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Outline

= Motivation and Potential Impact
= Historical Background and basics
= The wiretap channel - the original

= "Wireless" wiretap models - the golden decade
= Enablers for more "realistic” settings
= New models and forward look
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Security of Networked Systems ———

Smart phone

North American Information Theory School 6/21/2016
2016 :



(gt Wireless Communications
' °,E, PennState & Networking Laboratory

What is different in wireless?

Wireless: broadcast medium

Wireless has inherent security vulnerabilities:

Jamming
Tampering/Injection
Eavesdropping

Securing wireless communication links is essential.

Q: Could the wireless medium provide advantages
for securing the links?
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Securing Wireless Networked Communication

Conventional network design paradigm:

= Layered approach (protocol stack)
= Security as an added feature at the application layer
= Pro: “simple”/practical; Con: breakable?

Wireless Networked Communication Security:

= Design from the bottom (PHY) up.
= Abandon the notion of security as an add-on.
= Pro: unbreakable; Con: not yet practical?

allows us to use physical medium, and the transmitted signals to
aid in providing security.
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AP vs PHY Confidentiality —

Computational security,
keys

ﬂ[ Applications ] [Applica‘rions]

I Wirelessly transmitted

signals designed for

SECURE BITS reliable and confidential

communication

I Enabled

: A f : A by noisy
Physical Physical | gum

channels

Layer Layer

- J
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s [Shannon 1945]

= Secrecy is measured with mutual information.
= Adversary “enemy-cryptanalyst” is not computationally limited.
= Noiseless communication channels.

= Perfect Secrecy:
a-posteriori uncertainty = a-priori uncertainty

= Perfect secrecy if key rate >= message rate (use key only once.)
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Shannon (1945)

ABSTRACT

A matliematical theory of secrecy systens is
developed. Three main problems are considered. (1) A
logical formulation of the problem and a study of the
mathematical structure of secrcey systemns., (2) The
problen of "theoretical secrecy," i.c., can a system be
solved givon unlimited timc and how much material must
be intorccptod to obtain a uniquo solution to cryptograms,
A sccrocy mcasurc callcd tho "equivocation™ 1s dcfincd
and its propcrtics dcvclopcd, ?3) Thc problem of
npractical socrooy.® How can systcms bc mado 4iffiocult
to solve, ovon though a solution is thoorctically
possibloe - .
‘ o yHIS DOCUMENT CONTAINS INFORZIL Ve Umren

- CEFENSE OF
giTgsHin;:EortcAaL WELNSING OF‘ ﬁIHE Egm
LAWS, TIMLE 12 hee. stm.:."-.%t:%sm A
e TRANSWISSION OR TME REVELI G
CONTENTS IN ANY MANMER TO

PERSON 1S PROHIMTED 8Y LAY
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Perfect Secrecy weanarsi

= Shannon - Secrecy Systems (1945)

Enemy cryptanalyst

Message Cryptogram | Message
Message | M |Encipherer E | Decipherer | M
Source T, Ty
7 Y
Key K ‘
Key
Source

* Perfect Secrecy: H(M |E)=H(M)
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[Wyner 1975]

= The Wiretap Channel (WTC):

41+
M

Alice
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= Secrecy is measured by the equivocation rate at Eve:

1 .
R, =liM=H(M|Z") == R <R =lim=H(M)

n—o0 N n—o N

= Objective: Have an R, as high as possible.

« When R.=R mep lim—[H(M)-H(M|Z")]=0

N—o0 n

— Iiml I(M;Z")=0 (Weak Secrecy Constraint)

N—00 n
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= Communication channels are not noiseless bit pipes!

= Eve's channel is "worse” than Bob's channel;
(is degraded w.r.t. Bob's channel.)

= An information theoretically (weakly) secure and reliable
communication rate =» the notion of Secrecy Capacity.

= No shared key needed.

Channel codes can be designed to leverage the physical
channel advantage of Bob over Eve.
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. M
M Alice/ | X' . | Y Bob/
| Encoder \Mam Anetine l | Decoder [
Zn
Eavesdropper E @
ve
channel
Achievable rate satisfies:
1) Reliability condition: P"” =Pr{M = M}<¢
2) Equivocation constraint: HM[Z) >d —
H(M) .
Secrecy is measure by equivocation at Eve: R, =lim—H(M | Z")

n—>o N
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Wyner's WTC

= Key ingredient: Stochastic Encoding

= Encoder confuses the eavesdropper by reducing its rate
and using a stochastic mapping

= TImplemented with local randomness that needs to be
shared with no onel

= Design channel codebooks that are "inflated”.

= Get secure rate as high as the max difference of MI.
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Secrecy Capacity

= Secrecy capacity when

R = limIH(M|Z" )—IlmlH(M) R (d=1)

N—oo n

= The secrecy capacity of Wyner's degraded WTC is
C,=max [I(X;Y)-1(X: Z)]

X -Y-Z
= Stochastic Encoding:
= Code rate = |(X;Y) (no.of cws = 2nI(X;Y)).
= Randomization rate = | (X;Z) (Each message —> 2" (%) cws).

» Rate reduction due to secrecy = | (X;Z).

North American Information Theory School 6/21/2016
2016 18



(gt Wireless Communications
o\ Penn5tate & Networking Laboratory

Capacity-Equivocation Region —

= The capacity-equivocation region for Wyner's WTC is the set of
all pairs (R, R,) satisfying

O<RZI(X;Y)
O<R, <I(X;Y)-1(X;2)
= A typical (R, R,) region:

R. 4 rate- equivocation tradeoff

/

- » R C =max|(X;Y)
C C Px

S
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Achievability

* Forany p, st. X-Y—-Z, therate
R, =1(X;Y)-1(X:Z) s achievable.

FiX px. _ )
« Generate 2" cws X" through p(xn):Hi:1 Py (%)
Index the cws as X"(m, M) where

L e{l...2™},  mell.. 2™}
N

denotes the confusion (dummy)
message [carries no information]

denotes the actual
secret message

North American Information Theory School 6/21/2016
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2nRS<

2nRs
— A - —
an| w2 i) (L2")
21 | 2.2 (2,1')\ (2,2™)
(D | (.2) @) | (i2")
(2nRs 1) (ZnRS 2) X%nRs)-/{ (2nRS ’znﬁs)

R =1(X;Y)=1(X:2Z)-¢,

R,

1(X:Z)-¢

2016
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Encoding and Decoding

= Encoding:
= To send a message M, encoder randomly selects
mefl,...,2"} and transmits X"(m,M).

= Decoding:

= Bob decides on m if (x"(M, M), y") is jointly typical for
some M (typicality-decoder).
= Bob decodes both secret and dummy messages m,m

reliably since R, +R, <I1(X;Y)

= Thus, reliability condition is satisfied.

North American Information Theory School 6/21/2016
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= We show that IimlI(I\/I;Z”):O as follows:

n—oc N

HM|Z")=H(M,M|Z")-=H(M |M,Z")
=HM,M)=I(M,M;Z"Y=H(M |M,Z")
@\4(M)+H(|\7|’)-|(X”;Z“)-H(|\Z IM,Z")

Data processing inequality (DPI): (M), M ) -X"-Z"

—

I((M;Z") < 1(X";Z")+H(M [M,Z")—=H(M)

North American Information Theory School 6/21/2016
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= We show that Iimll(M;Z”)zo as follows:

n—o N
<n(1(X;Z)+&,) <ne,

=nR, =nl(X;Z)

Given M, Eve can
decode M reliably
since R, =1(X;Z2)

—) Iim1 I(M;Z")=0 secrecy condition is satisfied

n—o N

North American Information Theory School 6/21/2016
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Achievability of Capacity- ———
Equivocation region

The capacity-equivocation region is the UNION of
regions on the form (each is for a fixed py):

C. |t [l

r======1r-=-r1r

L(X5Y) - 1(X :2)
S

North American Information Theory School 6/21/2016
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= We have shown the achievability of I

(Secrecy capacity when R=R, ):

R=R, =1(X;Y)=1(X:2)

North American Information Theory School
2016
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[ remmstac Achievability of II oaners?

= Decompose M into M, (secret message) and M
(public message).

= Using similar steps to achievability of I, we show
the achievability of R=1(X;Y), R, =1(X;Y)-1(X:Z)
m efl,...2™} m efL...2""}
R =1(X;Y)=1(X;Z)-¢, R, =1(X;Z)-¢,
R, +R, <1(X;Y)

» The difference here is that the randomization
message also carries information.

North American Information Theory School 6/21/2016
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Converse I g b

= R <I(X;Y): By channel coding theorem.

= We also have

nR,=H(M |Z")
<HM |Z")-H(M |Y")+ne¢ Fano's inequality
=I(M;Y")=I(M;Z")+ne
<I(M:Y",Z") = 1(M:Z") +ne
—I(M:Y"|Z")+ne

North American Information Theory School 6/21/2016
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Converse II
nR, <I(M;Y"|Z")+ne

=> I(M;Y; [ Y™, Z") +ne
=1

” Chain rule & conditionin
< HY. | Z)-H( | X.,Z)]+n 9
Z:ll[ Yil2)=HG X, 2)]+ne cannot increase entropy

=> 1(X;;Y,1Z))+ne
- Degradedness

= XY) - 1(XiZ)]+ns (X, ~Y,~Z,)
< n_[| (X:Y)=1(X;Z)]+ne Single letterization

North American Information Theory School
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Observations

= Achievability of R =max[I(X:;Y)-1(X:Z)]": we did

not use degradedness.

= Degradedness is used in the converse proof.

North American Information Theory School 6/21/2016
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Non-degraded Channels

= When the channel is not degraded (as it is in
Wyner's set up):

= is it possible to achieve positive secrecy rate?

= s it possible to create an equivalent degraded

channel with some virtual input?

North American Information Theory School 6/21/2016
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The Gener‘al Wir.e.l,ap Channe| WCANGPSU

[Csiszar-Korner 1978] "BC with confidential messages”

= Extended Wyner's wiretap channel 1o

1. Wiretap channel with Eve's channel is not degraded w.r.t.
Bob's channel.

2. There is a common message for both Bob and Eve.

= New ingredients:
1. Super-position coding (to accommodate the common message.)

2. Channel prefixing.

North American Information Theory School 6/21/2016
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; M, M,
M. M Y Bob — :
1 X"
- Alice >| Py 2
~J . LW
Achievable rate triple (R,R,,R;) Z ve

1. Reliability:

PaN

™

lim P™ = limPr((M, M,,) = (M, M) U{M, , = M })=0

N—>oo Nn—>oo

.1
2. Equivocation: R <Ilim=H(M |Z")

n—oo n

North American Information Theory School
2016
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Secrecy Capacity

The secrecy capacity of the general wiretap channel is

C,= max_ [I(V;Y)-I(V:2Z)"

V-X—(Y,2)

where the maximization is over all distributions Py
such that V- X —(Y,Z) is a Markov chain.

North American Information Theory School 6/21/2016
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Capacity-Equivocation Region —

The capacity-equivocation region for the general
wiretap channel is the union of all rate triples
satisfying (R,R.,R,)

R, <min{l(U;Y), 1 (U;Z)}

R, +R, <1V Y |U)+min{l(U;Y), 1 (U;2)}
R < 1 (V;Y [U)-1(V;Z|U)

for some (U,V) such that U -V -X —(Y,Z) isa
Markov chain.

North American Information Theory School 6/21/2016
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Auxiliary Variables

= U represents a common message that is needed to
be decoded at both Bob and Eve (Rate splitting).

= V represents a virtual input to the channel

(Channel prefixing).

North American Information Theory School 6/21/2016
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Channel Prefixing

A virtual channel from V to X.

Additional stochastic mapping from the message to the
channel input: M -V — X.

Actual channel: X =Y and X = Z.

Constructed channel:V - Y and V — Z.

No channel prefixing is a special case of channel prefixing
by setting V = X.

North American Information Theory School 6/21/2016
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Channel Pr'efixing WCAN@PSU

"""""" | Y| Bob

M V' X"
—:> Encoder I Py z)x

e e e e e e e e e I 7™ Eve

= Channel prefixing resultsin \V — X —(Y,Z).

= From DPI, both mutual-information terms decrease, but
their difference may increase.

North American Information Theory School 6/21/2016
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Rate Splitting

= Eve decodes a part of the transmitted message

by Alice.

= Rate splitting: inserting auxiliary random variable U
such that U -V - X —(Y,Z) is a Markov chain.

= Note that 1(U,V;Y)=1(V:Y)
U-VvV-Y

North American Information Theory School 6/21/2016
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Outline of Achievability
* For some (U, X) such that U — X —(Y,Z2), the achievability of

R, <min{l (U;Y),1(U;2)}
R, +R < TOGY JU)+min{l(U:Y), 1(U;Z)}
R, <T(X;Y [U)=1(X;Z |U)

is shown using stochastic encoding & super-position coding.

» By prefixing the channel Pxy such that U -V — X —(Y,Z) the
claimed (larger) achievable region is obtained.

North American Information Theory School 6/21/2016
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Outline of Converse

= New ingredient: Csiszar's Sum Identity
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& Networking Laboratory
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Let T",U" be length-n random vectors, and G be a
random variable. We have

> HULLT G, T = 1(T"U, |G, UL,
i=1 =1

= Used to establish a similar proof for Wyner's without

the degradedness assumption (X -Y —Z),

North American Information Theory School
2016
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Capacity-Equivocation Region for R,=0

= When there is no common message, the capacity-
equivocation is the union of all pairs (R,R,) satisfying:

R<SI(VY)
R, <I(V;Y [U)-1(V;Z]|U)
for some (U,V) s.t. U-V —-X—(Y,Z) is a Markov chain.

= We still need the two auxiliary random variables:

= \ : Channel prefixing
= J : Rate splitting (still need super-position coding!)

North American Information Theory School 6/21/2016
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Observation I

R<IVY),  R.<I(V;YU)-1(V;Z|U)

Capacity-Equivocation

U,V) st U-V-X—(Y,2) regionat R, =0

We can limit the search to U s.t. I(U;Y)<IU;Z2):

IV Y [U)=1(V;Z|U)=1(V;Y)-1(V;Z)
“TI(U;Y)-1(U;2)

IfnoU st I(U;Y)<I(U;Z); SetU =empty set

North American Information Theory School 6/21/2016
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Secrecy Capacity Derivation

C,= max_ [I(V;Y)-I(V:2Z)"

V-X—(Y,2)

At R=R,
Re <1(V;Y [U)-1(V;Z]|U)
=2 U =u)[I(V;Y |U =u)-1(V;Z|U =u)]

uel

Srp@ux[l(V;Y|U =u)-1(V;Z|U =u)]
=1(V;Y |U =/U*)—I(V;Z|U =u®)=1(/5Y)-1(V52)

maximizer whenU =u*, V =V’

North American Information Theory School 6/21/2016
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Observation IT

= For secrecy capacity,

C

S

= max [I(V:Y)=1(V:2)]"

V-X—(Y,Z)

(no rate splitting needed.)

Wireless Communications
& Networking Laboratory

WCAN@PSU
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Channel Orderings

= More capable channel: A wiretap channel is more
capable if forall X, I(X;Y)>1(X;Z).
= Less noisy channel: A wiretap channel is less noisy if
forall V such that V — X —(Y,Z).
1(V;Y)=1(V;2)
= Degraded channel: A wiretap channel is degraded if
Py zix (Y, 21 X) = Py (Y[ X)Pzx (Z]X),  VXy.Z

North American Information Theory School 6/21/2016
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Orderings Relation

More capable WTC

Less noisy WTC
Degraded WTC

North American Information Theory School 6/21/2016
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Observation ITI

C.= max [I(V:Y)=I(V:2)]"

> V-X—(Y,Z)

The secrecy capacity is always POSITIVE,
C. =0,

unless the channel to Eve is less noisy than
the channel to Bob.

North American Information Theory School 6/21/2016
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Observation IV

= If the wiretap channel is less noisy

Capacity-Equivocation Region: R<T(X;Y)
R, <I(X:Y)-1(X:2)

Secrecy Capacity:
C, =max [1(X;Y)-1(X;2)]
Px

Wyner's result holds for the Broader class
of less noisy channels

North American Information Theory School 6/21/2016
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P r o o f WCAN@PSU

R, <I(V;Y [U)-1(V;Z]|U)
=1(V;Y)-1(V;Z2)-[IU;Y)-1(U;2)]
=1(X;Y)=1(X:2)

[1OGY V)= 1(XZ|V)]-[1U:Y) - 1(U32)]

Q (X;Y)=1(X:2Z) > 0 due to the less noisy assumption

Set U to be the empty set and V = X

North American Information Theory School 6/21/2016
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If the wiretap channel is more capable:

C, =max [1(X;Y)=1(X;2)]

Observation V

Wir mmunications
& Laboratory

eless Co
Networking
WCAN@PSU

(V = X is optimal)

> 0 with equality at \/ = X

Proof:

C. =, max 1(V;Y)-1(V:2Z)
=, max 1Y) =1(X:2)=[1XY V)= 1(X;Z V)]
:Xrn(e)é)l(x Y)-1(X:2Z)

North American Information Theory School
2016
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Observations

Observation VI
The wiretap channel is less noisy iff 1(X;Y)—1(X;Z)is

concave in P(X).

Observation VII

If the wiretap channel is less noisy and 3 p*(x) which
maximizes both |(X;Y),1(X :Z), thenC =C, -C..

North American Information Theory School 6/21/2016
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The Gaussian Wiretap Channel

[Leung-Yang-Cheong and Hellman 1978]:

" M
Y| Bob }—

M X"

—] Alice

Y = X"+ N 77 B |8

n _ /N n
£ =X +N; N ~ CN(0,571,.,)
N" ~ CN(0.621 ) Gaussian noise
Z~ ’GZ nxn

North American Information Theory School 6/21/2016
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Observations weaNers

= Secrecy capacity does not depend on the correlation
between N|,N7 .

= The Gaussian wiretap channel is degraded:

Eve's signal = Bob's signal + Gaussian noise (or vice versa)
L If 622677 Y'=Z"+N" mmp X'-Z"-Y'

2. If 052022: Zn:Yn‘|‘Nn ‘ Xn_Yn_Zn

N" ~CN(0,| 62— o7 1,.,)

North American Information Theory School 6/21/2016
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= The secrecy capacity of the Gaussian wiretap

channel is

C =

S

2
Gy

1 P
—log| 1+
Lo

=[Cy —C.]"

1
——loqg| 1+

= P is the power constraint at Alice
= C; is the capacity of the channel to Bob
= C¢ is the capacity of the channel to Eve

P
2
o,

J

_|_

North American Information Theory School

2016
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Positive Secrecy Rates ——
CS — [CB o CE ]_I_

» When Bob's channel is better, C, =0.

= When Eve's channel is better, C. =0.

North American Information Theory School 6/21/2016
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ti

Proof of Secrecy Capacity

= Recall: For degraded wiretap channel
C, = max [1(X;Y) - 1(X:Z)]*

= For 0,20, , we have
1(X;Y) = 1(X;Z)
=h(Z|X)-h(Z|Y)—-[h(Z)—h(Y)]

-~ log(27e5?) ~ log(27e ) ~ [N(Y + )~ h(Y)]

P~

where N ~CN (0,62 -c?)

North American Information Theory School 6/21/2016
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Proof II

1(X:Y)=1(X:2) :%Iog(ZﬂEGZZ) —%Iog(Zﬂeaj)—[h(Y +N)=h(Y)]

—
(*)

= Which X maximizes (*)?

= Entropy Power Inequality (EPI): If U,V are

independent random variables, then
92h(U+V) 5 92h(U) | 92h(V)

and the equality holds if and only if U,V are Gaussian
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Proof III

= Use EPI to maximize h(Y)—h(Y + N) :
h(Y)=h(Y + Nh(Y) —%Iog(ZZ“(Y) +2m(0? —02))

@%Iog(Zﬂe)(P +07) —%Iog(ZZh(Y) 4 2m(0? —o?))

1 Pl 1 P
=—log| 1+ — |——=log| 1+ —
2 g( O'jJ 2 g( O'sz

= Both inequalities are achieved with equality when Xis
Gaussian, i.e., X ~CN(0,P).
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Bob's noise

Bob's constellation

@)

Wireless Communications
& Networking Laboratory

WCAN@PSU

Eve's noise

Eve's constellation

o o o o o o o

o o o)
o o o o o 0 0
o o o o o) o o

o o) o
o 0 o 0 o o 0
o 0 o 0 o o o

o o o
o 0 0 o o o o
o 0 o) 0 o) o) 0

o 0 o)
o) 0 0 o o o o C :CB_CE

S

C, =log,64 =6 b/s

=2Db/s

C. =log,16 =4 bls

North American Information Theory School
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Divide Bob's constellation into subsets of 4 messages.

SN I IR S I I B O I I B R S
Message 1
O A O A o) A O A A Message 2
‘ Message 3
* ‘ * ‘ * ‘ * ‘ * Message 4
o | A | o A |l o | A | o A
* | 6| x| 6| x| ¢ | x| ¢
o | A 0 A o | A| o | A
* | & [ K| ¢ K| ¢ K| ¢
o A | o A| o| A | o A
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All red stars denote the same message. Pick one randomly.

*

*

*

*

O Message 1
A Message 2
‘ Message 3
* * @ * * Message 4
* * * *
* * * *
North American Information Theory School 6/21/2016
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Bob can decode the message reliably.

Wireless Communications
& Networking Laboratory
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* ‘ ‘ * ‘ * ‘ O Message 1
O A A ® A O A A Message 2
‘ Message 3
* ‘ ‘ ‘ * ‘ * Message 4
o | A A |l o | A | o A
* | ¢ ¢ | x| ¢ | x| ¢
o | A A o | A 0 A
* | ¢ ¢ | x| ¢ x| ¢
o A A | o | A ] o A
6/21/2016
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For Eve, all 4 messages are equally-likely.

| & | K| ¢ K| ¢ | x| 5
Message 1
O A O A ® A ® A A Message 2
\ ‘ Message 3
* ‘ * ‘ * ‘ ‘ * ‘ * Message 4
o | A 0 A 0 \JA o A
* [ 6| k| | K| & | K| ¢
o | A 0 A o | A 0 A
* | 6| x| | K| ¢ x| ¢
O A O A O A O A
North American Information Theory School 6/21/2016
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v From 1970's to 2000s L[ e

= Information theoretic secrecy is very powerful:
= Unlimited computational power at Eve,
= Eve knows everything Bob does (codebook, scheme),
= Unbreakable, provable, and quantifiable secrecy.

= BUT: we need channel advantage for + secrecy rates:

Can this advantage be created?

North American Information Theory School 6/21/2016
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Multi-terminal Scenarios

= Wireless networks:

Signals naturally superpose over the air
Interference

Fading (tfime-variations in the channel)
Cooperation/relaying

Multiple antennas

Each of these are potential resources for providing
information theoretic guarantees for confidentiality.

North American Information Theory School 6/21/2016
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Network Design

= Mixing of signals on air is an asset for
confidentiality (even better if we design transmitted
signals carefully!ll)

= Bottom-line:

Network can be designed to bring an "effective”
channel advantage to legitimate entities.
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Wiretap Channel
[Tekin-Serbetli-Y., 2005]

m A A
|\/|1 ﬂ |\/|1,|V| 2
——
Alice Bob
re,

" A O®

Charlie Eve

1 n
Secrecy constraint: !Ln;ﬁl(Ml’Mz;Z )=0
6/21/2016
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Channel Mode

Zn

= The power constraint at user k is F,.
= Secrecy capacity is open in general.
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C Achievable Region
[Tekin-Y. 2008]

The following region is achievable

{(Rm Rz) : Rl N E

1

R1+R2£§

T

log (1+P) - Iog(1+

log(1+P,)— Iog£1+

WCAN@PSU

A

1+h,P
h2P2

)

1+hP,

i

[log (1+ P, + P,) —log(1+ h,P, + h,P,) [}

North American Information Theory School
2016
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Achievable Region —

TDMA: The following region is achievable

Time sharing 0 < ¢, <1

, / _ \

L) {(R.R,):R, <=¥| log 1+ 5 | Zjogl 1+ 2B || k210!
OSakSEl L 2 B 29 Oy _ )

The convex closure of the union of the two
regions is achievable
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I Achievability Outline T ===

Random-Binning region:
= Each user performs stochastic encoding (random binning):
= Generate code C, : consists of 2"RR) i d cws ~ N (O P.—¢).
= Randomly and independently distribute cws of C, into 2™
sub-codes Ek (m.), m, =1...2"% of equal size (2" cws. )
= Encoding: To senc~i message M, , user k picks a cw randomly
at uniform from C, (M,) and transmits it.

= Decoding: Joint-typicality decoding.
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‘-3 PennState
C Achievability Outline IT ——

TDMA region:

= Obtained when users who can achieve single-user secrecy,
use a single-user wiretap code in a TDMA schedule.

= The time share of userk is 0<a, <1, where o, +a, =1.

= Transmitter K (havingh <1) transmits for o, portion of
time using power R while the other user is silent.

ay

* When the WTC is degraded, i.e., h, =h, =h, the TDMA region
is a subset from the region achieved by random binning.

North American Information Theory School 6/21/2016
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General Multiple Access Wiretap
Channel

= Achievable rate region:
/Conv L H(R.R,): R.,R, =0,
Convex hull Ry < VY [V,) = 1(V; 2)
<I(V,Y V)~ 1(V,; 2)
R+ R, < 1(V},V,5Y) = 1(V,,V,; Z2) }
where the union is over all joint distributions that factorizes as

P() P(XR) PV [ %) PV [ X2) PLY, Z| X, X;)
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fQ rennstac Achievability Outline wenars

= First, we show the following region is achievable using
stochastic encoding at both users:

| H(R.R,): R.R, >0,
Ry < T(X;Y [ X,)=1(X;Z)
R, < 1(X,;Y [ X)) - 1(X,:2)
R +R, <1(X,, X,;Y)=1(X,, X,;Z)}

where p(Xl, X5, Y, Z) — p(Xl) p(xz) p(y’ z | X5 Xz)-

= Next, use channel prefixing at both users: V, —» X, V, - X,.

= Using time-sharing, the convex hull is achievable.
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= In the Gaussian WTC, a channel advantage is needed for

secrecy, C. <C,

= Fading (time-varying channel) = opportunistic secrecy

= Channel varies over time.

= Can we use this channel variation to obtain or improve

secrecy?

[Gopala-Lai-ElGamal 2008] [Liang-Poor-Shamai 2008]

[Khisti- Tchamkerten-Wornell 2008]
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Fading Wiretap Channel

Y(t)= hy(t)X(t)+ Ny(t)
Z(t) =h,(®)X )+ N, (t)

t=12,...n

N, ~CN(0,62) Gaussian
N, ~CN(0,67)

noise indep.
over time

Wireless Communications
& Networking Laboratory
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Parallel Wiretap channel
provides the framework to
analyze the fading WTC

[Liang-Poor-Shamai 2008]

North American Information Theory School
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'3 Secrecy Capacity of Parallel weaNaPsy

WTC
[Liang-Poor-Shamai 2008]

M
Bob ——

— Alice

Eve @

C. ZV max [|(V.Y) |(\/|12|)]+=ZL:CS,|

Secrecy
capacity of a
sub-channel

—X=(1,2
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Fading WTC: Er'godic Secr'ecy WeANaPSY
Capacity

= Each realization of h,(t),h,(t) can be viewed as a sub-
channel that occurs with a positive probability.

= By averaging over all possible channel realization, we
obtain the ergodic secrecy capacity

hzP(h,,h h?P(h,,h
CszmaxE[ilog(1+ ! (Zy Z)j—llog(1+ - (2y Z)D
2 2

/ o) o,

y
The maximization is over all possible power allocation schemes P(h, ,h,)
satisfying E, , (P(h,,h,)) <P
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"I Power Allocation

hzP(h,,h h*P(h,,h
CszmaxE[llog[1+ ? (2y Z)]_llog(l+ ’ (2y Z)j]
2 2

o, o,

h2

2
-_T_f Y <«

<—2 , the term inside expectation = O

5 O 2 h2
: y Z No power should be allocated
— <
P(hY’h ) 0 if gl 02 for such channel realizations

2
y Z

m==) Optimal power allocation is water-filling over the

. o h?
channel realizations satisfying —>—%

o, O,
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Broadcast Wiretap Channel —

Broadcast WTC with External

Eavesdropper » Eve ‘@@

1 n
= Secrecy Constraint: IIm—I1(M;,M,;Z")=0

n—° N

North American Information Theory School 6/21/2016
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Degraded Broadcast Wiretap Channel

MlL@ X" Yln»lBob 1|._Y2n..|30b 2|—Zn>| Eve ‘@@
T ' i,

= Signals received by Bob1, Bob2, and Eve satisfy the
degradedness order X -Y,-Y,-Z

= This generalizes Wyner's WTC model to a multi-receiver
channel. [Ekrem-Ulukus 2009]

North American Information Theory School 6/21/2016
2016 82




(gt Wireless Communications
' °,E, PennState & Networking Laboratory

Secrecy Capacity Region

[Ekrem-Ulukus 2009]:

Secrecy capacity region for the degraded broadcast
wiretap channel is

R, < I(X;Y,|U)=1(X;Z|U)
R, <I1(U;Y,)—1(U;Z)

where U satisfies U - X -Y,-Y,—-Z is a Markov chain.

Achievability: Super-position coding + stochastic encoding
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‘o3 PennState . .
"I Achievable Rate Region: weanorsy
General Case

= An achievable rate region for the Broadcast wiretap

channel is R" = conv(R,, UR,,)
where R, :{(Rl, R,):R < 1(V;Y,)—1(V;;2Z)
Rz < I(Vz;Yz)_ I (\/2;Z Vl)_ I (\/1;V2)}

for some (V,,V,) s.t. (V,,V,)— X —(Y,,Y,,Z) is a Markov
chain. R, is obtained by switching the rate constraints.

Achievability: Marton coding + stochastic encoding

North American Information Theory School 6/21/2016
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Back to Multiple Transmitters...

= Can we improve the achievable rates?

North American Information Theory School 6/21/2016
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Utilizing Interference —

L& @ L@

= "J" can transmit noise to interfere the eavesdropper “E".

= Information can be transmitted from "T" to "R" at a
higher rate with this "Cooperative Jamming".

mm) Interference can benefit secrecy.

North American Information Theory School 6/21/2016
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C Cooperative Jamming
[Tekin-Y., 2006]

= Tn MAC-WT, a user who can not achieve
positive secrecy rate for his own, can opt to
transmit noise to hurt the eavesdropper Eve.

* This user has a better channel to Eve than his
channel to Bob, hence, hurting the reception of
Eve more than Bob.

Creating a channel advantage!

North American Information Theory School 6/21/2016
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Jamming

Alice

Charlie

Wiretap Channel
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Bob

Wiretap Channel with a Cooperative Jammer

[Tekin-Y., 2006]
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Cooperative Jamming Scheme

= Users are partitioned into two groups: "transmitting
users” and " jamming users”.

= Jamming user k transmits X, ~N(0,R1) instead of
Transmitting cws.

= Higher secrecy rates can be achieved when
“weaker” users are jamming.

Weaker users = have better channel to Eve.

North American Information Theory School 6/21/2016
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Achievable Sum-Secrecy Rate
Assume h, <h,, hence user 2 is jamming.

= Secrecy sum-rate achievable with cooperative
jamming

R1+R231 log| 1+ i —log| 1+ A
2 1+ PR, 1+h,P,

= This sum-rate can be > %[Iog (1+P,+P,)~log(l+hP, +h,P,)]

Sum-Secrecy rate without cooperative jamming

North American Information Theory School 6/21/2016

2016



Wireless Communications

'3 rensiEe Cooperative Jamming [ Mhedies™

[Tekin-Y., 2006]

Secrecy Sum—Rate w/o Jamming Secrecy Sum—Rate w/ Jamming

100 100

80 80

60 60

40 % 40 \

20 ‘ 20

0 0
20 40 60 80 100 20 40 60 80 100

When Eve is close to one transmitter, that transmitter can hurt
Eve more leading to a higher secrecy sum rate than if it tried to
communicate.

North American Information Theory School 6/21/2016
2016 91



Wireless Communications

I s Cooperative Jamming | "™

[Tekin-Y., 2006]

Cooperative jamming can be noise [Tekin-Y. 2006-2008]

or from a codebook [Lai-H.ElGamal 2008], [He-Y. 2009/14]

When Eve is close to one transmitter, that transmitter can hurt
Eve more leading to a higher secrecy sum rate than if it tried to
communicate.

North American Information Theory School 6/21/2016
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Cooperative Jamming with Noise

S®

N e ®

7, - SINR at Bob
7. : SINR at Eve

Gaussian Wiretap Channel with a cooperative jammer

e Cooperative Jammer J sends Gaussian noise to jam Eve.
« Jamming does affect the receiver R as well.

« Used when jamming cause more harm at Eve than Bob.

1

R, = 1og 1+ yb)—%log(“ Ve ) P, Ty, Yo7 4

North American Information Theory School
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Random Codebook

= When ¢ >1, cooperative jamming causes more harm at Bob than Eve.

= However, If jamming signal is from a codebook, Bob can decode this
interference (The channel of interference to Bob is better than Eve.)
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Random Codebook

= Cooperative jammer transmits a cw from a Gaussian
codebook ~ N (0, P,).

» Rate R; is chosen s.t. Bob can decode the jamming signal
by treating the rest part as noise;

R, = Llogl 1+-%
2 1+ P

= Bob subtracts the jamming signal from its received signal.
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= Alice uses stochastic encoding with randomization

rate ] ]
Rs — §|0g(1-l— aP + PJ )—Elog(l‘F

= The achievable secrecy rate is:

1 1+ P+ aP;
R, =—log
2 1+aP + P,

= R, is positive when P, > P.

aP;
1+P

North American Information Theory School
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= At low SNR,

Gaussian i.i.d. signaling is within 0.5bit/ch use
from the secrecy capacity [Ekrem-Ulukus, 2008].

= At high SNR,
Gaussian signaling is suboptimal [He-Y., 2009].
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Gaussian Signaling: Secrecy rate weaNoPsy
saturates as power increases.

Despite optimizing transmission power, and cooperative
jamming, the secrecy rate converges to a constant with
increasing signhal power, when Gaussian signaling is used.

Can we do better?
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Utilizing "Structure” in Transmissions

~

Binary Representation of X, +2X,=Db.a,...bab,aba
X,=a,...0a,0a,0a,0a,

~ Zl
X, 1 | 7 X
T M,

X, +X,=b,+a,,...,b,+a,,b,+a,,b,+a,,b +a,
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Gaussian WTC with a Cooperative
Jammer: structured signaling

il
Y, .
N> l M,
Z

-0 ®

PT>KT->R T

Secrecy rate scales with power.
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@ PennState
Can secrecy rate scale | wewwrs

for all channel gains? |
Achievable
R — secrecy rate

Secure degrees of freedom (s.d.o.f.) = P |0g P
N

Power constraint

YES. [He-Y. 2009/IT-2014]

= Achievable scheme uses Nested Lattice (NL) Codes
and Integer Lattice Codes (ILC).

= Enabler (NL): Bound the leakage to Eve utilizing
the structure of NL.

= Achievable scheme can produce 1/2 (ILC).
* s.d.o.f. upper bound =2/3 [He (Thesis) 2010].
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[He-Y. 2009/14]

6 . T
P ~ Zl 5 n
X, * Y, A e
Ml I M]_ W
5t . .
7,
v Y,
D) o
U W
| e |
@ .
K smaller s.d.o.f. but better |
33| rate at figite SNR . |
Q ot Nested Lattice, . ' . \
(O \
2| 025'092“3) \\“o\ . Ivt\ Lt - S.dO.f:]./Z
\ \\\\\\\\\ neger”e‘x'{c.(?‘“
r e ' Power Unconstrained |
.. Gaussian Signaling
I EE = - ‘H‘HI.-I I-I.;l- Il B = = = = O O O . J- I B = = = .
0 | 1 1 | 1 1
10 20 30 40 50 60 70
10log, ,(Power)
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of GWTC with a Cooperative ——

Jammer
[Xie-Ulukus, 2012]:
. U  Alice h Bob
Xy=—U - < h h g
9 Y = U+ =V +Z,
9, 9
U,V ~ Uniform (-Q,Q +1,...,Q)
1 Y C
X.=—V
gc D:I]] Q gC <€ >
Charlie
Y, =(U+V)+Z,
i, P gre rationally independent (e _Ulukus upperbound
9. 9 atches the achievable

U is uniquely decoded at Bob s.d.o.f.

[Motahari et.al. RTA]
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Independent Jammers
[Xie-Ulukus-2012]:
Alice Bob
I BY - | < X
Ul U2 UK
v, [
v, [
VK [IE[I] i Eve <€ >
M Jammers K
. s.d.o.f.=——.
U.,V. ~Uniform (-Q,Q+1,...,Q) K+1
6/21/2016
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Gaussian MIMO Wiretap Channel
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[Khisti-Wornell, 2007] [Oggier-Hassibi, 2007] [Shafie-
Liu-Ulukus, 2007]:

Yn
H, N Y

n
Y X )
M Jalicet | 0
WY NG s
Y'=H X"+Z v
Y =HX"+2Z] NI
Z..,Z,~CN(0,1) Gaussian noise * i Eve @
Power constraint P Y N,
6/21/2016
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Secrecy Capacity

[Khisti-Wornell, 2007] [Oggier-Hassibi, 2007] [Shafie-Liu-
Ulukus, 2007]:

= The secrecy capacity of the Gaussian MIMO WTC is
Co= max 1(V;Y")=1(V;Y;)

S
V-XT-(Y]Ye)

1 |I+H,QH;
= max —log
Q:tr(Q)<P 2 | + HeQH:

= No channel prefixing is needed and Gaussian signaling is optimal.

= Multiple antennas help in creating a channel advantage.
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Proof Outline

= The Gaussian MIMO wiretap channel is not degraded:
Secrecy capacity: C;=  max [(V;Y")-1(V;Y,)

V-X"-(Y]Ye)
\ J
Y

Optimization problem
Hard to solve

Approach:
1. Find a computable upper bound.

2. Compute an achievable secrecy rate by using a potentially
suboptimal (V, X").

3. Show that the achievable rate matches the upper bound.
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= Consider an enhanced channel to Bob:

A genie provides Eve's observation to Bob, i.e., ?r” =(Y",Y,).
The enhanced channel is degraded (no channel prefixing is needed.)
C. =max (X" Y") = (X" Y")=max | (X";Y"| Y")
X" X"

The Optimal X" is shown to be Gaussian.

= The outer bound is tightened:

The secrecy capacity of the original channel depends only on
marginal distributions P, . and Py .

Yet, [(X";Y"|Y!) depends on the joint distribution Py y -

Introducing correlation between noises at Eve and Bob tightens
the upper bound.

North American Information Theory School 6/21/2016
2016 108



Wireless Communications

’0; PennState g & Networking Laboratory
J Observations

Achievability: SetV = X" ~CN(0,Q,).
mm) The derived outer bound is achievable.

The upper bound corresponds to the secrecy capacity of an
enhanced wiretap channel which is degraded.

= Bob observes Eve's signal as well.

This upper bound is achievable for the MIMO wiretap channel.

The optimal transmission results in an effective degraded
channel.

= transmit over directions where Bob's channel is better than
the channel to Eve).
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High SNR Characterization ———
[Khisti-Wornell-2007]:

= s.d.o.f. equals ZERO when
no. of Eve's antennas > no. of Alice's antennas

(Rate does not scale w/ transmit power.)

Q) Does a multi-antenna cooperative jammer
improve the s.d.o.f. of the MIMO WTC?

A) YES
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MIMO-WTC w/ MA Cooperative Jammer
[Nafea-Y.2015]

Alice’

o

v

1

Charlie

P
v

N

(N;xN.xN,) WTC with N_-antenna CJ

.Y
Y

Bob

N4

>

N4

: Eve

N,
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Channel Model emmirsy

N; antennas N, antennas

M — X7 Y'>M
(W)

E[X! ()X, ()], E[X] ()X (i))I<P (Power constraints)

N. antennas N, antennas

: R
D. = lim—— " poliabili 1 Y™ =
s~ P log P Reliability and nlml(M’Ye) 0
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v Settling s.d.o.f.
[Nafea-Y., 2015]
NxXNxN_xN_ channel (N.=N_=N):

IN+N_-N,T, 0<N <N, -N__
D =4 N=N N,-N . <N <N

S min !

(N+N.-N,)/2, N_. <N _<N+N,.
N . =mIin{N,N_}/2, N__ =max{N,N,}.
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(NXNxN) Gaussian WTC with a N_.-antenna
Charlie

(
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N /2

D

N,=N

N /2

N 2N
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‘o3 PennState o & Networking Laboratory
% Achievable schemes

= Ranges of K need to be treated separately.

v Signal space alignment:
Linear precoding + linear receiver processing.

v Signal scale alignment:
= Complex analogy to "real” interference alignment

= projection and cancellation decoding scheme.

= Dg=integer: Gaussian streams are sufficient.

= D, # integer: structured streams are needed.

= Tnall cases, achievable results match the upper bounds.
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% Achievable schemes

D

-Integer s.d.o.f. (Gaussian signals)

-No precoder needed at Charlie
- Charlie sends jamming L Bob

- N, even: Gaussian signals

f - N, odd: structured signals +
projection & cancellation

-N even: Gaussian signals
-N odd: structured signals + projection & cancellation

-Same scheme for all N,

N

C
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Lessons learned so far...

= Interference:
= Interference can help!

= Structured codes/transmissions can outperform
Gaussian codes.

» Structured interference is good for securing
wireless networks.

= High SNR behavior of secrecy capacity can be
insightfull

» Cooperation?
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M |Source

Cooperation

Xn

Yn
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WCAN@PSU

Yn

r

Relay

<>

»| Destination

Xn

r

Xei= 1:r,i(>(:_1’Yri_1)

r,l
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Cooperation with Secrecy

M [Alice

Xn

Yn

» |Bob |\7|

Yn

r

Relay=Eve

>

MO

Question: Can an "untrusted” relay ever be useful?
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‘o3 PennState
Z, Untrusted Relay Channel weaorsy

[He-Y.2010]

Untrusted Relay: Relay which is “"honest but curious”:

M

Source

X.

Y

ri

>

0(Y,Y, | X, X, ) —1 Destination

Y.

<>

—| Relay

J Xr,i — fr,i(Yri_l’ Lr)

Secrecy rate is defined as:

R, =lim=H (M)

N—o0 n

1

\

Local randomness at the relay

st limI1(M:X",Y")=0

N—o0 n
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'~ J PennState . .
ra First Phase: The Gaussian weaNarsu
Wiretap Channel

* In the first phase, i.e.,
without relay-destination
link, this is the Gaussian

a z,~N(071)
Y .
é é r 'l Relay ‘ wiretap channel.
1 X Yo = Ifa >1 then it is
‘Sour‘ce | Des’rina’rion‘ impossible to achieve
positive secrecy rate.

Z,~N(01)

North American Information Theory School 6/21/2016

2016 122



Wireless Communications
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with a Direct Link —
[He-Y.,ZOlO]

N(01)

é, )“ Y, :
| Relay [+@-— Prihecenel
YR ¢‘_ L~ N(O’l)
I .
Source ™ W Des’rma’rlon‘

Z,~N(01)

Quantization
noise variance

2 2
O0<R, <max£|og[1+ p+1a P )—%Iog(lJrazp), o2 :(a +)p+1
_|_

0<p<P 2 Gé °  b*P(p+1)

, A positive secrecy
bTow—>0id0>R >0 rate is achievable.
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‘o3 PennState . ofl o .
D Achievability outline ===

= In phase 1:

Source performs stochastic encoding with bin size

%Iog(l+ a’p) to confuse the relay.

= In phase 2:
Relay performs compress-and-forward.

= Destination uses the received signals over the two
phases to decode the confidential message.

= A positive secrecy rate is achievable!
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ra Pennstate  Untrusted Relay Channel SReearng oo

[He-Y.,2009] Without a Direct Link
Xl

T
M, 1 l |\’/\|1
R

t
N, = "d:) Untrusted d‘)" =N,
|
|
L

Relay

* There is no direct link from node 1 to node 2.
= The destination (node 2) can transmit.

0<R, < max—log it > —llog 1+ |
0<p, <P 2 1+aQ 2 1+P,
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Q) pernstate Achievability Outline e

Xl Phase 1 YF Phase 1 Xz

= Inphase 1, Node "1" (source) transmits. Node J jams the relay
node "R". Node "2" (destination) listens.

= Inphase 2: the relay node sends out the signal received during
phase 1 via compress-and-forward /compute-and-forward.

= Node 2 decodes |\/|1based the signal it receives during the two phases

= A positive secrecy rate is achievable!
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Upper Bound Development ———

= Relay\Eavesdropper separation [He-Y.2009]:
Z

e

Y. =X+J+Z,

T Y =X+J+~2Z,
)| ™)

(o) 4 HMIY)=HMIY.)
Z, ~ N (01) and correlated with Z by p.

6/21/2016
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= Genie transfers .. |~

/

e

)

J@____.!

(1+P)A+P, +P)— (P + p)* |
? (P, + P, +1)(1+—p?) !
1-a)C(R)

(04
R <max min min< 2
O0<a<l -1<p<i

4

\
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9 T TTTT T T T TrTTTT T TrTTT T

7L Pr—)OO,PZ 205P1

022 =0 Upper bound without
6 secrecy constraints

4 Upper bound with o
secrecy constraints

bits/per channel use

Achievable rate

+*
&
N

Nd

20 0 20 40 60
P_(dB)

80

Ll
120

140
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(a PennState Observations R ey

= A two-hop link with untrusted relay is considered.

= The cooperation from the relay is essential to communicate
in this scenario.

= Anachievable scheme based on cooperative jamming and
compress-and-forward relay scheme is proposed.

= Cooperative jamming is the enabler of secure
communication in this case.

= Can we afford to be this optimistic for 'larger’ networks?
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Multiple sources/destinations

Different levels of security clearance [Zewail-Nafea-Y. 2014]:
= Cooperative jamming by the destinations, using Gaussian noise, is

again useful and necessary.
= Stochastic encoding and superposition at the sources
= Relay performs compress-and-forward.

= (Gaussian signaling.

North American Information Theory School 6/21/2016
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(gt Wireless Communications
' °,E, PennState & Networking Laboratory

Multiple Sources/Destinations

Confidentiality at the end users [Zewail-Y. 2015]:

Sources performs stochastic encoding over nested lattice
codebooks.

Destinations jam with lattice points.

Relay performs scaled-compute-and-forward to decode two
combinations of the received lattice points and forwards to the
destinations.

Structured signaling. M, @ @ @ |\7|1
I
2 @ @z
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Multiple Hops [He-Y., 2013]

= Multi-hop line network with a chain of untrusted
relays:
» Structured jamming by each destination is
essential.

= Constant secrecy rate irrespective of hops.

= Nested lattice codes.
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Va Pennstate  Line Network w/ Untrusted M SRy
Relays [He-Y., 2013]

= An eavesdropper may be located at any one of the relay
nodes, trying to intercept M. Hence all of these relay
nodes are untrusted.

= Each node can only receive from the previous node, so all
that is sent from the source has to flow through the

relays!

= Solution: Recruit the next destination as a cooperative
jammer for the current relay.

Transmit Jam
ﬂ h IIIIII ®H @
q h
Jam

Relay
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Line Network w/ Untrusted Relays

M ()= R)e—=R) )= 0)

= The same principle as the two-hop case should work,
but...

= Compress-and-forward scheme is not scalable to
arbitrary number of hops.
= Channel noise will accumulate over hops and decrease
the rate.

= Use nested lattice codes to transmit the secret
message and for cooperative jamming.
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'~ ¥ PennState .
'3 The Achievable Secrecy Rate | weanersy

Let the power constraint of each node be P, and assume unit
channel gains and noise variance. For any ¢ > 0 secrecy rate of

at least
0.5R, -0.5-¢

is achievable irrespective of the number of hops, where

R, :%Iogz (2P +0.5)

Secrecy rate does not decrease with number of hops.

The rate penalty, i.e., cost for secrecy is upper bounded
by 0.5 bit/ch.use.
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Strengthening the Security Metric
= Weak secrecy [Wyner 1975]:

|im£ I((M;Z") =0 Rate of information leakage
n—o | goes to Zero

= Weak secrecy constraint is satisfied with any
information leakage that grows at a rate
strictly less than n.

Can we do better?
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Strong secrecy WCAN@PSU
[Csiszar 1996; Maurer-Wolf 2000]:

liml(M;Z")=0 The WHOLE information
N—>o0 leakage goes to Zero

= Stronger metric; No information is leaked, asymptotically!

= Recently, a number of secrecy results have been extended to

strong secrecy.
= There is no proof of equivalence or strict containment.

= There is no standard technique for proving strong secrecy.
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1) Channel Resolvability [Wyner 1975b][Han-Verdu 1993]

What is the max. randomization rate required to
induce an output distribution at Eve s.t. Z" is
independent from M ?

I

* Randomization rate R_
= rate of the sub-code (stochastic encoding).

North American Information Theory School 6/21/2016
2016 139



(a Pennstate  G4non g Secre cy Proof | sty

Methodologies
1) Channel Resolvability

= Statistical independence is measured in

= Kullback-Leibler divergence (Relative Entropy), or
= Variational distance.

= Strong secrecy for Wiretap Channel:

R, > 1(X;Z)= D(p,, Py P,.) >0 = 1(M;Z") >0
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2) Privacy Amplification
[Bennett et.al. 1989; Maurer-Wolf 2000]

= Weak secrecy scheme is repeated many times.

= Alice & Bob compress X" to a shorter string S that is
uniform and indep. from Eve's observation.

= Secrecy capacity is not reduced by privacy
amplification.
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2) Privacy Amplification
[Bennett et.al. 1989; Maurer-Wolf 2000]

Distilling strongly secure string from X":
= Universal Hashing:

= select a hash function h at random from a family of hash
functions s.t. Pr(h(X”)noT unifrom) is small,

= Extractors;
= isolate randomness of X" using a small additional number
of perfectly-random bits)
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Mitigating the Assumption of —
Known Eve CSI

" Most work assumes Eve's CSI is known to the system

= Compound models 2008-2010: [Liang et al]
[Ekrem-Ulukus], [Kobayashi et al]:

Channel can be one of a set of possibilities.

= Fading setting [Goppala-Lai-ElGamal 2008]:
Eve's CSI distribution known.
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Mitigating the Assumption of
Known Eve CSI

= Reality: Eve's channel completely unknown.

= Question: How can we create advantage against a
channel we have no idea about?

= Answer:
Multiple antennas == directional signaling and jamming!

= MIMO WTC [He-Y.,2010/IT 2014],
» s.d.o.f MIMO-MAC-WT [He-Khisti-Y.,2013],
= s.d.o.f MIMO-Broadcast-WTC [He-Khisti-Y.,2014].
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WCAN@PSU

MIMO-WTC w/ Unknown Eve CSI

= Multiple antennas at Alice and Bob can be used to inject

“artificial noise” in directions orthogonal to those of the
main channel [Goel-Negi, 2008].

= While this early work has the nice insight for signaling, it is
incomplete since the actual coding scheme requires care.

= In other words, existence of a coding scheme that will
“work" for all Eve CSI's needs to be proved.
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MIMO-WTC w/ Unknown Eve CSI:
Universal Coding Scheme

= CSI completely unknown, varies from ch use to ch use.

= MIMO Wiretap setting.

= [He-Y.,2010/2014]: A universal coding scheme does exist.

= Strong secrecy can be provided where ever Eve may be, as
long as the legitimate parties have more antennas.
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Problem Formulation eanorsy

Find the rate of M such that:

lim Pr(M # M ): 0 The convergence must be__
o =~ = uniform over all possible H"
imI(M;Y",H") =0

N—o0

l By assumption, M is indep. from H"

~

limI(M;Y" [H") =0

n—oo

We do not want the secrecy constraint to depend on the
distribution of H" Hence we require:

lim | (M Y | H" = F\n) =0 for all possible realizations of h"

N—0o0
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WCAN@PSU

= Theorem: For the MIMO wiretap channel, if H
has full rank, then the following secrecy rate \
is achievable:

0 <R, <max:

-

/NT,R

> C

\ =1

|

s’P

(s +1)N; 4

where P =max{P — N, .,0}

Nt r = mIn{N:, N},

J

\

J

Bob's channel

-N.C(P),0

s.d.o.f.=max{N; ; —N_,0}

N

J

s. :singular value of H

North American Information Theory School

2016

6/21/2016

148




"‘o,’ PennState

1. Introduce

2. Need to prove

Proof Highlights

Wireless Communications
& Networking Laboratory

WCAN@PSU

at Alice to limit the received
SNR of Eve. [Goel-Negi,2005].

directly.

([Maurer,2000] is not applicable).

3. Prove Strong Secrecy through variational distance d.
decreases exponentially fast to

O w.r.t. the number of channel uses, strong secrecy can
be proved from [Csiszar,1996].

If

4. To bound d, use
[Han, 1993] [Csiszar, 1996][Bloch Laneman, 2008]

North American Information Theory School
2016

6/21/2016

149




) Fstate  To handle infinitely many | ‘s

1.

3.

sequences of Eve CSI..

Construct a finite set S of Eve CSI sequences by
quantizing the channel gain [Blackwell et.al.,1959].

Find a small set of codebooks, s.t. aveage of d, dav, is

uniformly bounded over all possible Eve CST sequences
in the set S [Ahlswede, 1978].

Prove when Eve CST sequence is not in S, its dav is
bounded by the dav when Eve CST sequence is in S.
[Blackwell et.al. 1959]
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'3 Pennstate Codi ng Scheme H e canarsy

= Given the small set of good codebooks, the communication
is divided into 2 stages, as in [Ahlswede, 1978].

= Stage 1: Alice randomly chooses a codebook from the
small set of codebooks to transmit confidential message.

= Stage 2: Alice tells Bob which codebook she chose in
Stage 1.

= Alice's choice is taken from a uniform distribution but
need not be kept secret from Eve. In fact, we assume Eve
knows Alice's choice perfectly.

(It can be shown the rate loss due to stage 2 can be made
arbitrarily small).
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Strengthening Eve Capabilities o

= Eve traditionally is a passive observer.

= Adversarial Eve:

= Eve tampers with the legitimate channel, e.g.,
[Aggarwal et. al. 2009. MolavianJazi et.al.2009].

= Adaptive Eve:
= Eve controls her channel states, e.g.,

[He-Y. 2011]: Two-way channel and cooperative jamming
essential for achievability.
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More Capable Eavesdropper —

Models
Objectives:

= Strengthening Eve's capabilities.

= Extending attacker/threat models and providing
quantifiable metrics for secure wireless
networked communication.

= Can PHY-security ‘replace’ or complement
computational security?
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™" Wiretap Channel IT Wenverss

[Ozarow-Wyner 1985]:

= Eve accesses ¢ out of n symbols (of her choice.)
= Noiseless main channel. Binary input alphabet.

Noiseless

M ) X" Channel X'

<>

{Xi, €S
75
7, oW,

1 n
Secrecy constraint: HmaxS I(M;Z:) >0 (Weak Secrecy)
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7" Wiretap Channel IT Wesvarss
WTC WTC-II

Noiseless ) 4 Noiseless )
O >O Bob

ob Alice
BEC (1-«) Eve Eve con‘rr'ols: . Eve
erasure positions

\_ J o\ J

= Random Erasures

Eve chooses erasure positions

DM Eve channel

Eve channel with memory

Secrecy capacity:
C.=l-«

Secrecy capacity: C. =1-«

Achievability: Random partitioning
C, ={0}" + combinatorial arguments

Achievability:
Stochastic Encoding
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WTC-ITI with Noisy Main Channel
[Nafea-Y.,2015]

WTC-II with noisy main channel

1 .
Secrecy constraint: —MaX; 1(M;Z5)— 0.
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O™ "WTC-II with NMC L=

[Nafea-Y., 2015]:

= Tnner and outer bounds for capacity-equivocation region
are derived.

= Secrecy rate bounds: R_(a)<(@-a)maxI(X;Y).
Px

Rs (0() = [I (X ’Y) —aH (X)]_I_‘ px ~Uniform "

= Secrecy capacity [Cuff et.al., 2015]:  Equals secrecy
capacity of a WTC

C.(a)=max [IU;Y)—al(U;X)[F—" withaDM-EC (1-a)
° U-X-Y to Eve.

U=X
> Mmax [I (X;Y)—aH (X)]Jr = R,() when a uniform maximizer.

Px
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Can we model a powerful Eve
in a realistic scenario?

= WTC- Eve not capable enough
= WTC-IT > Not practical
= WTC-IT with NMC > Eve cannot "see” portion of cw.

YES!

= New model:
= Eve sees all through a (noisy) channel.
= Eve can choose the portion she can tap perfectly.
= (Generalizes and more “evil” Eve than all previous models!
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[Nafea-Y., ISIT 2016]

Strong Secrecy (against any Eve selection):
max, I(M;Zg) — 0.
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Special cases

= The new model generalizes known WTC models.

|S |=ZERO
Z° =V, Vi
= DMC p,

Classical WTC
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Special cases

= The new model generalizes known WTC models.

pyx =DM-EC(1)=

Sc{l,....n}, |S|Fu

5 _ X, 1€S
T ow.

WTC-II with a noisy main channel

North American Information Theory School 6/21/2016
2016 161



(gt ireless Co unications
o\ PenHState & Networking Laboratory

Strong Secrecy Capacity
[Nafea-Y., ISIT 2016]

= The strong secrecy capacity of the new wire-
tap channel model is :

Es(a):p max HU;Y)-1U:V)-ad (U; X \V)]J:

with|U | upper boundedas |U | < | X|.
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Special cases

+ At[S[=0: C,0= max [IUY)- 1)
Pux: = WTC secrecy capacity.

Secrecy
capacity of ~ C,(a)= max [1U:Y)=1UV) [ (U; X V)] T

the new ux s U=X=W
WTC model Secrecy cost

« AtV =7 Cla)= max [1U;Y)—al U; X)]

ux: U=X-Y
= Secrecy capacity of WTC-IT with NMC

Secrepy

eyt Ca)= max [IUY)-al Ui X) Ca)l V) I
Pux - U-X-YV

WTC model Secrecy cost
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Smarter Wire-tappers in
Multi-transmitter models

= Wire-tap channel [Wyner1975]> Multiple
access wire-tap channel [Tekin-Y.2005]

= Multi-transmitter extensions for WTC-II
with noisy main channel: [Nafea, Y. 2016]
upcoming at ISIT 2016, ITW 2016
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= Information Theory offers quantifiable security
guarantees. Does not require computational approaches.

= Information theory offers a clean slate design starting
from the physical layer providing strong secrecy guarantees
for wireless networks.

= "Tdealized" assumptions can be removed (with some rate
penalty, but same security guarantees)

= TInsights for such realistic scenarios bring us one step closer
to the future wireless networks where security is provided
at the foundation, i.e., by PHY!

*The following grants are gratefully acknowledged: DARPA-TTMANET;
NSF: CCF-0514813, CNS-0721445, CT-0716325, CIF-0964362, CCF-
1319338, CNS-1314719;
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opportunistic

‘ signaling
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SECURE WIRELESS NETWORKS
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