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Abstract—A new message-passing (MP) method is considered
for the matrix completion problem associated with recommender
systems. We attack the problem using a (generative) factor
graph model that is related to a probabilistic low-rank matrix
factorization. Based on the model, we propose a new algorithm,
termed IMP, for the recovery of a data matrix from incomplete
observations. The algorithm is based on a clustering followed
by inference via MP (IMP). The algorithm is compared with
a number of other matrix completion algorithms on real col-
laborative filtering (e.g., Netflix) data matrices. Our results show
that, while many methods perform similarly with a large number
of revealed entries, the IMP algorithm outperforms all others
when the fraction of observed entries is small. This is helpful
because it reduces the well-known cold-start problem associated
with collaborative filtering (CF) systems in practice.

I. INTRODUCTION

An important new inference problem, called the matrix com-
pletion problem, has recently come to light; it combines many
elements of compressed sensing and collaborative filtering.
This problem involves the recovery of a data matrix from
incomplete (or corrupted) information and is of great practical
interest over a wide range of fields [1]. The basic idea is
summarized well in the following quote:

“In its simplest form, the problem is to recover a
matrix from a small sample of its entries, and comes
up in many areas of science and engineering includ-
ing collaborative filtering, machine learning, con-
trol, remote sensing, and computer vision... Imagine
now that we only observe a few entries of a data
matrix. Then is it possible to accurately—or even
exactly—guess the entries that we have not seen?”
- Candes and Plan [2]

In the Netflix challenge, for example, one is given a subset
of large data matrix in which rows are users and columns
are movies (e.g., see the Netflix Prize [3]). An overwhelming
portion of the user-movie matrix (e.g., 99%) is unknown and
the observation matrix is very sparse because most users rate
only a few movies. Randomness in the ratings process implies
that one can also interpret the ratings as noisy observations of
some true matrix.
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The goal is to predict the rating that a user would give, to a
movie he/she has not watched, based on the observed ratings.
In other words, the problem is to recover missing ratings of
a data matrix using the subset of observed movie ratings. In
general, it would seem that this problem is difficult, if not im-
possible. However, if the unknown matrix has some structure,
then approximate recovery is possible. Recent progress on the
matrix completion problem can be largely divided into two
areas:

1) The first area considers efficient models and practical
algorithms. For the matrix completion problem, many
researchers use models based on the assumption that the
matrix has low rank. This assumption allows one to re-
formulate the problem into rank (or nuclear norm) mini-
mization problem under certain incoherence assumptions
[1]. For exact and approximate matrix completion, these
models lead to convex relaxations, and semi-definite
programming (SDP) [4][5][6][7], and Bayesian-based
approaches [8].

2) The second area involves exploration of the fundamen-
tal limits of these methods. Prior work has developed
some precise relationships between sparse observation
models and the recovery of missing entries under the
restriction of low-rank matrices or clustering models
[2][9][10][11][12]. This area is closely related with the
practical issues known as the cold-start problem of the
recommender system [13]. That is, giving recommen-
dations to new users who have submitted only a few
ratings, or recommending new items that received only
a few ratings from users. In other words, how many
ratings are needed to generate good recommendations?

Unlike this prior work, this paper considers an important
subclass of the matrix completion problem where the entries
(drawn from a finite alphabet) are modeled by a (generative)
factor graph. Based on this factor graph model, we propose
a MP based algorithm, termed IMP, to estimate missing
entries. This algorithm seems to share some of the desirable
properties demonstrated by MP in its successful application
to modern coding theory [14]. The IMP algorithm tries to
combine the benefits of soft clustering of users/movies into
groups and message-passing based on the unknown groups
to make predictions. In addition, simulation results for cold-
start settings (i.e., less than 0.5% randomly sampled entries)
show that the cold start problem is reduced greatly by IMP
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Figure 1. The factor graph model for the matrix completion problem. The
graph is sparse when there are few ratings. Edges represent random variables
and nodes represent local probabilities. The node probability associated with
the ratings implies that each rating depends only on the movie group (top
edge) and the user group (bottom edge). Synthetic data can be generated by
picking i.i.d. random user/movie groups and then using random permutations
to associate groups with ratings. Note x(i) and y(i) are the messages from
movie to user and user to movie during iteration i for the Algorithm 1.

in comparison to other methods on real collaborative filtering
(or Netflix) data matrices.

The paper is structured as follows. After defining the factor
graph model in Section II, we introduce the IMP algorithm
in Section III. In Section IV, we discuss the algorithm per-
formance via experimental results, and give conclusions in
Section V.

II. FACTOR GRAPH MODEL

Consider a collection of N users and M movies when
the set O of user-movie pairs have been observed. The main
theoretical question is, “How large should the size of O be
to estimate the unknown ratings within some distortion δ?”.
Answers to this question certainly require some assumptions
about the movie rating process. So we begin differently by
introducing a probabilistic model for the movie ratings. The
basic idea is that hidden variables are introduced for users
and movies, and that the movie ratings are conditionally
independent given these hidden variables. It is convenient to
think of the hidden variable for any user (or movie) as the user
group (or movie group) of that user (or movie) and this can
be viewed as a simplistic assumption about the psychological
nature of movie preferences [15][16]. In this context, the rating
associated with a user-movie pair depends only on the user
group and the movie group.

Since the number of movie groups are very small compared
to the number of movies, this idea is similar to mapping
movies to a low-dimensional movie group. Each movie group
may correspond to a genre (e.g., comedy, drama, action, ...).
Each user group tries to capture sets of users that have similar
taste in movies. For example, a movie may be classified as
a comedy, and a user may be classified as a comedy lover.
The model may use 20 to 40 such groups to locate each
movie and user in a multidimensional space. It then predicts
a user’s rating of a movie according to the movie’s rating
on the dimensions that person cares about most since similar
user/movie map to similar groups in the low-dimensional
(group) space.

The goal is to design a probabilistic mapping such that
reflects group associations in the low-dimensional (group)
space. Let there be gu user groups, gv movie groups, and
define [k] , {1, 2, . . . , k}. The user group of the n-th user,
Un ∈ [gu], is a discrete random variable drawn from Pr(Un =
u) , pU (u) and U = U1, U2, . . . , UN is the user group vector.
Likewise, the movie group of the m-th movie, Vm ∈ [gv], is
a discrete random variable drawn from Pr(Vm = v) , pV (v)
and V = V1, V2, . . . , VM is the movie group vector. Then, the
rating of the m-th movie by the n-th user is a discrete random
variable Rnm ∈ R (e.g., Netflix uses R = [5]) drawn from
Pr(Rnm = r|Un = u, Vm = v) , w(r|u, v) and the rating
Rnm is conditionally independent given the user group Un

and the movie group Vm. Let R denote the rating matrix and
the observed submatrix be RO with O ⊆ [N ] × [M ]. In this
setup, some of the entries in the rating matrix are observed
while others must be predicted. The conditional independence
assumption in the model implies that

Pr (RO|U,V) ,
∏

(n,m)∈O

w (Rnm|Un, Vm) .

Specifically, we consider the factor graph (composed of
3 layers, see Figure 1) as a randomly chosen instance of
this problem based on this probabilistic model. The key
assumptions are that these layers separate the influence of
user groups, movie groups, and observed ratings. A random
permutation is used to map the edges attached to user nodes
to the edges attached to movie nodes.

This model attempts to exploit correlation in the ratings
based on similarity between users (and movies). It also tries
to include the noisy rating process in the model and reduce
the impact of corrupted ratings on prediction by dimension
reduction. These advantages allows one to approximates real
Netflix data generation process more closely than other simpler
factor models. In fact this model can be seen as a gener-
alization of [8] and [11]. It is also important to note that
this is a probabilistic generative model which generalizes the
clustering model in and also allows one to evaluate different
learning algorithms on synthetic data and compare the results
with theoretical bounds (see [17] for details).

III. THE IMP ALGORITHM

A. Initializing w(r|u, v) for Group Ratings

The IMP algorithm requires reasonable initial estimates,
of the observation model w(r|u, v), to get started. To get
these estimates, we cluster users (and movies) first. The basic
method uses a variable-dimension vector quantization (VDVQ)
clustering algorithm and the standard codebook splitting ap-
proach known as the generalized Lloyd algorithm (GLA)
to generate codebooks whose size is any power of 2 [18].
Though our approach was motivated by the VDVQ clustering
algorithm, it turns out to be equivalent to soft K-means
clustering with an appropriate distance measure. So we will
refer VDVQ clustering as soft K-means clustering.

The soft K-means clustering algorithm is based on the
alternating minimization of the average distance between users



Algorithm 1 IMP Algorithm
Step I: Initialization of w(r|u, v) via Algorithm 2 and random-
ized initialization of user/movie group probabilities x

(0)
m→n(v) and

y
(0)
n→m(u).

Step II: Recursive update for user/movie group probabilities

y(i+1)
n→m(u)∝y(0)

n (u)
∏

k∈Vn\m

∑
v

w (r|u, v)x(i)
k→n(v)

x(i+1)
m→n(v)∝x(0)

m (v)
∏

k∈Um\n

∑
u

w (r|u, v)y(i)
k→m(u)

Step III: Update w(r|u, v) and output probability of rating Rnm

given observed ratings
p̂
(i+1)

Rnm|RO
(r)∝

∑
u,v

y(i+1)
n→m(u)w (r|u, v)x(i+1)

m→n(v)

(or movies) and codebooks (that contain no missing data).
This leads to alternating application of nearest neighbor and
centroid rules. The distance is computed only on the elements
both vectors share. In the case of users, one can think of
this Algorithm 2 as a “K-critics” algorithms which tries to
design K critics (i.e., people who have seen every movie) that
cover the space of all user tastes and each user is given a soft
“degree of assignment (or soft group membership)” to each of
the critics which can take on values between 0 and 1. After
soft-clustering users/movies each into user/movie groups, we
estimate w(r|u, v) by computing the soft frequency of each
rating for each user-movie group pair.

B. Message-Passing Updates of Group Vectors

Using the model from Section II, we describe how message-
passing can be used for the prediction of hidden variables
based on observed ratings. Ideally, we could perform exact
inference of our factor graph model. But exact learning and in-
ference for this model is intractable, so we turn to approximate
message-passing algorithms (e.g., the sum-product algorithm)
[19]. The basic idea is that the local neighborhood of any
node in the factor graph is tree-like (see [17] for details). For
iteration i, we simplify notation by denoting the message from
movie m to user n by x

(i)
m→n and the message from user n to

movie m by y
(i)
n→m. The iteration is initialized with

xm→n(v)=xm(v)=pV (v), yn→m(u)=yn(u)=pU (u).

The set of all users who rated movie m is denoted Um and
the set of all movies whose rating by user n was observed
is denoted Vn. The exact update equations are given in
Algorithm 1. The group probabilities are randomly initialized
by assuming that the initial group (of the user and movie)
probabilities are uniform across all groups.

C. Approximate Matrix Completion

Since the primary goal is the prediction of hidden variables
based on observed ratings, the IMP algorithm focuses on
estimating the distribution of each hidden variable given the
observed ratings. In particular, the outputs of the algorithm
(after i iterations) are estimates of the distributions for Rnm,

Algorithm 2 Initializing Group Ratings (shown only for users)
Step I: Initialization

Let i = j = 0 and c(0,0)m (0) be the average rating vector of users
for movie m.
Step II: Splitting of critics

Set

c(i+1,j)
m (u)=

{
c
(i,j)
m (u) u=0, . . . , 2i−1
c
(i,j)
m (u−2i)+z(i+1,j)

m (u) u=2i, . . . , 2i+1−1

where the z(i+1,j)
m (u) are i.i.d. random variables with small variance.

Step III: Recursive soft K-means clustering for c(i,j)m (u) for j =
1, . . . , J .

1. Each user is assigned a soft group membership πn (u) to each
of the critics using

π(i,j)
n (u) ∝ exp

−β√ 1

|Vn|
∑

m∈Vn

(
c
(i,j)
m,n (u)−Rnm

)2
where Vn = {m ∈ [M ] | (n,m) ∈ O} and gu = 2i+1.

2. Update all critics as

c(i,j+1)
m (u) ∝

∑
n

π(i,j)
n (u) c(i,j)m (u).

Step IV: Repeat Steps II and III until the desired number of critics
gu is obtained.
Step V: Estimate of w(r|u, v)

After clustering users/movies each into user/movie groups with
the soft group membership πn (u) and π̃m (v), compute the soft
frequencies of ratings for each user/movie group pair as

w(r|u, v) ∝
∑

(n,m)∈O:Rnm=r

πn (u) π̃m (v) .

Un, and Vm. They are denoted, respectively, as

p̂
(i+1)
Rnm|RO

(r)∝
∑
u,v

y(i+1)
n→m(u)w (r|u, v)x(i+1)

m→n(v)

p̂
(i+1)
Un|RO

(u)∝y(0)
n (u)

∏
k∈Vn

∑
v

w (r|u, v)x(i)
k→n(v)

p̂
(i+1)
Vm|RO

(v)∝x(0)
m (v)

∏
k∈Um

∑
u

w (r|u, v)y(i)
k→m(u).

Using these, one can minimize various types of prediction
error. For example, minimizing the mean-squared prediction
error results in the conditional mean estimate (see Figure 2)

r̂(i)n,m =
∑
r∈R

r p̂
(i)
Rnm|RO

(r).

D. Density Evolution (DE) Analysis

DE is a well-known technique for analyzing probabilis-
tic message-passing inference algorithms that was originally
developed to analyze belief-propagation decoding of error-
correcting codes and was later extended to more general
inference problems [20]. It works by tracking the distribution
of the messages passed on the graph under the assumption
that the local neighborhood of each node is a tree. While this
assumption is not rigorous, we consider that, in Figure 1, the
outgoing edges from each user node are attached to movie



Figure 2. Minimum mean square estimator (MMSE) estimates R̂ can be written as a matrix factorization. Each element of Σ represents the conditional
mean rating of w (r|u, v) given u, v and each row of PU/PV represents a user/movie group probabilities. In contrast to the basic low-rank matrix model,
we add non-negativity (to Σ, PU and PV ) and normalization constraints (to both PU and PV ).

nodes via random permutations. This is identical to the model
used for irregular LDPC codes [21]. For this problem, the
messages passed during inference consist of belief functions
for user groups (e.g., passed from movie nodes to user nodes)
and movie groups (e.g., passed form user nodes to movie
nodes). We have derived the DE equations for this problem
and currently in process of doing analysis based on them (see
[17] for details). Like LDPC codes, we expect to see that the
performance of Algorithm 1 depends heavily on the degree
structure of the factor graph.

IV. SIMULATION RESULTS WITH REAL DATA MATRICES

A. Details of Training

The key challenge of matrix completion problem is pre-
dicting the missing ratings of a user for a given item based
only on very few known ratings in a way that minimizes
some per-letter metric d(r, r′) for ratings. To provide further
insights into the proposed factor graph model and the IMP
algorithm, we compared our results against three other algo-
rithms: OptSpace [6], SET [7] and SVT [4]. Due to time and
space constraints, we have chosen three algorithms among all
the available algorithms. OptSpace and the more recent SET
appear to be the best (this is also apparent from experimental
results), and can handle reasonably large matrix sizes. In some
cases, the programs are publicly available (e.g., [6][4]) and
others (e.g., [7]) have been obtained from their respective
authors. Our program is also publicly available at [22].

To make a fair comparison between different algo-
rithms/models whose complexity varies widely, we have cre-
ated two smaller submatrices from the real Netflix dataset:

• Netflix Data Matrix 1 is a matrix given by the first
5,000 movies and users. This matrix contains 280,714
user/movie pairs. Over 15% of the users and 43% of the
movies have less than 3 ratings.

• Netflix Data Matrix 2 is a matrix of 5,035 movies and
5,017 users by selecting some 5,300 movies and 7,250
users and avoiding movies and users with less than 3
ratings. This matrix contains 454,218 user/movie pairs.
Over 16% of the users and 41% of the movies have less
than 10 ratings.

Also, we hide 1,000 randomly selected user/movie entries as a
validation set S. The performance is evaluated using the root
mean squared error (RMSE) of prediction on this set defined
by √ ∑

(n,m)∈S

(r̂n,m − rn,m)
2
/ |S|.

We primarily focused on the RMSE as a function of the
average number of observation ratings per user (i.e., how
many ratings, |O|, are needed to get each algorithm in shape).
Simulations were performed in the very small sample regime
(e.g., much less than 0.5% of ratings) by varying the randomly
selected average number of observed ratings per user between
1 and 30 and the average results are shown in Figure 3. Note
that the choice of parameters for each algorithm (e.g., gu
and gv for IMP and rank for others) was optimized over the
validation set S by running each algorithm multiple times.
For IMP, we used hard K-means clustering (i.e., soft K-
means clustering with large β) for Algorithm 2 Step III to
improve the speed of w(r|u, v) initialization. Also, to make
a fair comparison with algorithms that provide unbounded
predictions, we clip the out-of-range predictions (i.e., ratings
greater than 5 or less than 1), if there are any.
B. Discussion

Our results do shed some light on the performance of
recommender systems based on the MP framework. First,
we have verified that IMP really does improve the cold-
start problem. From simulation results on Netflix submatrices
in Figure 3, we clearly see while other matrix completion
algorithms perform similarly with large amounts of revealed
entries, the IMP algorithm can estimate the matrix very well
only after a few observed entries. The performance of other
algorithms for users with fewer than 5 ratings is generally
poorer than that of the simple movie average algorithm that
uses the average rating for each movie as the prediction. The
IMP algorithm, however, performs considerably better on users
with a very few ratings. This better threshold performance (see
the steep RMSE decay) of the IMP algorithm in comparison
to other algorithms helps to reduce the cold start problem. It
is worth noting that the simple K-means clustering (used for
w(r|u, v) initialization) performs worse than movie average
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Figure 3. Remedy for the Cold-Start Problem: RMSE performance is compared with other different competing algorithms [6][7][4] on the validation set
versus the average number of observations per user for Netflix sub matrices.

in the small sample regime (due to space limits, this curve
is not shown). This implies that the improvement of IMP for
the cold start problem comes from the MP update steps and
not the clustering initialization. We believe this will be a major
benefit of MP approaches to standard CF problems. Other than
these important advantages, each output group has generative
nature with explicit semantics. In other words, after learning
the density, we can use them to generate synthetic data with
clear meanings. These benefits do not extend to general low-
rank matrix models easily.

V. CONCLUSIONS

This paper introduces a novel MP framework for the matrix
completion problem associated with recommender systems.
In contrast to prior work, we model the problem using a
generative factor graph model. Based on the model, we intro-
duce the IMP algorithm, which is a low complexity inference
method that gives optimal performance when the graph is tree.
We demonstrate the superiority of the IMP algorithm by the
comparing results against three other algorithms. Simulations
are performed with the focus on the cold-start setting (very
sparse regime) using Netflix data submatrices. Results show
that, while the methods perform similarly with large amounts
of data, the IMP algorithm is superior for very small amounts
of data and improves the cold-start problem for CF systems
in practice. Another advantage of the IMP algorithm is that it
can be analyzed using the technique of DE that was originally
developed for MP decoding of error-correcting codes. We
anticipate that, by including the effects of clustering, this
analysis will help us understand the algorithm’s impressive
performance.
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