David MacKay

David Mackay's rediscovery of LDPC codes and his very interesting book on
Information Theory has undoubtedly had a big influence on the field.

David J. C. Mackay

Information Theory, Inference,
and Learning Algorithms
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Binary erasure channel (BEC) and erasure correction

BEC(¢) channel
0 1< .o - -
my , My Tlyeeny T p TlyeeeyTh my,...,mMg
Encoder Decoder >
z; € {0,1} s | € {0,1}
1 &< — e
1—e¢
Channel coding problem
e Transmit a message m = [my, ..., my|” through a binary erasure channel

e Encode the k-bit message m into a n-bit codeword z

e Redundancy is measured in terms of rate of the code R = k/n
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Binary erasure channel (BEC) and erasure correction

BEC(e) channel

1—e

0 ® 9 ~ ~
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—_—| Encoder Decoder >
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Capacity achieving sequence of codes
e Capacity C(e) =1—¢
o A sequence of codes {C"}
e Probability of erasure P
e Rate R"
e Capacity achieving if P* — 0 as n — oo while R" — C'
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Binary erasure channel (BEC) and erasure correction

BEC(¢) channel

1—e

0 ® 9 ~ ~
My, ..., My Ti,..., Ty S T, .o, T My, ..., Mg
—_—| Encoder Decoder >
T € {0, 1} E |r; € {0, 1}
€
1 1—). 1

—€

Capacity achieving sequence of codes
e Capacity C(e) =1—¢
o A sequence of codes {C"}
e Probability of erasure P
e Rate R"
e Capacity achieving if P* — 0 as n — oo while R" — C'

e Find efficient encoders/decoders in terms encoding and decoding complexities

Significance of the erasure channel
e Introduced by Elias in 1954 as a toy example
e Has become the canonical model for coding theorists to gain insight
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(n, k) Binary linear block codes - basics

G is a n x k generator matrix Example - (6,3) code
1 0
g1,1 9kl ! 0 1
™ 00
| = 10
mk‘ ]. ].
gn,1 9kl LT 0 1

O ==
Il
—_ O = O =
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(n, k) Binary linear block codes - basics

G is a n x k generator matrix Example - (6,3) code
1 0 0 1
g1 o Gkl 1 01 0 1
m 00 1 } o
S 1 0 1 0 1
i 110 0
In,1 9k, Zn 0 1 1 1

Parity check matrix - H is a (n — k) x n matrix s.t. HG =0= Hz =0

as
I
O~
O = O
=
O O =
O = O
= o O
—_o = O
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Tanner graph representation of codes

T
T1,22,T3,T4,T5,T6
101100 2
H={110010 .
01 1001
T4
1@ 130wy =0
1 DaoPDas=0 x5 Check nodes
oD ax3PDag=0 Z6

Variable nodes

e Gallager'63, Tanner'81
e Parity check matrix implies that Hz = 0

e Code constraints can be specified in terms of a bipartite (Tanner) graph
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Peeling decoder for the BEC

r1®r3PBrg=0

T1Pr2®a5=0

ToBr3PBreg =0

Tanner Graph

e Zyablov and Pinsker'74, Luby et al '95
e Remove edges incident on known variable nodes and adjust check node values

e If there is a check node with a single edge, it can be recovered
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Peeling decoder for the BEC

r1®r3PBrg=0

T1Pr2®a5=0

ToBr3PBreg =0

Received block

e Zyablov and Pinsker'74, Luby et al '95
e Remove edges incident on known variable nodes and adjust check node values

e If there is a check node with a single edge, it can be recovered
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Peeling decoder for the BEC

E
T1,22,T3,%4,T5, L6 1
101100 1@
H=1]111 0 010 E
01 1 0 01 1
1@
1 ®Dr3®rg=0
T1Pr2®a5=0 0@ 1
To D r3s®ag=0 E

Peeling Step 1

e Zyablov and Pinsker'74, Luby et al '95
e Remove edges incident on known variable nodes and adjust check node values

e If there is a check node with a single edge, it can be recovered
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Peeling decoder for the BEC

r1®r3PBrg=0

T1Pr2®a5=0

ToBr3PBreg =0

Peeling Step 2

e Zyablov and Pinsker'74, Luby et al '95
e Remove edges incident on known variable nodes and adjust check node values

e If there is a check node with a single edge, it can be recovered
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Peeling decoder for the BEC

E=1@

r1®r3PBrg=0

T1Pr2®a5=0

ToBr3PBreg =0

Peeling Step 2

e Zyablov and Pinsker'74, Luby et al '95
e Remove edges incident on known variable nodes and adjust check node values

e If there is a check node with a single edge, it can be recovered

9 /9




|
Peeling decoder for the BEC

E=1 @
Ty, T2, T3, T4, T5, Te Ho
101100 1@
H=|110010 Eo
01 1001 Ho
1@
1B a3 Pryg=0
1 Pra®as =0 °® 0
To®r3Brs =0 E

Peeling Step 3

e Zyablov and Pinsker'74, Luby et al '95
e Remove edges incident on known variable nodes and adjust check node values

e If there is a check node with a single edge, it can be recovered -
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Peeling decoder for the BEC

E=1@
Ty, T2, T3, T4, T5, Te Ho
101100 1@
H=|110010
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Peeling Step 3
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e Remove edges incident on known variable nodes and adjust check node values

e If there is a check node with a single edge, it can be recovered
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Peeling decoder for the BEC

E=1 @
Ty, T2, T3, T4, T5, Te Ho
101100 1@
H = 1 1 0 010
E=0
01 1001 ® Ho
1@
1B a3 Pryg=0
1 Pra®as =0 °® .0
ToBr3PBreg =0 E:l.

Peeling Step 4

e Zyablov and Pinsker'74, Luby et al '95
e Remove edges incident on known variable nodes and adjust check node values

e If there is a check node with a single edge, it can be recovered
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Message passing decoder for the BEC

T E
T2 1
T3 E
T4 1
s 0 Check nodes
Te B
Tanner Graph Variable nodes

e Pass messages between variable nodes and check nodes along the edges
o Messages € {value of var node (NE), erasure (E)}
e Var-to-check node message is NE if at least one incoming message is NE

Check-to-var node message is NE if all other incoming messages are NE
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Message passing decoder for the BEC

E E
1 0 1
E E
0
1 1
0 0 0 Check nodes
E E
Received block Variable nodes

e Pass messages between variable nodes and check nodes along the edges
o Messages € {value of var node (NE), erasure (E)}
e Var-to-check node message is NE if at least one incoming message is NE

Check-to-var node message is NE if all other incoming messages are NE
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Message passing decoder for the BEC

E E
1
1@ 1
E E
1
1@ 1
0 . 1 0 Check nodes
E E
Peeling Step 1 Variable nodes

e Pass messages between variable nodes and check nodes along the edges
o Messages € {value of var node (NE), erasure (E)}
e Var-to-check node message is NE if at least one incoming message is NE

Check-to-var node message is NE if all other incoming messages are NE
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Message passing decoder for the BEC

0 Check nodes

FE
Peeling Step 2 Variable nodes

e Pass messages between variable nodes and check nodes along the edges
o Messages € {value of var node (NE), erasure (E)}
e Var-to-check node message is NE if at least one incoming message is NE

Check-to-var node message is NE if all other incoming messages are NE
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Message passing decoder for the BEC

E=1 @ E

1@

1@ 1

0 . 1 0 Check nodes
E FE
Peeling Step 2 Variable nodes

e Pass messages between variable nodes and check nodes along the edges
o Messages € {value of var node (NE), erasure (E)}
e Var-to-check node message is NE if at least one incoming message is NE

Check-to-var node message is NE if all other incoming messages are NE
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Message passing decoder for the BEC

E=1@ E
1@ Mo 1
E=0 . 0 E
1@ 1
0 . 0 0 Check nodes
E E
Peeling Step 3 Variable nodes

e Pass messages between variable nodes and check nodes along the edges
o Messages € {value of var node (NE), erasure (E)}
e Var-to-check node message is NE if at least one incoming message is NE

Check-to-var node message is NE if all other incoming messages are NE
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Message passing decoder for the BEC

E=1 @ E
1@ Mo 1
E=0 @ . 0 E
1@ 1
0 ;/. 0 0 Check nodes
E E
Peeling Step 3 Variable nodes

e Pass messages between variable nodes and check nodes along the edges

o Messages € {value of var node (NE), erasure (E)}

e Var-to-check node message is NE if at least one incoming message is NE
Check-to-var node message is NE if all other incoming messages are NE
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Message passing decoder for the BEC

E=1 @ E
1@ Mo 1
E=0 @ WMo E
1@ 1
°® . 0 0 Check nodes
E=1 @ 5
Peeling Step 4 Variable nodes

e Pass messages between variable nodes and check nodes along the edges
o Messages € {value of var node (NE), erasure (E)}
e Var-to-check node message is NE if at least one incoming message is NE

Check-to-var node message is NE if all other incoming messages are NE
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Peeling decoder is a greedy decoder

1 X2 T3 X4
1 1 1 1
H= 1 0 0 0
0 1 1 0

1 Dx1 Dr3 DXy
1 DT DTs

To D x3 D xg

8
ot

o = O

o O O

8
o

= o O

E

E

0 Check nodes

1

Variable nodes
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Peeling decoder is a greedy decoder

1 X2 T3 X4
1 1 1 1
H= 1 0 0 0
0 1 1 0

1 Dx1 Dr3 DXy
1 DT DTs

To D x3 D xg

8
ot
8
o

S = O
= o O

I
o o o

Linearly independent set of equations

z1 D1 D3 =
1 Dxrog =
To Dy =

T4
L5

L6

E

E

0 Check nodes

1

Variable nodes

11

90



|
Degree distributions

1

0 Check nodes

1

Variable nodes

VN d.d. from node perspective - L(z) = >, Lz’ = 32 + 22% + 123
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Degree distributions

1

Check nodes

0

1

Variable nodes

e VN d.d. from node perspective - L(z) =,
e VN d.d. from edge perspective - A(x)
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Degree distributions

1

0 Check nodes

1

Variable nodes

VN d.d. from node perspective - L(z) = >, Lz’ = 32 + 22% + 123
e VN d.d. from edge perspective - A(z) = >, Az’ ™t = 5 + {bo + Sa?
e CN d.d. from node perspective - R(z) =Y, Rjz’ = 22 + 1a*
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Degree distributions

1

0 Check nodes

1

Variable nodes

e VN d.d. from node perspective - L(z) =
e VN d.d. from edge perspective - A\(z) = > . \;z'~! %
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Degree distributions

E
low Jo p(z) da
* Rate-r(Ap)=1-0 =1- 0%
1
0 Check nodes
1

Variable nodes

e VN d.d. from node perspective - L(z) =
e VN d.d. from edge perspective - A\(z) = > . \;z'~! %
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LDPC code ensemble

@ o o—|
nly .
@+ o o mRy
Iy .
o .
e, o
nlo o
O e T
Permutation
° .
n,LlﬂmO:: - ? & . mR,,.,.
e \/.
o
o

LDPC(n, A, p) ensemble
e Ensemble of codes obtained by using different permutations 7
e Assume there is only one edge between every var node and check node
e For every n, we get an ensemble of codes with the same (), p)
o Low density parity check (LDPC) ensemble if graph is of low density

13 /9
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Analysis of the message passing decoder

e If we pick a code uniformly at random from the LDPC(n, A, p) ensemble and
use it over a BEC(€) with [ iterations of message passing decoding, what will

be the probability of erasure P in the limit [,n — oo 7

14 /90



|
Analysis of the message passing decoder

e If we pick a code uniformly at random from the LDPC(n, A, p) ensemble and
use it over a BEC(€) with [ iterations of message passing decoding, what will

be the probability of erasure P in the limit [,n — oo 7

o Analyze the average prob. of erasure over the ensemble
o For almost all realizations P.' concentrates around the average
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Analysis of the message passing decoder

e If we pick a code uniformly at random from the LDPC(n, A, p) ensemble and
use it over a BEC(€) with [ iterations of message passing decoding, what will

be the probability of erasure P in the limit [,n — oo 7

o Analyze the average prob. of erasure over the ensemble
o For almost all realizations P.' concentrates around the average

Relevant literature
e Papers by Luby, Mitzenmacher, Shokrollahi, Spielman, Stemann 97-'02
e Explained in Modern coding theory by Richardson and Urbanke

e Henry Pfister’s course notes on his webpage

14 /90



Analysis of the message passing decoder

Computation graph

Computation graph C;(x1, A, p) of bit 1 of depth [ (I-iterations) is the
neighborhood graph of node z; of radius (.
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Analysis of the message passing decoder

Computation graph

Computation graph C;(x1, A, p) of bit 1 of depth [ (I-iterations) is the
neighborhood graph of node z; of radius [. Consider the example

Ciet(A(z) = 7, plz) = 2?)

O(1/n) O(1/n) O(1/n?)
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Analysis of the message passing decoder

Computation graph

Computation graph C;(x1, A, p) of bit 1 of depth [ (I-iterations) is the
neighborhood graph of node z; of radius [. Consider the example

Ciet(A(z) = 7, plz) = 2?)

O(1/n) O(1/n) O(1/n?)

Computation tree

For fixed (Imazs Tmaz), in the limit of large block lengths a computation graph of
depth-[ looks like a tree with high probability

15/90



Analysis of the message passing decoder

Computation Tree Ensemble-T;(\, p)

Ensemble of bipartite trees of depth [ rooted in a variable node (VN) where
» Root node has i children(CN’s) with probability L;
e Each VN has i children(CN's) with probability A;
e Each CN has 4 children(VN's) with probability p;

Example: Ci—1(\(z) = z, p(x) = 2?)
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Density evolution

=€ Nyl = edy)

Depth-1

y o= Zz pi (1= (1—a0)'"")
=1-3,pi(1 — )"
= 7;;(1 - o)

Depth-{

17
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Density evolution

Depth-1

Depth-I

Zz pi (1= (1 —x0)")
= 2ipi(l—x) !

Recall
o p(z) =3, piz' !
°2ipi=1
o A(@) = T, Aot
°Xid=1
Recursion
rog = €
yu = 1—p(l—mz-1)

17
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Density evolution

T =€y, /\,yl‘ L= eXy)

Recall
. p(@) = X, !
o2 ipi=1
o M) = ¥, !
Depth-1 . ZZ )\Z -1
. Recursion
Yy o= ZZ pi(l 7( (1- :1;)0‘)711—1)
=1->pi(1—z0)"~
=1 p(l - 70) ’ xO = €
Depth-{ y = 1- ,0(1 = xl,l)

xr = 6/\(yl)
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Density evolution

T =€Y, Ayt =eAu)

Depth-1

f = Vi (1= (1))
=1= ZL ﬂ7(1 - xO)’lil
= 7;;(1 — o)

Depth-I

Recall
. pl) = ¥, piat!
o2 ipi=1
o Az) = X, !
[ ] ZZ )\7, = 1
Recursion
rog = €
y = 1—p(l—x1)
= eAu)

;. = eA1—p(1l— xl_l)),

17
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Analysis of the message passing decoder

AMx) = 22, p(x) = psx® + psa?

oy = e(y”)?

W =1-0-ep
Tog =€

P(T) = p}
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Analysis of the message passing decoder

Az) = 2?, p(x) = paz® + psa?

P(T) = 2paps
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Analysis of the message passing decoder

Az) =22, p(x) = paz® + psz*
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Analysis of the message passing decoder

Ax) = a?, p(x) = paz® + psa?

S

1/1 *1*(1*5)5

Ty =€

P(T) = p}

P(T) = 2paps P(T) = p?
Eippcorpy[r1] = Z P(T) x z1(T, €)
TeT1(Ap)
= elpay? + psyi)?
= e(1—pa(1—e)®—ps(1—e)*)?
= eA(l—p(l—r¢)
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Threshold

zp = €A1 = p(l —xi-1)) = fle, z1-1)

x; converges to 0 if f(e,z) <z, x € (0,¢€
There is a fixed point if f(e,z) = x, for some z € (0, ¢]
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Threshold

Convergence condition

zp= A1 —p(1 —x1-1)) = fle,1-1)

x; converges to 0 if f(e,z) <z, x € (0, ¢
There is a fixed point if f(e,z) = x, for some z € (0, ¢]

e=045

e=043

Probability of erasure

0 Eil 100 180 200 280 200 30 400 480 a0
lteration number

19/90



|
Threshold

Convergence condition

zp= A1 —p(1 —x1-1)) = fle,1-1)

x; converges to 0 if f(e,z) <z, x € (0, ¢
There is a fixed point if f(e,z) = x, for some z € (0, €]

e=045

e=043

0 Eil 100 180 200 280 200 30 400 480 a0

The threshold €BP()\, p) is defined as

P\, p) = sup{e € [0,1] : 2; — 0 as | — oo}
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Exit charts - Ashikmin, Kramer, ten Brink'04

Node functions
e Var node function: v.(x) = e\(x)
o Check node function: ¢(z) =1 — p(1 — z)

— o (@)

Az) =22, p(z) = 2°

esh=1—r=050 o esh=1—71=050
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Optimality of EXIT chart matching

e Var node function: v.(x) = eA(x)
e Check node function: ¢(z) =1— p(1 — z)

1

0s| M@ =1=(1 =2y
08| plx) =2 a=01,N=50.
0.7} '." €shp=1—7r=20.372
0.6
05F
o4l
03f
0.2
01 —1!:1(1').6 =0.368
| -7 (2),e =03
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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Summary

o Understand what degree distributions (A(x), p(z)) mean
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Summary

o Understand what degree distributions (A(x), p(z)) mean
e Given a (A, p) and ¢, what will be the P* as [,n — oo ?

e
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e Given a (A, p) and ¢, what will be the P* as [,n — oo ?

e

e Can you compute the threshold?



Summary

o Understand what degree distributions (A(x), p(z)) mean
e Given a (A, p) and ¢, what will be the P* as [,n — oo ?

e

e Can you compute the threshold?

Isa (M), p(x)) pair optimal?
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Application 1
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The changing mobile landscape

e 5G will not only be “4G but faster” but will support new models such as loT
e Current wireless - a few devices with sustained connectivity

e Future wireless - massive no. of devices requesting sporadic connectivity

operating region
R2: high-speed versions of

today’s systems

R3: massive access
R4: ultra-reliable

° communication
299.999% >00-99%

# devices

R1: today’s systems

1 10 100 1000 10000
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The changing mobile landscape

e Current wireless - a few devices with sustained connectivity
e Future wireless - many uncoordinated devices requesting sporadic connectivity

e
e (

S
%[ = --:n SMS Gateway and

Dala Aggregation I

Service Provide
)) Network

(7

Sensors

?‘%
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The changing mobile landscape

e Current wireless - a few devices with sustained connectivity
e Future wireless - many uncoordinated devices requesting sporadic connectivity

Inter-vehicle
communications
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A possible MAC frame structure

Total of () users out of which K are active
e () is very large and K is a small fraction of Q

e Beacon is used to obtain coarse synchronization

e Each user transmits a signature sequence

e BS estimates the no. of users (K) (Chen, Guo '14, Calderbank)
e Picks an M and broadcasts it

27
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System under consideration

o Wireless network with K distributed users (no coordination)
e Each user has one packet of info to transmit to a central receiver

e Total time is split into M slots (packet duration)

e Some policy used to decide if they transmit in j-th slot or not
o Receiver knows the set of users transmitting in the j-th slot

Users Time slots
1 (I
e I 1111
3 (I
Receiver
1111 (.
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Random access paradigm

e k-th user:
o Generates a random variable Dy, € {1,..., M}
e Generating PMF is fp, i.e., Pr(Dr =1i) = fp[i]
o Transmits during D, time slots drawn uniformly from {1,..., M}
Users Time slots
1
2

&

IS

e In this example, D3 = 3 and user 3 transmits in slots {1, 3,5}
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Iterative interference cancelation

o |If exactly one user transmits per slot, then packet is decoded w.h.p.
e If more than one user transmits per slot, then collision

e Rx subtracts previously decoded packets from collided packets

o If Rx can subtract all but one, remaining packet is decoded w.h.p.

o Otherwise, the received packet is saved for future processing

o Once all K packets recovered, an ACK terminates the transmission

Similar to interference cancellation in multi-user detection

Users Time slots

22+ 23 Collision
X1+ T4

o+ T3+ x4

To No collision
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Performance measure - Efficiency

e Suppose M time slots needed to successfully transmit all K packets

e Then, the efficiency of the system is said to be

n = K/M packets/slot
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Graphical representation (Liva 2012)

e Tanner graph representation for the transmission scheme
e Variable nodes <+ users, Check nodes <> received packets

e Message-passing decoder - peeling decoder for the erasure channel

Users Time slots Var nodes Check nodes
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-
Graphical representation (Liva 2012)

e Tanner graph representation for the transmission scheme
e Variable nodes <+ users, Check nodes <> received packets

e Message-passing decoder - peeling decoder for the erasure channel

Users Time slots Var nodes Check nodes

o L; (R;) - fraction of left (right) nodes with degree i - notice that | L; = fp][i] J

o \; (p;) - fraction of edges connected to left (right) nodes with deg i
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Low density generator matrix (LDGM) codes

Lo

Ui
Xy

Z

o L(z)= 1o+ 122+ 123

o Ma)=§+ 2z + Sa?

* R(z) = tx + 1a?

* plx)=5+35z

1
Rate R = Jo 2(@) &

fol p(x) dx
DE for LDGM
Zo 1
Ui L—p(l—mz1)
T Aly)
x A1 = p(1 —x—1))
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Poisson approximation for check node d.d.

Slot transmission probability
User k transmits in slot m with prob. p =72, L;: J
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Poisson approximation for check node d.d.

Slot transmission probability

User k transmits in slot m with prob. p =72, L;:

Optimal multiple access policy
e Poisson approximation for R(z) as K, M — oo

o Finding optimal fp - same as finding optimal \(z) for p(z) = e Favs(1=2)

34
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-
Intuition behind the main result (Narayanan,Pfister'12)

Convergence condition : p(1 —A(y)) >1—y

p(l=Ay)=1-y
e—rang(y) _ eln(l—y)

= —TagA(y) =In(1 — Z

= Taug Z )‘Zyl = Z y?
i i=1




-
Intuition behind the main result (Narayanan,Pfister'12)

Convergence condition : p(1 —A(y)) >1—y

p(1=Ay) =1-y
e_rang(y) = eln(l_y)

i

= —TagA(y) =In(1 — Z ;

=1
= Taug Z )‘Zyl = Z y?
i i=1

1 1/i 1
Ai=1 avg = D) AN = =7 L = — 122
Z = | Tavg ;Z > 1/i - i(i—1) !
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Graphical interpretation - EXIT chart

Right to Left erasure prob Y,

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

;
) M =0.95
Soliton max degree = 100
n=0.5
I I I I I I I I I
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Left to Right erasure prob X
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Main result

e For coordinated transmission, clearly n =1,
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Main result

e For coordinated transmission, clearly n =1,

e ALOHA provides 1 ~ 0.37
e But, even for uncoordinated transmission, n — 1 as K — oo

Optimal distribution is soliton: fp[i] = 77—

No. of times 1 ]273] 4 i
Fraction of users % % % % M(]\14—1)
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Balls in bins

e M balls thrown into N bins uniformly at random
e If every bin has to be non-empty with prob 1 — 6, how large should M be ?
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Balls in bins

e M balls thrown into N bins uniformly at random
e If every bin has to be non-empty with prob 1 — 6, how large should M be ?

N
NlOgX

For the multiple access problem, an empty bin means a wasted time slot

Note that for the soliton the average number of edges is indeed N log N)

38
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Poisson, soliton pair is optimal for rateless codes

0.

0.

0.

0.

0.5 "

0.

0.

0.

0.

1

9l

sl

s /\(({\,)
6 ',"’ pg{v) (:L’

4

3

2

1l

() = ere-y
)= —Lin( = 2]y

0

o« 2= A1-(1-p(l )

—\ ()
—c(z),e=0.5
o late-od
0 0.1 0.2 03 0.4 05 0.6 0.7 0.8 0.9 1

Info bits

Coded bits

o Mz) = e 1217 optimal right degree is soliton: p(z) = —+ In(1 — )
Degree of nodes 1123 4 i K
Fraction: foli] | % |3 |5 | ﬁ K(Ii_l)

N ——
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Connection with Luby Transform (LT) codes

Users Time slots Info bits Coded bits
1

Poisson

€

M E—>

. 1 1
fD(l)zm fn(l')=m

e For rateless codes A(x) is Poisson and p(z) is soliton
e For multiple access p(x) is Poisson, optimal A(z) is soliton
e Our result shows that both are optimal pairs
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Simulation Results

Efficiency for finite lengths
T T T

T T
—— K=100
—#— K=500
K=1000
—&— K=10000
—x— Target Efficiency

Average Efficiency

o ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 0.05 1 .15 2 .25 3 .35 4
o, where M = (1+a) K

e Even for K = 10000, efficiency close to 0.8 can be obtained
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Some open problems

e Fundamental limits on universal multiple access, i.e. K, € not known
e Uncoordinated multiple access with power constraint and Gaussian noise

e Power penalty for repeating information logn times on the average
o Can we achieve the equal rate point on the MAC region with simple decoding?
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Back to theory: from erasures to errors

43 /90
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Finite field with p elements

p is prime
e F,—{0,1,2,...,p—1}
e a®b=(a+b) modp
e a®b=(ab) mod p
e We can +, X, =+, inverses
o W is a (primitive) element such that 1, W, W?2 ... WP~! are distinct
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Finite field with p elements

pisprime
e F,—{0,1,2,...,p—1}

a®b=(a+b) mod p

a®b=(ab) mod p

e We can +, X, +, inverses

W is a (primitive) element such that 1, W, W2, ... WP~! are distinct

® W:2
e WO =1Wl=2W2=4W3=3
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Finite field with p elements

p is prime
o F,—{0,1,2,...,p—1}
e a®b=(a+b) modp
e a®b=(ab) mod p
e We can +, X, +, inverses
o W is a (primitive) element such that 1, W, W?2 ... WP~! are distinct

Example F5
[ ] W:2
o WO=1W!=2W2=4W3=3

p need not be prime
e Everything can be extended to finite fields with ¢ = 2" elements
e May be extended to integers - not sure




p-symmetric channel and error correction

P-ary SC(e) channel

1—¢

0 ®
/ ~ ~
my, ..., My Ly, ., Ty . S Ty n my, ..., Mg
B — Encoder \ Decoder  EEE——
x; GFP * T GFP
p-1e@ p-1

Error correction coding

e Another simple channel model which has been extensively considered

e Has been the canonical model for algebraic coding theorists
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Generalized LDPC code and error channels

€1
—
| -
1 _-_Jym(n k) code
p—
€2 1
1
1 Q——
1
1
- .
0 Check codes
€3

Variable nodes

e GLDPC introduced by Tanner in 1981
e Each check is a (71, k), t-error correcting code
e |f there are < ¢ errors in a check, it can be recovered

e For now, assume no miscorrections
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Peeling process is same for erasure and error channels

0

E

Variable nodes

Check nodes

€1
=
1 - ,:ym(ﬁ k) code
ey
€2 1
1
1 -
1
1
I — o
0 Check codes
€3

Variable nodes

e Assume 1-error correcting check code and no miscorrections

e One-to-one correspondence between messages passed - DE can be used

e Not optimal for the error channel but it is not bad at high rates

e Spatially coupled versions are optimal at high rates (Jian, Pfister and N)

47
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Erasures to errors - tensoring and peeling

101 1 0 0
H=|1 100 1 0 € .
01100 1 1Y
1 -: (7, k) code
® =.9m
1 1 1 1 1 1 e :
B=11 w w2 w3 w* w’ !
1 0 1 1 0 0 1 1
1 0 W2 w?® o 0 '
H= 1 VlV 8 8 Vé‘l 8 0 Check codes
0 1 1 0 0 1 es
0w W2 o0 0o Wb

Variable nodes

e W is a primitive element in the field
e Each check is a 1-error correcting code

e If there is exactly one error in a check, it can be recovered
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Product code

e Special case of generalized LDPC code

e Let component code C be an (7, k, Jm;n) linear code

o Well-known that P is an (722, k2, d2. ) linear code

OROOOOE
2ISCICICIIC
OHOOOOO
Q000000
©

I
&)

6,
616/60/6/6)6/6
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Product code

e Special case of generalized LDPC code

e Let component code C be an (7, k, Jm;n) linear code

o Well-known that P is an (722, k2,d2,,) linear code

5
EN( &

H06666
el6l6'6'6le
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|
Peeling decoding of product codes

e Hard-decision “cascade decoding” by Abramson in 1968

e |dentical to a peeling decoder

e Example: t = 2-error-correcting codes, bounded distance decoding

0000000
0000000

0000000



|
Peeling decoding of product codes

e Hard-decision “cascade decoding” by Abramson in 1968
e |dentical to a peeling decoder

e Example: t = 2-error-correcting codes, bounded distance decoding

000000®
0000000

OO0O000O00

Received block
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Peeling decoding of product codes

e Hard-decision “cascade decoding” by Abramson in 1968
e |dentical to a peeling decoder

e Example: t = 2-error-correcting codes, bounded distance decoding

row codes column codes

QO0000®
0000000

W QW W
O-H O J

Row decoding
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0000000
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Row decoding
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e |dentical to a peeling decoder

e Example: t = 2-error-correcting codes, bounded distance decoding

000000®
0000000

0000000

Column decoding
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Peeling decoding of product codes

e Hard-decision “cascade decoding” by Abramson in 1968
e |dentical to a peeling decoder

e Example: t = 2-error-correcting codes, bounded distance decoding

row codes column codes

N7

OO

YOO

7

,

Ve

W QW W
O-H O J

Column decoding
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Peeling decoding of product codes

e Hard-decision “cascade decoding” by Abramson in 1968
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Peeling decoding of product codes

e Hard-decision “cascade decoding” by Abramson in 1968

e |dentical to a peeling decoder

e Example: t = 2-error-correcting codes, bounded distance decoding

0000000
0000000

0000000

Decoding successful
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Peeling decoding of product codes

e Hard-decision “cascade decoding” by Abramson in 1968
e |dentical to a peeling decoder

e Example: t = 2-error-correcting codes, bounded distance decoding

Q000000
0000000

0000000

Or trapped in a stopping set



-
Density Evolution(DE) for Product Codes -Justesen et al

What is different about DE?
e Graph is highly structured
e Neighborhood is not tree-like

e Remarkably, randomness in the errors suffices!
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e Remarkably, randomness in the errors suffices!
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Density Evolution(DE) for Product Codes -Justesen et al

What is different about DE?
e Graph is highly structured
e Neighborhood is not tree-like
e Remarkably, randomness in the errors suffices!

Assumptions
e Errors are randomly distributed in rows and columns

e # errors in each row/col ~ Poisson(1))

Main Idea

e Removal of corrected vertices (degree< t) from row
codes < removal of random edges from column codes
uniformly at random

o # of errors in row/column changes after each iter
e Track the distribution

row codes

5- O

column codes
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DE continued

Tail of the Poisson distribution
m(m) = Z e~ ™m /!

j=t

If the # errors is Poisson with mean M, Mean # of errors after decoding is

m(1l) = Z je=MMI /! = Mm,(M)
j>t+1
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Evolution of degree distribution(d = 2) - first iteration

Row decoding
e Before row decoding
o Distribution: Poisson(M), Mean: M
o After row decoding

o Distribution: Truncated Poisson(M)
e Mean: Mm(M) = m(1)

Column decoding

e Before column decoding
e Distribution: Poisson(m(1)),Mean: m(1)
e After column decoding

o Distribution: Truncated Poisson(m(1))
e Mean: m(2) = Mm¢(m(1))

After every decoding
e Distribution is a Truncated Poisson(m(j))

o Pl#errors =i| = bmg)i

oo 1 T
0.2 o R
0.1 T T -
0 ?Q o odb &
0 5 10 15
0.3 5o T I
0.2 ¢ R
0.1} T :
0d ?Q Qod &
0 5 10 15
0.4 T T
0.3 R
0210 -
A =
0 0 Pos & &
0 5 10 15
0.6 ‘ ‘ |
0.4 R
0.2+ T .
0d Qg S &
0 5 10 15,
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Evolution of the degree distribution - jth iteration

Recursion
e m(0) =M
o m(1l) = M, (M)
o m(j) = Mm(m(j — 1))

Reduction in the parameter
o Average no. of errors in each row (column) = m(j)m(m(j))

e Decoding of rows reduces the parameter by m(ﬁgggzgzg)jl)) = Mnf((ﬁ(f)))

e New parameter is m(j + 1) = Mn(m(j))

Threshold

In the limit of large 7 (length in each dimension), a t-error correcting product
code can correct nM errors when

m

7t (m)

M < min {

}




Thresholds for asymptotically large field size

Threshold = # ofparitysymbols
# oferrors

d=2

d=3

d=14

d=5

d=6

d="17

d=38

t=1
t=2
t=3
t=4

4.0
2.3874
2.3304
2.3532

2.4436
2.5759
2.7593
2.9125

2.5897
2.9993
3.3133
3.5556

2.8499
3.4549
3.8817
4.2043

3.1393
3.9153
4.4483
4.8468

3.4378
4.3736
5.0094
5.4802

3.7383
4.8278
5.5641
6.1033

Notice that L, K = O (N ]

1—d

)
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Syndrome source coding

T1 D er
10
€9 10
—
T3 D el |8
1
T4 __'; 0
10
s
N Check codes
e D e3

Variable nodes

[ ] [ ]
X
S
[0}
g
=
.
!
< |
1]
P
|

e Recover z and sparse e

S1
-
il | Y1
0 1 Y2
-
S92 Us
| Ya
0 -
1 Ys
X 1 Ye
0 Syndrome
Encoded output
53

Source nodes

Hs = Y
Set r = 0 (Let a genie add z to r)
¥y is given to the decoder

Recover sparse s 56

90



|
Application 2
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Sparse Fast Fourier Transform (SFFT) Computation

Problem Statement

x[n] : Time domain signal of length NV whose spectrum is K-sparse
DFT
— X[k

(K —sparse)

z[n]

Compute the locations and values of the K non-zero coefficients w.h.p

58 /90



-
Sparse Fast Fourier Transform (SFFT) Computation

Problem Statement

x[n] : Time domain signal of length N whose spectrum is K-sparse
DFT
—  X[K]

(K —sparse)

Compute the locations and values of the K non-zero coefficients w.h.p

Fast Fourier Transform (FFT)

e Sample complexity: N samples
o Computational complexity: O(N log N)

We want sublinear sample and computational complexity

58 /90



-
Sparse Fast Fourier Transform (SFFT) Computation

Problem Statement

x[n] : Time domain signal of length N whose spectrum is K-sparse
DFT
— X[k

(K —sparse)

Compute the locations and values of the K non-zero coefficients w.h.p

Related work
e Spectral estimation - Prony’s method
e More recently Pawar and Ramchandran’13, Hassanieh, Indyk, Katabi'12
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SFFT - A Sparse Graph Based Approach

Main ldea - Pawar and Ramchandran 2013
e Sub-sampling in time corresponds to aliasing in frequency
e Aliased coefficients < parity check constraints of GLDPC codes

CRT guided sub-sampling induces a code good for Peeling decoder

e Problem is identical to syndrome source coding
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|
SFFT - A Sparse Graph Based Approach

Main ldea - Pawar and Ramchandran 2013
e Sub-sampling in time corresponds to aliasing in frequency
e Aliased coefficients < parity check constraints of GLDPC codes
e CRT guided sub-sampling induces a code good for Peeling decoder

e Problem is identical to syndrome source coding

FFAST for Computing the DFT - Pawar and Ramchandran 2013
e Sampling complexity: M = O(K) time domain samples
o Computational complexity: O(K log K)
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Subsampling and Aliasing - A Quick Review

Subsampling results in aliasing

N—-DFT

o Let z[n] —— X|[k], k,n=0,1,...,N—1
o Let z4[n] = z[mL], m=0,1,...,N/L = M be a sub-sampled signal
o Let a4[m] MEDET, x, []] be the DFT of the sub-sampled signal
L—1
o | Xl =MD X[l +pM]

p=0

60
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Aliasing and Sparse Graph Codes

0]

(1]

z[2]

z[3]

z[4]

5]

LN Ix[o] |x[1] . X[3] | X[4]

X[s5]

25: Sub-sampled by f1 = P, =2 Factor graph

BE OE B
v,

Zs: Sub-sampled by fo = P, =3

X4[0] = X[0] + X[3]

Xs[1] = X[1] + X[4]

Xa[2] = X[2] + X[5)

Zg[0] = X[0] + X[2] + X[4]

Z4[1] = X[1] + X[3] + X[5]

61




FFAST Algorithm Example

z = (.L[O].L[:] ,,,,, 1[6])@ s = (2]0], z[2], z[4]) 5 OFT] X, = (X,[0], X,[1], X,[2])
et z. = (z =I5 ¢ (% ¢ ¢
oy = Gl sl o % = (00, Kl K02
: @ 25 = (x[0], z[3]) [opt DFT Zs = (Z,[0), Z[1])
Stage 2 o o (] a — P T
= Glllal) ol 20— (200,20
w= e”%
X,[0] = X[0] + X[3]
X,[0] = X[0)w” + X [3]w?
Xs[l] = X[1] + X[4]
X[1] = X[1w! + X[4w?
Xs[2] = X[2] + X[5]
Xs[2] = X[2w? + X [5]w®

Z[0) = X[0] + X[2] + X[4]
Z5[0) = X[0]w” + X[2Jw? + X [4]w?

Zg1] = X[1] + X[3] + X[5]
Zs[l] = X[l]uvl + X[‘S]u)3 + X[5]u)5 62 /90
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Singleton Detection

w=e JT
X,[0] = X[0] + X[3]
Xs[0] = X[0)w” + X [3)uw?
Xs[1] = X[1]+ X 4]
Xs[1] = X[1Jw! + X [d]w?
X,[2] = X[2) + X[5]
¥s[2] = X [2Jw?

Z4[0] = X[0] + X[2) + X[4]
Z5[0] = X[0Jw® + X [2Jw?® + X[4w?
Zy[1] = X[1] + X[3] + X[5]
Zs[1] = X[1w! + X[3Jw® + X [5]w’

Singleton condition for a checknode

o Leti= =N log(¥el). If 0. < i < N — 1, then checknode  is a Singleton.

e Pos(l) =i is the only variable node participating and X,[{] is its value.
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FFAST Decoder

| = X[0] + X[3]
Xs[0] = X[0)w” + X [3)uw?
Xs[1] = X[1] + X[4)
Xlt] = X[ + X[4Jut
X2 = X[2) + X[5]

] = X[2w?

Z4[0] = X[0] + X[2) + X[4]
Z5[0] = X[0Jw® + X [2Jw?® + X[4w?
Zy[1] = X[1] + X[3] + X[5]
Zs[1] = X[1w! + X[3Jw® + X [5]w’

Peeling decoder
¢ 1 non-zero value among the neighbors of any right node can be recovered
e lteratively errors can be corrected and analyzed for random non-zero coeffs

647790
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FFAST Decoder Example

Let N = 6, and the non-zero coefficients be X[0]=5, X[3]=4, X[4]=7
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FFAST Decoder Example

Example 1
Let N = 6, and the non-zero coefficients be X[0]=5, X[3]=4, X[4]=7

Z40] = 12

Z[0] = 5w + 7wt
Zs1] =4

Z[1] = 4w

90
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FFAST Decoder Example

Let N = 6, and the non-zero coefficients be X[0]=5, X[3]=4, X[4]=7

X[0]

Xs[0]=9

X[0] = 500 + 4w’
X[ O X[1] =7

X,[1] = 7w
x[2) Xsf2) =0 Y ble!

. %o es, recoverable

X3

Zi[0] = 12

X[ Z5[0] = 5w’ + 7w

X[ ()

Z[1] = 4
Z[1] = 4w
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Generalization

=T
)f*“[”] = X[0] +( X[3] ,
x — i?: i ;m/: ;[T:[e]zl
1 . X[1] = X[tw! + X[aJw!
bl e X1+ X0
X2 = X[2Jw? + X [5]w”

z Z,
Stage .
s

Stage d

Z[0] = X[0] + X[2] + X[4]
Z4[0] = X[0)w” + X [2Jw? + X [4]uw

Z[1] = X[1] + X[3] + X[5]
Z[1] = X[1]w! + X[3]w’ + X [5]w’

Reed Solomon component codes
o (X,[l1], X,[l1]) correspond to 2 syndromes of a 1-error correcting RS code

e RS is over the complex field, no miscorrection
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Product codes and FFAST (d = 2)

e X: K-sparse spectrum of length N = PP, (P; and P; are co-prime)
e X' P; x P, matrix formed by rearranging X according to mapping M

Py—1
X = D> X[l+iP], 0<lL <Py—1
i=0

L]

Zella] = ;0 Hlewifel 05tz ==t X, [0— | X[0] | X[5] | x10]] x]15]

J X, 1)—|X[6)| X[1) | X[6] | X[11)

Mapping Xo2]— | X[12]| X [17]| X[2] | X[7]
The mapping from X (r) to X'(4, j) is given by Xs[8l—| X[8] | X[13]| X [18]| X[3]
(i,j) = M(r) = (r mod P, r mod P). Koltl— | X1 | XPT XX 1)

Note: CRT ensures that M is bijective
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Product codes and FFAST (d > 3)

N=P x Py, x...x Py

(11,92, ... ,iq) = M(r) = (r mod fi,r mod fs,..

Less-sparse regime
fi=N/P, i=1,2,...,d

d=3

Very-sparse regime

fi=P, i=12,...

d=3

., mod fq).

,d

P
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Connections between FFAST and Product Codes

1=

o ,& [/ /i DET}

z Xy,
Xy 1)

Zi2t-1)s Aor1)s
D
z Z,

Pecling
Decoder

T
—p, ——

P

Z Z(2t-1)s Zot-1)s /
= % L
_—-»X

FFAST
d stages
2t branches
Non-zero coefficients
Recovery of coefficients

Product codes
d-dimensional product code
t-error correcting RS component codes
Error locations
Iterative decoding

teeee
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Thresholds

Theorem 1

Less sparse case: In the limit of large P, the FFAST algorithm with d branches
and 2t stages can recover the FFT coefficients w.h.p if K < 24t

Cd,t”

Cat = ming, {m/74"1(m)}

Threshold = # of measurements __ 2dt

recoverable sparsity Cd,t
d=2 d=3 d=4 d=5 d=6 d=7 d=8
t=1 4.0 24436 2.5897 2.8499 3.1393 3.4378 3.7383
t=2 | 23874 25759 29993 3.4549 39153 4.3736 4.8278
t=3 | 23304 27593 3.3133 3.8817 4.4483 5.0094 5.5641
t=4] 23532 209125 3.5556 4.2043 4.8468 5.4802 6.1033

Notice that L, K = O (N‘;d)




Interference-tolerant A/D Converter

Microsoft Observatory Seattle Monday 01/14/2013 10-11am

o 100
< 80 i
S 60 |
g_ 40 . I
§ 20 l |
0

1 156 2 25 3 35 4 45 5 55 6
Frequency (GHz)

Low-Res| .| Fast Spectrum
ADC Sensing

Hi-Res Baseband Signal
ADC

Processing
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Open problems

o If we use MAP decoding, is the subsampling procedure optimal?
e What happens when N = 2¢ ?

e Bursty case? Can we have threshold theorems?

e Using this idea in actual applications
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Syndromes and decoding

hl }LQ h, e hnfl hn
X = 0+
Ymx1
Hyxn
(Parity checks) Synd
yndromes
c e
nx1 (errorvector)
(codevector) t—sparse
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Syndromes and decoding

hy hy hi - hup_1 h,

X = 0+
Ymx1
Hyxn
(Parity checks)
Syndromes
c e
nx1 (errorvector)
(codevector) t—sparse

e Syndrome : Linear combination of h;s, i.e., y = e;h; ejh; ® ethy
¢ Decoding : Find min weight e : y = e;h; @ e;h; ® eih,
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Syndromes and decoding

hl hQ ]’Ll e hnfl hn
X = 0+
Ymx1
Hysen
(Parity checks) Syndromes
c e
nx1 (errorvector)
(codevector) t—sparse

* Syndrome : Linear combination of ks, i.e., y = e;h; © ejh; & eth,
¢ Decoding : Find min weight e : y = e;h; @ e;h; ® eih,
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Syndrome source coding

hl h2 hfi, e hnfl hn

Ymx1
Hyysn
(Parity check matrix) Syndromes
X
(Sourcevector)
t—sparse

o Compressed version is the syndrome y
e Reconstruction is the same as decoding

e Similar to the canonical sparse recovery problem
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Review of primitives

e |dea of a check node or a measurement node which is a function of some
symbols

e Singleton detection - be able to identify one non-zero symbol

e Peeling - if we know some symbols, be able to remove and adjust
measurement
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Application 3
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Compressed sensing

am

Ymx1 Am xn
(observations) (m<n)

Tpx1
(K —sparse)
Classical compressed sensing
e x is a K-sparse vector over R or C
e We ‘compress’ z by storing only y = A z
e Reconstruction - Solve £ = argmin ||z||p : y = Az

e CS - Solve & = argmin 2], : y = Az
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Compressed sensing

Ymx1 Am xn
(observations) (m<n)

Classical compressed sensing
e x is a K-sparse vector over R or C

e We ‘compress’ z by storingonly y = A x

¢ Reconstruction - Solve & = argmin ||z|[o : y = Az

e CS - Solve & = argmin 2], : y = Az

Tnx1
(K —sparse)

Coding theoretic approach - syndrome source coding over complex numbers

e Sensing matrix A < Parity check matrix H
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Data stream computing

Problem - consider a router in a large network
e Count the number of packets from source 4 to destination j, say x;;
e Data vector is huge, n = 264

e Heavy hitters - only a few of them are large

Ymx1 A
(sketch of x) mxn
(m<n)

Tnx1
(K —sparse)

Keep only a low dimensional (m < n) sketch of z

oy = Az < Syndrome, z; ; € Z*

Zmx1
e Reconstruction is same as decoding

78
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Incremental updates

b() bk l),,,l b,, :
a 4]
P
————————————————————————————————— X + = +
am| B[
Asen Ymx1 by,
(m<n) (sketch of ) (update)
Tpx1 Az
(K —sparse) (increment)

Sketch y supports incremental updates to z as the sketching procedure is linear.
(adding ith column vector of A to existing sketch)
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Compressed Sensing (Li, Ramchandran '14)

S1
1%
0 192
a _——
1
a X 52 1 Y3
= 1 Y4
0 -
2 1 Ys
Ymx1 Amxn I__.I Yo
(observations) (men) 0
Syndrome
Lnx1 Encoded output
(K —sparse) S3

Source nodes

Sketching matrix (A xn)

Apixn = H%xn 02 Bayxn
(d—left regular Graph) (Singleton identifier)

e
1w w2 ... wet| W=e
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Main results for compressed sensing

e Samples : 2K versus Info-theoretic limit K + 1
o Computations: O(K) versus O(K?)
o If K = 0O(n%), small price to pay in terms of samples

o Sample: O(klog™® n) vs limit: O(klog(n/k)) necessary and sufficient

o Computations: O(klog"® n)
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Main results for compressed sensing

Noiseless case
e Samples : 2K versus Info-theoretic limit K + 1
o Computations: O(K) versus O(K?)

o If K = 0O(n%), small price to pay in terms of samples

Noisy case

o Sample: O(klog™® n) vs limit: O(klog(n/k)) necessary and sufficient
o Computations: O(klog™® n)

Vem, Thenkarai Janakiraman, N. ITW'16

o Sample: O(klog"® (n/k)) vs limit: O(klog(n/k)) necessary and sufficient
o Computations: O(klog™® (n/k))
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Group Testing (Lee, Pedarsani, Ramchandran '15)

e |l World War - detect all soldiers with syphilis
o Tests performed on efficiently pooled groups of items

o Least no. of tests (m) to identify k defective items from n items
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Group Testing

Example

X=[10100010

a=[00000111]

Test-1

=[11010000]

az
Test-2

HEERH

Test-3

aa=[01011101]

100]

Test Results (Observations)

N
Yi = \/la,ij =<a;,X >
j=

Positive

y=1

Negative

=0

Positive

=1

Positive

y =1
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Group Testing

P O]
Ca—
me 1 AmX n
(Observations) (m<n)

(Pooling matriz)
Xn><1
(K —sparse)

<ay,X >
< QQ,X > N
Ymx1 =A0X = . <a;, X >= V a;;X;
(Observation vector) : j=1
< am, X >
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Group Testing

Singleton detection

) - [

ba
ba

bg
b3

bn_1
bn_1

oo

1

oo

0

oo

1

Note: If a checknode is a singleton, with ith bit-node

observation vector is the 7th column of A.

1 1
1 1
1 1
0 1
0 0
0 0
0 0
1 o0 |

participating, then the

e Singleton - if the weight of first two observation vectors together is L.

e Position of the defective item is - decimal value of the 1st observation vector.
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Group Testing

Measurement matrix (A, xn)

Amxn — Gﬂ Xn @ H6><n
(d—left Tegular Graph) (Singleton identifier)

Let, b; denote the L-bits binary representation of the integer i — 1, L = [log, n].

by bz bz - by
b1 bz bs - b
_ bi1 bi2 bis bin—1
= bi, bi, by bi,_,
bj, bj, by bj._,
bjl bjz bJs bjn—l
s1 = (1,42, ,in—1) and s2 = (j1,J2, "+ ,jn—1) are permutations

Decoding procedure
o Identify and decodes singletons using weights of the observation vector
¢ |dentify and resolve doubletons by guessing to satisfy the first pair of
observation vectors and checking if the guess satisfies the other two pairs of
observations
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Main results for group testing

Non-adaptive Group Testing (Noiseless and Noisy)
o Recovers (1 — €)k items with h.p.
e Samples: m = O(klogyn) versus limit: ©(klog(%))
o Computational complexity: O(klogn) (order optimal)
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Compressive Phase Retrieval

—

Amsxn

]

measurement

XeCn
(K-sparse)

vectors

y=|AX|
—

magnitude
measurements

Decoder

X
—

estimated
signal
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Compressive Phase Retrieval

y=|AX| %
| Apn | —> @ — | Decoder |—»
measurement magnitude esti_mated
vectors measurements signal

XeCn
(K-sparse)

Ymx1
(observations)

am

Aan

(m<n)

Tnx1
(K —sparse)
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Conclusion

e Review of a simple message passing decoder called the peeling decoder
e Density evolution as a tool to analyze its asymptotic performance
e Applications

o Massive uncoordinated multiple access
e Sparse Fourier transform computation
o Compressed sensing type sparse recovery problems
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Questions?

——
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Thank you!



