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Outline

 Motivation and Potential Impact
 Historical Background and basics
 The wiretap channel – the original

 “Wireless” wiretap models – the golden decade
 Enablers for more “realistic” settings
 New models and forward look

North American Information Theory School 
2016 2

6/21/2016



North American Information Theory School 
2016 3

Connecting

Why (Wireless) information 
security?

Internet 
of things
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Networked Systems
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Smart thermostatSmart phone

Security of Networked Systems
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Wireless: broadcast medium

Wireless has inherent security vulnerabilities:
Jamming

Tampering/Injection
Eavesdropping

…

Securing wireless communication links is essential.
Q: Could the wireless medium provide advantages 

for securing the links?

What is different in wireless?
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Securing Wireless Networked Communication

Conventional network design paradigm: 
 Layered approach (protocol stack)
 Security as an added feature at the application layer
 Pro: “simple”/practical; Con: breakable?

Wireless Networked Communication Security:
 Design from the bottom (PHY) up. 
 Abandon the notion of security as an add-on.
 Pro: unbreakable; Con: not yet practical?

allows us to use physical medium, and the transmitted signals to 
aid in providing security.
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AP vs PHY Confidentiality
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Applications

Physical 
Layer

Applications

Physical 
Layer

BITS

Enabled 
by noisy 
channels

Wirelessly transmitted 
signals designed for 

reliable and confidential 
communication

SECURE BITS

Computational security, 
keys
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[Shannon 1945]
 Secrecy is measured with mutual information.

 Adversary “enemy-cryptanalyst” is not computationally limited.

 Noiseless communication channels.

 Perfect Secrecy:
a-posteriori uncertainty = a-priori uncertainty

 Perfect secrecy if key rate >= message rate (use key only once.)
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From Shannon’s Miscellaneous Writings courtesy of N. Sloane

10
North American Information Theory School 

2016
6/21/2016



Shannon (1945)
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Perfect Secrecy
 Shannon – Secrecy Systems (1945)

 Perfect Secrecy: ( | ) ( )H M E H M=
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 The Wiretap Channel (WTC):
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Secrecy 

 Secrecy is measured by the equivocation rate at Eve:

 Objective: Have an      as high as possible.

 When  

(Weak Secrecy Constraint)
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[Wyner’s WTC 1975]

 Communication channels are not noiseless bit pipes!
 Eve’s channel is “worse” than Bob’s channel;                        

(is degraded w.r.t. Bob’s channel.)

 An information theoretically (weakly) secure and reliable 
communication rate  the notion of Secrecy Capacity.

 No shared key needed.
 Channel codes can be designed to leverage the physical 

channel advantage of Bob over Eve.
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WTC

Achievable rate satisfies:

1) Reliability condition:

2) Equivocation constraint: 
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Wyner’s WTC

 Key ingredient: Stochastic Encoding

 Encoder confuses the eavesdropper by reducing its rate 
and using a stochastic mapping

 Implemented with local randomness that needs to be 
shared with no one!

 Design channel codebooks that are “inflated”.

 Get secure rate as high as the max difference of MI.
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Secrecy Capacity
 Secrecy capacity when 

 The secrecy capacity of Wyner’s degraded WTC is 

 Stochastic Encoding:
 Code rate =                   (no. of cws =             ).

 Randomization rate =                (Each message                    cws).

 Rate reduction due to secrecy = 
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Capacity-Equivocation Region 
 The capacity-equivocation region for Wyner’s WTC is the set of 

all pairs              satisfying

 A typical             region:
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Achievability 

 For any        s.t. , the rate  
is achievable.

 Fix       .
 Generate              cws through                              .
 Index the cws as                where
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Codebook Structure
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Encoding and Decoding
 Encoding: 
 To send a message    , encoder randomly selects

and transmits               .  

 Decoding:
 Bob decides on      if                        is jointly typical for 

some      (typicality-decoder).
 Bob decodes both secret and dummy messages            

reliably since 

 Thus, reliability condition is satisfied. 
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Secrecy Analysis
 We show that                                  as follows: 
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Secrecy Analysis
 We show that                                    as follows: 

secrecy condition is satisfied
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Achievability of Capacity-
Equivocation region
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Achievability of I

 We have shown the achievability of I 
(Secrecy capacity when           ):
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Achievability of II
 Decompose     into      (secret message) and          

(public message).

 Using similar steps to achievability of I, we show 
the achievability of

 The difference here is that the randomization 
message also carries information. 
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Converse I
 : By channel coding theorem.

 We also have 
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Converse II
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Observations

 Achievability of                                           : we did 

not use degradedness.

 Degradedness is used in the converse proof.
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Non-degraded Channels

 When the channel is not degraded (as it is in 
Wyner’s set up):

 is it possible to achieve positive secrecy rate? 

 is it possible to create an equivalent degraded 

channel with some virtual input?
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The General Wiretap Channel

[Csiszar-Korner 1978] “BC with confidential messages”

 Extended Wyner’s wiretap channel to
1. Wiretap channel with Eve’s channel is not degraded w.r.t. 

Bob’s channel.

2. There is a common message for both Bob and Eve.

 New ingredients:

1. Super-position coding (to accommodate the common message.)

2. Channel prefixing.
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General WTC (1978)

Achievable rate triple

1. Reliability: 

2. Equivocation: 
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Secrecy Capacity

The secrecy capacity of the general wiretap channel is

where the maximization is over all distributions        

such  that                          is a Markov chain.        

North American Information Theory School 
2016 34

+−=
−−

)]:();([ max
),(

ZVIYVIC
ZYXVs

XVp ,

),( ZYXV −−

6/21/2016



Capacity-Equivocation Region
The capacity-equivocation region for the general 
wiretap channel is the union of all rate triples                 
satisfying 

for some             such that                                is a 
Markov chain.   
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Auxiliary Variables 

 represents a common message that is needed to 

be decoded at both Bob and Eve (Rate splitting).

 represents a virtual input to the channel 

(Channel prefixing).
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Channel Prefixing

 A virtual channel from     to
 Additional stochastic mapping from the message to the 

channel input:

 Actual channel:          and

 Constructed channel:         and 

 No channel prefixing is a special case of channel prefixing 
by setting 
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 Channel prefixing results in                         .

 From DPI, both mutual-information terms decrease, but 
their difference may increase.
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Rate Splitting

 Eve decodes a part of the transmitted message 

by Alice.

 Rate splitting: inserting auxiliary random variable     

such that                            is a Markov chain.

 Note that  
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Outline of Achievability
 For some            such that                      , the achievability of

is shown using stochastic encoding & super-position coding.

 By prefixing the channel         such that                             the 
claimed (larger) achievable region is obtained.                                              
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Outline of Converse
 New ingredient: Csiszar’s Sum Identity

Let             be length-n random vectors, and      be a
random variable. We have  

 Used to establish a similar proof for Wyner’s without 
the degradedness assumption            .
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 When there is no common message, the capacity-
equivocation is the union of all pairs             satisfying:

for some             s.t. is a Markov chain.

 We still need the two auxiliary random variables: 
 : Channel prefixing
 : Rate splitting       (still need super-position coding!)   
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Observation I 

We can limit the search to    s.t.  
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Secrecy Capacity Derivation

At
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Observation II 

 For secrecy capacity,

(no rate splitting needed.)
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Channel Orderings

 More capable channel: A wiretap channel is more 

capable if for all     ,                                .

 Less noisy channel: A wiretap channel is less noisy if 

for all      such that                          ,

 Degraded channel: A wiretap channel is degraded if 
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Orderings Relation
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Degraded WTC
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Observation III 

The secrecy capacity is always POSITIVE,

unless the channel to Eve is less noisy than 

the channel to Bob.
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 If the wiretap channel is less noisy

Capacity-Equivocation Region:

Secrecy Capacity:
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Proof
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If the wiretap channel is more capable:

(           is optimal)

Proof:

North American Information Theory School 
2016 51

Observation V 
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Observations

Observation VI

The wiretap channel is less noisy iff is 

concave in         .
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The Gaussian Wiretap Channel
[Leung-Yang-Cheong and Hellman 1978]:
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Observations
 Secrecy capacity does not depend on the correlation 

between          .

 The Gaussian wiretap channel is degraded:

Eve’s signal = Bob’s signal + Gaussian noise (or vice versa)

1. If            :                        

2. If            :
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Secrecy Capacity

 The secrecy capacity of the Gaussian wiretap 
channel is

 is the power constraint at Alice
 is the capacity of the channel to Bob
 is the capacity of the channel to Eve
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Positive Secrecy Rates

 When Bob’s channel is better, 

 When Eve’s channel is better, 

+−= ][ EBs CCC
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Proof of Secrecy Capacity 
 Recall: For degraded wiretap channel

 For          , we have

where 
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Proof II

 Which      maximizes (*)?

 Entropy Power Inequality (EPI): If          are 

independent random variables,  then 

and the equality holds if and only if          are Gaussian
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Proof III
 Use EPI to maximize :

 Both inequalities are achieved with equality when     is 
Gaussian, i.e.,                       .   
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Stochastic Encoding: Example
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Bob’s constellation Eve’s constellation

Bob’s noise
Eve’s noise
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Divide Bob’s constellation into subsets of 4 messages.

Message 1

Message 2

Message 3

Message 4
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Message 1

Message 2

Message 3

Message 4

All red stars denote the same message. Pick one randomly.
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Bob can decode the message reliably.

Message 1

Message 2

Message 3

Message 4
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For Eve, all 4 messages are equally-likely.

Message 1

Message 2

Message 3

Message 4
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From 1970’s to 2000s
 Information theoretic secrecy is very powerful:
 Unlimited computational power at Eve,
 Eve knows everything Bob does (codebook, scheme),
 Unbreakable, provable, and quantifiable secrecy.

 BUT: we need channel advantage for + secrecy rates:

Can this advantage be created?
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Multi-terminal Scenarios
 Wireless networks:
 Signals naturally superpose over the air

 Interference

 Fading (time-variations in the channel)

 Cooperation/relaying

 Multiple antennas

Each of these are potential resources for providing 
information theoretic guarantees for confidentiality.

66
North American Information Theory School 
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Network Design

 Mixing of signals on air is an asset for 
confidentiality (even better if we design transmitted 
signals carefully!!!)

 Bottom-line: 
Network can be designed to bring an “effective” 
channel advantage to legitimate entities.

North American Information Theory School 
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The Gaussian Multiple Access   
Wiretap Channel

[Tekin-Serbetli-Y., 2005]

Alice Bob

Eve

1M

1M2M

Charlie

21,
∧∧

MM
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Channel Model

 The power constraint at user is
 Secrecy capacity is open in general. 
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Achievable Region
[Tekin-Y. 2008]

The following region is achievable
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TDMA: The following region is achievable

The convex closure of the union of the two 
regions is achievable
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Achievability Outline I
Random-Binning region:
 Each user performs stochastic encoding (random binning):

 Generate code     : consists of              i.i.d. cws ~

 Randomly and independently  distribute cws of     into        

sub-codes                                     of equal size (       cws. )

 Encoding: To send message      , user    picks a cw randomly   
at uniform from             and transmits it.

 Decoding: Joint-typicality decoding.
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TDMA region:
 Obtained when users who can achieve single-user secrecy, 

use a single-user wiretap code in a TDMA schedule.

 The time share of user    is              , where           

 Transmitter     (having        )  transmits for      portion of 

time using power      while the other user is silent.

 When the WTC is degraded, i.e.,                , the TDMA region 
is a subset from the region achieved by random binning.
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General Multiple Access Wiretap 
Channel

 Achievable rate region:
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Achievability Outline 
 First, we show the following region is achievable using 

stochastic encoding at both users:

where

 Next, use channel prefixing at both users:

 Using time-sharing, the convex hull is achievable.

North American Information Theory School 
2016 75

6/21/2016

});,();,(      
);()|;(             
);()|;(             

,0,  :),(

212121

2122

1211

2121{

ZXXIYXXIRR
ZXIXYXIR
ZXIXYXIR

RRRR

−≤+

−≤
−≤

≥

).,|,()()(),,,( 212121 xxzypxpxpzyxxp =

.   , 2211 XVXV →→



Fading Wiretap Channel
 In the Gaussian WTC, a channel advantage is needed for 

secrecy; 

 Fading (time-varying channel) opportunistic secrecy
 Channel varies over time.
 Can we use this channel variation to obtain or improve 

secrecy?
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Fading Wiretap Channel

Parallel Wiretap channel 
provides the framework to 
analyze the fading WTC
[Liang-Poor-Shamai 2008]
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Secrecy Capacity of Parallel 
WTC

[Liang-Poor-Shamai 2008]
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Fading WTC: Ergodic Secrecy 
Capacity

 Each realization of              can be viewed as a sub-
channel that occurs with a positive probability.

 By averaging over all possible channel realization, we 
obtain the ergodic secrecy capacity               
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Power Allocation

 If               , the term inside expectation = 0

Optimal power allocation is water-filling over the   

channel realizations satisfying           
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Broadcast Wiretap Channel

 Secrecy Constraint:
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 Signals received by Bob1, Bob2, and Eve satisfy the 
degradedness order

 This generalizes Wyner’s WTC model to a multi-receiver 
channel.
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Degraded Broadcast Wiretap Channel
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[Ekrem-Ulukus 2009]



Secrecy Capacity Region

[Ekrem-Ulukus 2009]:

Secrecy capacity region for the degraded broadcast 
wiretap channel is

where     satisfies                              is a Markov chain. 

Achievability: Super-position coding + stochastic encoding
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Achievable Rate Region: 
General Case

 An achievable rate region for the Broadcast wiretap 
channel is 

where

for some             s.t. is a Markov 
chain.         is obtained by switching the rate constraints.

Achievability: Marton coding + stochastic encoding
North American Information Theory School 

2016 84
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Back to Multiple Transmitters…

 Can we improve the achievable rates?
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Utilizing Interference

 “J” can transmit noise to interfere the eavesdropper “E”.

 Information can be transmitted from “T” to “R” at a 
higher rate with this “Cooperative Jamming”.

Interference can benefit secrecy.

North American Information Theory School 
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Cooperative Jamming
[Tekin-Y., 2006]

 In MAC-WT, a user who can not achieve 
positive secrecy rate for his own, can opt to 
transmit noise to hurt the eavesdropper Eve.

 This user has a better channel to Eve than his 
channel to Bob, hence, hurting the reception of 
Eve more than Bob. 

North American Information Theory School 
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Creating a channel advantage!
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MAC-WT: Cooperative 
Jamming

[Tekin-Y., 2006]
88

Wiretap Channel

Alice Bob

Eve

Wiretap Channel with a Cooperative Jammer 

Charlie

6/21/2016North American Information Theory School 
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Cooperative Jamming Scheme

 Users are partitioned into two groups: “transmitting 
users” and “jamming users”.

 Jamming user     transmits                       instead of 
transmitting cws.

 Higher secrecy rates can be achieved when 
“weaker” users are jamming.
Weaker users = have better channel to Eve.
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Achievable Sum-Secrecy Rate

Assume          , hence user 2 is jamming. 

 Secrecy sum-rate achievable with cooperative 
jamming 

 This sum-rate can be >
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Cooperative Jamming 
[Tekin-Y., 2006]

When Eve is close to one transmitter, that transmitter can hurt
Eve more leading to a higher secrecy sum rate than if it tried to 

communicate.
North American Information Theory School 

2016
6/21/2016



92

Cooperative Jamming 
[Tekin-Y., 2006]

When Eve is close to one transmitter, that transmitter can hurt
Eve more leading to a higher secrecy sum rate than if it tried to 

communicate.

Cooperative jamming can be noise [Tekin-Y. 2006-2008]

or from a codebook [Lai-H.ElGamal 2008], [He-Y. 2009/14]

North American Information Theory School 
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Cooperative Jamming with Noise

North American Information Theory School 
2016
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• Cooperative Jammer J sends  Gaussian noise to jam Eve.   
• Jamming does affect the receiver R as well.
• Used when jamming cause more harm at Eve than Bob.   
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Cooperative Jamming with 
Random Codebook 

North American Information Theory School 
2016
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 When          , cooperative jamming causes more harm at Bob than Eve.

 However, If jamming signal is from a codebook, Bob can decode this 
interference (The channel of interference to Bob is better than Eve.)
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 Cooperative jammer transmits a cw from a Gaussian 

codebook

 Rate       is chosen s.t. Bob can decode the jamming signal
by treating the rest part as noise; 

 Bob subtracts the jamming signal from its received signal.
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 Alice uses stochastic encoding with randomization 
rate

 The achievable secrecy rate is:

 is positive when  
North American Information Theory School 
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Gaussian Signaling

 At low SNR, 
Gaussian i.i.d. signaling is within 0.5bit/ch use 
from the secrecy capacity [Ekrem-Ulukus, 2008].

 At high SNR, 
Gaussian signaling is suboptimal [He-Y., 2009].
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Gaussian Signaling: Secrecy rate 
saturates as power increases.

Despite optimizing transmission power, and cooperative 
jamming, the secrecy rate converges to a constant with 
increasing signal power, when Gaussian signaling is used.

Can we do better?
North American Information Theory School 
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Utilizing “Structure” in Transmissions

Binary Representation of 

North American Information Theory School 
2016
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Gaussian WTC with a Cooperative 
Jammer: structured signaling

Secrecy rate scales with power.
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Can secrecy rate scale 
for all channel gains?

YES. [He-Y. 2009/IT-2014]

 Achievable scheme uses Nested Lattice (NL) Codes 
and Integer Lattice Codes (ILC).

 Enabler (NL): Bound the leakage to Eve utilizing 
the structure of NL.

 Achievable scheme can produce 1/2 (ILC).
 s.d.o.f. upper bound =2/3 [He (Thesis) 2010].

North American Information Theory School 
2016

6/21/2016

P
Rs

P log
 lim

∞→
Secure degrees of freedom (s.d.o.f.) =

Achievable 
secrecy rate 

Power constraint 



smaller s.d.o.f. but better 
rate at finite SNR

102

s.d.o.f.=1/2 

Achievable s.d.o.f.  
[He-Y. 2009/14]
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Settling the problem: s.d.o.f. 
of GWTC with a Cooperative 

Jammer

103
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[Motahari et.al. RIA]
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Single Antenna GWTC with K 
Independent Jammers
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Gaussian MIMO Wiretap Channel
[Khisti-Wornell, 2007] [Oggier-Hassibi, 2007] [Shafie-
Liu-Ulukus, 2007]:
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Secrecy Capacity
[Khisti-Wornell, 2007] [Oggier-Hassibi, 2007] [Shafie-Liu-
Ulukus, 2007]:

 The secrecy capacity of the Gaussian MIMO WTC is

 No channel prefixing is needed and Gaussian signaling is optimal.

 Multiple antennas help in creating a channel advantage.
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 The Gaussian MIMO wiretap channel is not degraded:

Secrecy capacity:

Approach:
1. Find a computable upper bound.

2. Compute an achievable secrecy rate by using a potentially 
suboptimal

3. Show that the achievable rate matches the upper bound.
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Computable Upper Bound
 Consider an enhanced channel to Bob:

 A genie provides Eve’s observation to Bob, i.e., 

 The enhanced channel is degraded (no channel prefixing is needed.)

 The Optimal       is shown to be Gaussian. 

 The outer bound is tightened:
 The secrecy capacity of the original channel depends only on 

marginal distributions         and         .
 Yet,                      depends on the joint distribution

 Introducing correlation between noises at Eve and Bob tightens 
the upper bound. 
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Observations
 Achievability: Set

The derived outer bound is achievable.

 The upper bound corresponds to the secrecy capacity of an 
enhanced wiretap channel which is degraded.

 Bob observes Eve’s signal as well.

 This upper bound is achievable for the MIMO wiretap channel. 
 The optimal transmission results in an effective degraded 

channel:
 transmit over directions where Bob’s channel is better than 

the channel to Eve).
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High SNR Characterization

[Khisti-Wornell-2007]:

 s.d.o.f. equals ZERO when
no. of Eve’s antennas ≥ no. of Alice’s antennas  

(Rate does not scale w/ transmit power.)

Q) Does a multi-antenna cooperative jammer 
improve the s.d.o.f. of the MIMO WTC?

A) YES! 
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MIMO-WTC w/ MA Cooperative Jammer
[Nafea-Y.2015]
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Channel Model
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Settling s.d.o.f.
[Nafea-Y., 2015]

N×N×NexNc channel   (Nt=Nr=N):
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(N×N×N) Gaussian WTC with a Nc-antenna 
Charlie
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Achievable schemes
 Ranges of K need to be treated separately.

 Signal space alignment: 
Linear precoding + linear receiver processing.

 Signal scale alignment: 
 Complex analogy to “real” interference alignment
 projection and cancellation decoding scheme.

 Ds=integer: Gaussian streams are sufficient.
 Ds ≠ integer: structured streams are needed.

 In all cases, achievable results match the upper bounds.
North American Information Theory School 
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cN

sD

-Integer s.d.o.f. (Gaussian signals)

-No precoder needed at Charlie

-N even: Gaussian signals 

-N odd: structured signals + projection & cancellation   

-Same scheme for all Nc

- Charlie sends jamming ⊥ Bob

- Nc even: Gaussian signals
- Nc odd: structured signals + 

projection & cancellation 

6/21/2016
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Achievable schemes
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Lessons learned so far…
 Interference: 
 Interference can help!
 Structured codes/transmissions can outperform 

Gaussian codes.
Structured interference is good for securing 

wireless networks.

 High SNR behavior of secrecy capacity can be 
insightful!

Cooperation?
6/21/2016North American Information Theory School 
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Cooperation with Secrecy

Question: Can an “untrusted” relay ever be useful?

Relay=Eve

Alice Bob
nX

M
nY

n
rY n

rX

M̂

M
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Untrusted Relay Channel 
[He-Y.2010]

Secrecy rate is defined as:

Untrusted Relay: Relay which is “honest but curious”:

Relay

Source Destination( ), | ,r rp Y Y X X
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Local randomness at the relay

0),;(1lim =
∞→

n
r

n
rn

MI
n

YX)(1lim MH
n

R
ns ∞→

= s.t.

6/21/2016North American Information Theory School 
2016



122

First Phase: The Gaussian 
Wiretap Channel

DestinationSource

Relay

( )1,0~ NRZ

rY

a

DYX

( )1,0~ NDZ

 In the first phase, i.e., 
without relay-destination 
link, this is the Gaussian 
wiretap channel.

 If       then it is 
impossible to achieve 
positive secrecy rate.

,1>a
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Untrusted Relay Channel 
with a Direct Link 

A positive secrecy 
rate is achievable.
6/21/2016North American Information Theory School 
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Achievability outline

 In phase 1: 
Source performs stochastic encoding with bin size  

to confuse the relay. 

 In phase 2:
Relay performs compress-and-forward.

 Destination uses the received signals over the two 
phases to decode the confidential message.

 A positive secrecy rate is achievable!
North American Information Theory School 
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 There is no direct link from node 1 to node 2.
 The destination (node 2) can transmit.

6/21/2016North American Information Theory School 
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Achievability Outline

 In phase 1, Node “1” (source) transmits. Node jams the relay 
node “R”. Node “2” (destination) listens.

 In phase 2: the relay node sends out the signal received during 
phase 1 via compress-and-forward /compute-and-forward.

 Node 2 decodes based the signal it receives during the two phases

 A positive secrecy rate is achievable!
6/21/2016North American Information Theory School 
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Upper Bound Development 
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 Relay\Eavesdropper separation [He-Y.2009]: 
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Genie transfers … 
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Observations
 A two-hop link with untrusted relay is considered.

 The cooperation from the relay is essential to communicate 
in this scenario. 

 An achievable scheme based on cooperative jamming and 
compress-and-forward relay scheme is proposed.

 Cooperative jamming is the enabler of secure 
communication in this case.

 Can we afford to be this optimistic for ‘larger’ networks?
6/21/2016North American Information Theory School 
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Untrusted Relays
Multiple sources/destinations
Different levels of security clearance [Zewail-Nafea-Y. 2014]:
 Cooperative jamming by the destinations, using Gaussian noise, is 

again useful and necessary.
 Stochastic encoding and superposition at the sources
 Relay performs compress-and-forward.

 Gaussian signaling.
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Confidentiality at the end users [Zewail-Y. 2015]:
 Sources performs stochastic encoding over nested lattice 

codebooks. 
 Destinations jam with lattice points. 
 Relay performs scaled-compute-and-forward to decode two 

combinations of the received lattice points and forwards to the 
destinations. 

 Structured signaling. 

Multiple Sources/Destinations 

6/21/2016North American Information Theory School 
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Multiple Hops [He-Y., 2013] 

 Multi-hop line network with a chain of untrusted 
relays: 
Structured jamming by each destination is 

essential.

 Constant secrecy rate irrespective of hops.

 Nested lattice codes.

6/21/2016North American Information Theory School 
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Line Network w/ Untrusted 
Relays [He-Y., 2013]

 An eavesdropper may be located at any one of the relay 
nodes, trying to intercept M. Hence all of these relay 
nodes are untrusted.

 Each node can only receive from the previous node, so all 
that is sent from the source has to flow through the 
relays!

 Solution: Recruit the next destination as a cooperative 
jammer for the current relay. 

S D
JamTransmit

Relay Jam
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 The same principle as the two-hop case should work, 
but…

 Compress-and-forward scheme is not scalable to 
arbitrary number of hops.
 Channel noise will accumulate over hops and decrease 

the rate.
 Use nested lattice codes to transmit the secret 

message and for cooperative jamming.

Line Network w/ Untrusted Relays

S R R DR

6/21/2016North American Information Theory School 
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Let the power constraint of each node be , and assume unit 
channel gains and noise variance. For any         secrecy rate of 
at least

is achievable irrespective of the number of hops, where

The rate penalty, i.e., cost for secrecy is upper bounded 
by 0.5 bit/ch.use.

136

The Achievable Secrecy Rate

0ε >

0.5 .50 0R ε− −

( )0 2
1 log 2 0.5
2

R P= +

Secrecy rate does not decrease with number of hops.
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Strengthening the Security Metric

 Weak secrecy [Wyner 1975]:

 Weak secrecy constraint is satisfied with any 
information leakage that grows at a rate 
strictly less than n.

North American Information Theory School 
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Strong Secrecy 
[Csiszar 1996; Maurer-Wolf 2000]:

 Stronger metric; No information is leaked, asymptotically! 

 Recently, a number of secrecy results have been extended to 

strong secrecy.

 There is no proof of equivalence or strict containment.

 There is no standard technique for proving strong secrecy.
North American Information Theory School 
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Strong Secrecy Proofs 

1) Channel Resolvability [Wyner 1975b][Han-Verdu 1993]

What is the max. randomization rate required to 
induce an output distribution at Eve s.t. is 
independent from      ?

 Randomization rate     
 rate of the sub-code (stochastic encoding).

North American Information Theory School 
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Strong Secrecy Proof 
Methodologies 

1) Channel Resolvability

 Statistical independence is measured in

 Kullback-Leibler divergence (Relative Entropy), or

 Variational distance.

 Strong secrecy for Wiretap Channel: 
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2) Privacy Amplification 
[Bennett et.al. 1989; Maurer-Wolf 2000]

 Weak secrecy scheme is repeated many times.

 Alice & Bob compress      to a shorter string     that is 
uniform and indep. from Eve’s observation.

 Secrecy capacity is not reduced by privacy 
amplification.
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Strong Secrecy Proofs 
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2) Privacy Amplification 
[Bennett et.al. 1989; Maurer-Wolf 2000]
Distilling strongly secure string from    :
 Universal Hashing;
 select a hash function     at random from a family of hash 

functions s.t. is small,

 Extractors; 
 isolate randomness of      using a small additional number 

of perfectly-random bits)     
North American Information Theory School 
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 Most work assumes Eve’s CSI is known to the system

 Compound models 2008-2010: [Liang et al] 
[Ekrem-Ulukus], [Kobayashi et al]: 
Channel can be one of a set of possibilities.

 Fading setting [Goppala-Lai-ElGamal 2008]:
Eve’s CSI distribution known.

6/21/2016North American Information Theory School 
2016
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 Reality: Eve’s channel completely unknown.

 Question: How can we create advantage against a 
channel we have no idea about?  

 Answer: 
Multiple antennas == directional signaling and jamming!

 MIMO WTC [He-Y.,2010/IT 2014],
 s.d.o.f MIMO-MAC-WT [He-Khisti-Y.,2013],
 s.d.o.f MIMO-Broadcast-WTC [He-Khisti-Y.,2014].

6/21/2016North American Information Theory School 
2016
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 Multiple antennas at Alice and Bob can be used to inject 
“artificial noise” in directions orthogonal to those of the 
main channel [Goel-Negi, 2008].

 While this early work has the nice insight for signaling, it is 
incomplete since the actual coding scheme requires care.

 In other words, existence of a coding scheme that will 
“work” for all Eve CSI’s needs to be proved.

6/21/2016North American Information Theory School 
2016

MIMO-WTC w/ Unknown Eve CSI
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 CSI completely unknown, varies from ch use to ch use.

 MIMO Wiretap setting.

 [He-Y.,2010/2014]: A universal coding scheme does exist.
 Strong secrecy can be provided where ever Eve may be, as 

long as the legitimate parties have more antennas. 

6/21/2016North American Information Theory School 
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MIMO-WTC w/ Unknown Eve CSI:
Universal Coding Scheme
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Problem Formulation
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Main Result [He-Y. 2014]
 Theorem: For the MIMO wiretap channel, if   

has full rank, then the following secrecy rate 
is achievable:

where
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Proof Highlights
1. Introduce artificial noise at Alice to limit the received 

SNR of Eve. [Goel-Negi,2005].

2. Need to prove Strong Secrecy directly. 
([Maurer,2000] is not applicable).

3. Prove Strong Secrecy through variational distance d. 
If variational distance decreases exponentially fast to 
0 w.r.t. the number of channel uses, strong secrecy can 
be proved from [Csiszar,1996].

4. To bound d, use information spectrum method. 
[Han,1993] [Csiszar,1996][Bloch-Laneman,2008]
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To handle infinitely many 
sequences of Eve CSI…

1. Construct a finite set S of Eve CSI sequences by 
quantizing the channel gain [Blackwell et.al.,1959].

2. Find a small set of codebooks, s.t. aveage of d, dav, is 
uniformly bounded over all possible Eve CSI sequences 
in the set S [Ahlswede, 1978].

3. Prove when Eve CSI sequence is not in S, its dav is 
bounded by the dav when Eve CSI sequence is in S. 
[Blackwell et.al., 1959].
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Coding Scheme
 Given the small set of good codebooks, the communication 

is divided into 2 stages, as in [Ahlswede, 1978].

 Stage 1: Alice randomly chooses a codebook from  the 
small set of codebooks to transmit confidential message. 

 Stage 2: Alice tells Bob which codebook she chose in 
Stage 1.
 Alice’s choice is taken from a uniform distribution but 

need not be kept secret from Eve. In fact, we assume Eve
knows Alice’s choice perfectly. 

(It can be shown the rate loss due to stage 2 can be made 
arbitrarily small).
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Strengthening Eve Capabilities 

 Eve traditionally is a passive observer.

 Adversarial Eve: 
 Eve tampers with the legitimate channel, e.g.,
[Aggarwal et. al. 2009; MolavianJazi et.al.2009].

 Adaptive Eve:
 Eve controls her channel states, e.g., 
[He-Y. 2011]: Two-way channel and cooperative jamming 
essential for achievability.
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Objectives:
 Strengthening Eve’s capabilities.

 Extending attacker/threat models and providing 
quantifiable metrics for secure wireless 
networked communication. 

 Can PHY-security ‘replace’ or complement 
computational security?

More Capable Eavesdropper 
Models 



Wiretap Channel II 

[Ozarow-Wyner 1985]:

 Eve accesses out of    symbols (of her choice.)
 Noiseless main channel.  Binary input alphabet.

Secrecy constraint: 
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Wiretap Channel II 

Alice Bob

Eve

Noiseless

Eve controls 
erasure positions

WTC-II

Alice Bob

Eve

WTC
Noiseless

)( α−1 BEC

 Random Erasures

 DM Eve channel

 Secrecy capacity:

 Achievability: 
Stochastic Encoding

α−=1sC

 Eve chooses erasure positions

 Eve channel with memory

 Secrecy capacity:

 Achievability: Random partitioning                      
+ combinatorial arguments

α−=1sC

n, }10{=0C



WTC-II with Noisy Main Channel 
[Nafea-Y.,2015]

Secrecy constraint: 
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WTC-II with noisy main channel
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WTC-II with NMC 
[Nafea-Y., 2015]:
 Inner and outer bounds for capacity-equivocation region 

are derived.

 Secrecy rate bounds: 

 Secrecy capacity [Cuff et.al., 2015]:
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Can we model a powerful Eve 
in a realistic scenario?

 WTC Eve not capable enough
 WTC-II  Not practical
 WTC-II with NMC  Eve cannot “see” portion of cw.

YES! 
 New model:
 Eve sees all through a (noisy) channel.
 Eve can choose the portion she can tap perfectly.
 Generalizes and more “evil” Eve than all previous models!
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A New WTC model
[Nafea-Y., ISIT 2016] 
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Strong Secrecy (against any Eve selection):
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Special cases
 The new model generalizes known WTC models.
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Special cases
 The new model generalizes known WTC models.
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 The strong secrecy capacity of the new wire-
tap channel model is :

with           upper bounded as  
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Strong Secrecy Capacity
[Nafea-Y., ISIT 2016] 

||   U . ||    ||  X  U ≤



 At            :                                                        

 At            :
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 Wire-tap channel [Wyner1975] Multiple 
access wire-tap channel [Tekin-Y.2005]

 Multi-transmitter extensions for WTC-II 
with noisy main channel: [Nafea, Y. 2016] 
upcoming at ISIT 2016, ITW 2016
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Summary*
 Information Theory offers quantifiable security 

guarantees. Does not require computational approaches.
 Information theory offers a clean slate design starting 

from the physical layer providing strong secrecy guarantees 
for wireless networks.

 “Idealized” assumptions can be removed (with some rate 
penalty, but same security guarantees)

 Insights for such realistic scenarios bring us one step closer 
to the future wireless networks where security is provided 
at the foundation, i.e., by PHY!

*The following grants are gratefully acknowledged: DARPA-ITMANET; 
NSF: CCF-0514813, CNS-0721445, CT-0716325,  CIF-0964362,  CCF-
1319338, CNS-1314719; 

6/21/2016North American Information Theory School 
2016



166

cooperation

Interference

Structured tx

opportunistic

signaling

Information Theory: Design 
Insights

N
etworking Protocols

SECURE WIRELESS NETWORKS
6/21/2016North American Information Theory School 

2016


	Information Theoretic Security
	Outline
	Why (Wireless) information security?�
	Networked Systems
	Security of Networked Systems
	What is different in wireless?
	  Securing Wireless Networked Communication
	AP vs PHY Confidentiality
	[Shannon 1945]
	From Shannon’s Miscellaneous Writings courtesy of N. Sloane
	Shannon (1945)
	Perfect Secrecy
	Slide Number 13
	Secrecy 
	[Wyner’s WTC 1975]
	WTC
	Wyner’s WTC
	Secrecy Capacity
	Capacity-Equivocation Region 
	Achievability 
	Codebook Structure
	Encoding and Decoding
	Secrecy Analysis
	Secrecy Analysis
	Achievability of Capacity-Equivocation region
	Achievability of I
	Achievability of II
	Converse I
	Converse II
	Observations
	Non-degraded Channels
	The General Wiretap Channel�
	General WTC (1978)�
	Secrecy Capacity
	Capacity-Equivocation Region
	Auxiliary Variables 
	Channel Prefixing
	Channel Prefixing
	Rate Splitting
	Outline of Achievability
	Outline of Converse
	Slide Number 42
	Observation I 
	Secrecy Capacity Derivation
	Observation II 
	Channel Orderings
	Orderings Relation
	Observation III 
	Observation IV 
	Proof
	Observation V 
	Observations
	The Gaussian Wiretap Channel
	Observations
	Secrecy Capacity
	Positive Secrecy Rates
	Proof of Secrecy Capacity 
	Proof II
	Proof III
	Stochastic Encoding: Example
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	From 1970’s to 2000s
	Multi-terminal Scenarios
	Network Design
	The Gaussian Multiple Access   Wiretap Channel
	Channel Model
	Achievable Region�[Tekin-Y. 2008]
	Achievable Region
	Achievability Outline I
	Slide Number 73
	General Multiple Access Wiretap Channel
	Achievability Outline 
	Fading Wiretap Channel
	Fading Wiretap Channel
	Secrecy Capacity of Parallel WTC
	Fading WTC: Ergodic Secrecy Capacity
	Power Allocation
	Broadcast Wiretap Channel
	Degraded Broadcast Wiretap Channel
	Secrecy Capacity Region
	Achievable Rate Region: General Case
	Back to Multiple Transmitters…
	Utilizing Interference
	Cooperative Jamming�[Tekin-Y., 2006]�
	MAC-WT: Cooperative Jamming
	Cooperative Jamming Scheme
	Achievable Sum-Secrecy Rate
	Cooperative Jamming [Tekin-Y., 2006]
	Cooperative Jamming [Tekin-Y., 2006]
	Cooperative Jamming with Noise
	Cooperative Jamming with Random Codebook 
	Cooperative Jamming with Random Codebook
	Cooperative Jamming with Random Codebook
	Gaussian Signaling
	Gaussian Signaling: Secrecy rate saturates as power increases.
	Utilizing “Structure” in Transmissions
	Gaussian WTC with a Cooperative Jammer: structured signaling
	Can secrecy rate scale for all channel gains?
	Slide Number 102
	Settling the problem: s.d.o.f. of GWTC with a Cooperative Jammer
	Single Antenna GWTC with K Independent Jammers
	Gaussian MIMO Wiretap Channel
	Secrecy Capacity
	Slide Number 107
	Computable Upper Bound
	Observations
	High SNR Characterization
	MIMO-WTC w/ MA Cooperative Jammer�[Nafea-Y.2015]� 
	Channel Model
	Settling s.d.o.f.�[Nafea-Y., 2015]
	Slide Number 114
	Slide Number 115
	Achievable schemes
	Achievable schemes
	Lessons learned so far…
	Slide Number 119
	Cooperation with Secrecy
	Untrusted Relay Channel �[He-Y.2010]
	First Phase: The Gaussian Wiretap Channel�
	Untrusted Relay Channel with a Direct Link 
	Achievability outline
	Untrusted Relay Channel Without a Direct Link
	Achievability Outline
	Upper Bound Development 
	Genie transfers … 
	Slide Number 129
	Observations
	Untrusted Relays
	Slide Number 132
	Multiple Hops [He-Y., 2013] 
	Line Network w/ Untrusted Relays [He-Y., 2013]
	Line Network w/ Untrusted Relays
	The Achievable Secrecy Rate
	Strengthening the Security Metric
	Strong Secrecy 
	Strong Secrecy Proofs 
	Strong Secrecy Proof Methodologies 
	Slide Number 141
	Slide Number 142
	Mitigating the Assumption of Known Eve CSI
	Mitigating the Assumption of Known Eve CSI
	MIMO-WTC w/ Unknown Eve CSI
	MIMO-WTC w/ Unknown Eve CSI:�Universal Coding Scheme
	Problem Formulation
	Main Result [He-Y. 2014]
	Proof Highlights
	To handle infinitely many sequences of Eve CSI…
	Coding Scheme
	Slide Number 152
	Slide Number 153
	Wiretap Channel II 
	Slide Number 155
	WTC-II with Noisy Main Channel �[Nafea-Y.,2015]�
	WTC-II with NMC 
	Can we model a powerful Eve in a realistic scenario?�
	A New WTC model�[Nafea-Y., ISIT 2016] ��
	 Special cases
	 Special cases
	Strong Secrecy Capacity�[Nafea-Y., ISIT 2016] 
	 Special cases
	Smarter Wire-tappers in Multi-transmitter models 
	Summary*
	Slide Number 166

