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Abstract—Algorithms based on multiple decoding attempts of
Reed-Solomon (RS) codes have recently attracted new attention.
Choosing decoding candidates based on rate-distortion theory,
as proposed previously by the authors, currently provides the
best performance-versus-complexity trade-off. In this paper, an
analysis based on the rate-distortion exponent is used to directly
minimize the exponential decay rate of the error probability.
This enables rigorous bounds on the error probability for finite-
length RS codes and leads to modest performance gains. As a
byproduct, a numerical method is derived that computes the
rate-distortion exponent for independent non-identical sources.
Analytical results are given for errors/erasures decoding.

I. INTRODUCTION

The design of a computationally efficient soft-decision de-
coding algorithm for Reed-Solomon (RS) codes has been the
topic of significant research interest for the past several years.
Currently, there are several soft-decision decoding algorithms
for RS codes which exhibit a wide range of trade-offs
between computational complexity and error performance.

Among such decoding methods is a class of algorithms
called multiple errors-and-erasures decoding. The algorithms
belonging to this class first construct a set of erasure patterns
based on the available soft information and then run an errors-
and-erasures decoding algorithm, such as the Berlekamp-
Massey (BM) algorithm, multiple times. Each time one
erasure pattern in the set is used for decoding. By doing
this, the algorithm outputs a list of candidate codewords
and then chooses the best codeword from the list. Several
algorithms of this type, including the popular generalized
minimum distance (GMD) decoding algorithm, are discussed
in [1], [2], [3], [4].

In [4], the authors proposed a rate-distortion (RD) ap-
proach for constructing the set of erasure patterns. The main
idea is to choose an appropriate distortion measure so that the
decoding is successful if and only if the distortion between
the error pattern and erasure pattern is smaller than a fixed
threshold. After that, a set of erasure patterns is generated
randomly (similar to a random codebook generation) in order
to minimize the expected minimum distortion. The approach
was also extended to analyze multiple-decoding for decoding
schemes beyond conventional errors-and-erasures decoding.
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One of the drawbacks in the RD approach is that the
mathematical framework is only valid as the block-length
goes to infinity. Therefore, we also consider the natural
extension to a rate-distortion exponent (RDE) approach that
studies the behavior of the probability, pe, that the transmitted
codeword is not on the list as a function of the block-length
N. The overall error probability can be approximated by pe
because the probability that the transmitted codeword is on
the list but not chosen is very small compared to pe. Hence,
our new approach essentially focuses on investigating the
exponent at which the error probability decays as N goes
to infinity.

The proposed RDE approach can also be considered as
the generalization of the RD approach since the latter is a
special case of the former when the RDE function tends to
zero. Using the RDE analysis, our proposed approach also
helps answer the following two questions: (i) What is the
maximum rate-distortion exponent achievable at or below a
given number of decoding attempts (or a given size of the
set of erasure patterns)? (ii) What is the minimum number
of decoding attempts required to achieve a rate-distortion
exponent at or above a given level?

The paper is organized as follows. In Section II, we review
multiple errors-and-erasures decoding algorithms and high-
light the connection between multiple errors-and-erasures
decoding and rate-distortion. Then, in Section III, we propose
a RDE approach to construct a good set of erasure patterns for
a finite length codewords. Next, we discuss how to compute
the RDE function which is required in the proposed approach.
Finally, simulation results are presented in Section V and
conclusion is provided in Section VI.

II. MULTIPLE ERRORS-AND-ERASURES DECODING

In this section, we discuss several multiple errors-and-
erasures decoding algorithms. While each algorithm uses a
different set of erasure patterns, the common trend is that
one either erases or tries several different candidates for each
symbol in the least reliable positions (LRPs). One focuses on
the LRPs because the hard-decision made at these positions
are more likely to be incorrect.

Let Fm be the Galois field with m elements denoted as
α1,α2, . . . ,αm. We consider an (N,K) RS code of length N
and dimension K over Fm. Assume that we send a codeword
c = (c1,c2, . . . ,cN) over some channel and r = (r1,r2, . . . ,rN)
is the received vector. A well-known decoding threshold
states that a single attempt of errors-and-erasures decoding



succeeds if and only if
2v+ e < dmin = N−K +1 (1)

where e is number of erased symbols and v is the number of
errors in unerased positions. A multiple errors-and-erasures
decoding is considered to succeed if the decoding threshold
(1) is satisfied for at least one attempt of decoding. Intuitively,
the best case is when one erases an error and the worst case
is when ones wastes an erasure on a hard-decision symbol
that turns out be correct.

The first algorithm of this type is called Generalized
Minimum Distance (GMD) decoding [1] where the set of
erasure patterns is obtained by successively erasing the
0,2,4, . . . ,dmin−1 LRPs (with the assumption that the mini-
mum distance dmin is odd). Recent work by Lee and Kumar
[2] proposes a soft-information successive (multiple) error-
and erasure decoding (SED) which constructs the set of
erasure patterns in a more exhaustive way. Specifically,
SED(l, f ) tries to erase all possible combinations of an even
number less than or equal to f of positions within the l LRPs.
The SED algorithm hence yields better performance but at
increased complexity.

In an attempt to answer the question how to build a
good set of erasure patterns in terms of performance-versus-
complexity, in [4], we proposed a probabilistic method based
on rate-distortion theory and random coding arguments in-
stead of the deterministic methods which had been used in
previously proposed algorithms. Basically, after defining xN

and x̂N as an error pattern and an erasure pattern whose letters
xi’s and x̂i’s are in the alphabets X and X̂ respectively, a
letter-by-letter distortion measure δ :X ×X̂ →R≥0 is chosen
properly so that the condition (1) can be reduced to the form

d
(
xN , x̂N)< N−K +1 (2)

where the distortion between an error pattern and an era-
sure pattern d

(
xN , x̂N

)
= ∑

N
i=1 δ (x, x̂i) is smaller than a

fixed threshold. In general, an appropriate distortion measure
δ ( j,k) for every j ∈ X and k ∈ X̂ should be specified.

Example 1: Consider a specific class of multiple errors-
and-erasures (Berlekamp-Massey) top-` decoding (mBM-`)
for an positive integer ` smaller than the field size m where
at each codeword index, up to the `-th most likely symbols
are taken care of. In this case, X = X̂ = Zl+1 and xN ∈ XN

where at each index i, xi = 0 implies that using up to the `-th
most likely symbols as the hard-decision all gives an error,
xi = j implies that the j-th most likely symbol is correct for
j = 1,2, . . . , `; x̂N ∈ X̂N where at each index i, x̂i = 0 implies
that an erasure is applied and x̂i = k implies that the k-th most
likely symbol is used as the hard-decision for k = 1,2, . . . , `.
For example, mBM-1 is the case of multiple conventional
errors-and-erasures decoding. The letter-by-letter distortion
measure for mBM-1 is chosen in the following way

δ (0,0) = 1 δ (0,1) = 2
δ (1,0) = 1 δ (1,1) = 0.

(3)

It is also possible to choose appropriate distortion measures
that work for ` > 1 and other decoding schemes such as
algebraic soft-decision (ASD) decoding. Still, the main idea
is to convert the decoding threshold of the corresponding

decoding scheme into the form of (2).
Thus, by viewing xN (resp. x̂N) as a source sequence (resp.

reproduction sequence) and choosing a suitable distortion
measure, the task of designing a good set of erasure patterns
turns out to be how to best approximate the source sequence
with a minimum number of reproduction sequences. In other
words, it becomes a covering problem where one wants to
cover the most-likely error patterns with the fewest number
of balls whose centers are erasure patterns. The main steps
in the RD based algorithm are given here briefly, but more
detail can be found in [4].

Step 1: Empirically compute the reliability matrix whose
entries are Pr(ci = α j|ri) for i = 1,2, . . .N and j = 1,2, . . .m.
From this, determine probability matrix P where pi, j =
Pr(xi = j) for i = 1,2, . . . ,N and j ∈ X .

Step 2: Compute the RD function using P. Determine the
test-channel input-distribution matrix Q where qi,k = Pr(x̂i =
k) for i = 1,2 . . . ,N and k ∈ X̂ that achieves a point on the
RD curve corresponding to a chosen rate R.

Step 3: Randomly generate a set B of 2R erasure patterns
using the distribution matrix Q in the correct reliability order
of the codeword positions.

Step 4: Run multiple attempts of the corresponding de-
coding scheme using the set B to produce a list of candidate
codewords.

Step 5: Use Maximum-Likelihood (ML) decoding to pick
the best codeword on the list.

III. RATE-DISTORTION EXPONENT APPROACH

In the RD approach, the set B of 2NR̄ (or 2R) erasure
patterns can be generated randomly so that1

lim
N→∞

1
N

ExN ,B[ min
x̂N∈B

d(xN , x̂N)] < D̄.

Thus, for large enough N, with high probability we have
minx̂N∈B d(xN , x̂N) < ND̄ = D. Basically, [4] focuses on mini-
mizing the average minimum distortion with little knowledge
of how the tail of the distribution behaves. In this paper,
we instead focus on directly minimizing the probability that
the minimum distortion is not less than the pre-determined
threshold D = N−K +1 (due to the condition (2)) with the
help of an error-exponent analysis. The exact probability of
interest is pe = Pr(xN : minx̂N∈B d(xN , x̂N) > D) that reflects
how likely the decoding threshold (1) is going to fail.

In other words, every error pattern xN can be covered by
a sphere centered at an erasure pattern x̂N except for a set
of error patterns of probability pe. The RDE analysis shows
that pe decays exponentially as N → ∞ and the maximum
exponent attainable is the RDE function. In our context, we
have a source sequence xN of N independent non-identical
source components. We denote the rate-distortion exponent
by F(R,D) using unnormalized quantities (i.e., without di-
viding by N) and note that exponent used by other authors in
[5], [6], [7] is often the normalized version F̄(R,D) , F(R,D)

N .
The original RDE function F(R,D), defined in [5] for a

single source x, is given by2

1We denote the rate and distortion by R and D, respectively, using
unnormalized quantities, i.e., R = NR̄ and D = ND̄.

2All logarithms are taken to base 2.



F(R,D) = max
w

min
p̃∈PR,D

∑
j

p̃ j log
p̃ j

p j

where p j , Pr(x = j), wk| j , Pr(x̂ = k|x = j), and

PR,D =

{
p̃
∣∣∣∣ ∑ j ∑k p̃ jwk| j log

wk| j
∑ j p̃ jQk| j

≥ R

∑ j ∑k p̃ jwk| jδ jk ≥ D

}
.

The RDE was first extensively discussed in [5], [6] and
their results show that there exists a set B of roughly 2NR̄

codewords, generated randomly using the test-channel input
distribution matrix Q, that achieves F̄(R,D). This gives the
upper bound that for every ε > 0, we have

pe ≤ 2−N[F̄(R,D)−ε]. (4)
for N large enough (see [8, p. 229]). An exponentially tight
lower bound for pe can also be obtained for N large enough
(see [8, p. 236]) and this gives

lim
N→∞
− 1

N
log pe = F̄(R,D).

Proposed algorithm: In the RDE approach proposed here,
instead of computing the RD function, we need to compute
the RDE function F(R,D) along with the optimal test-
channel input distribution matrix Q (see Section IV). This
distribution serves as a replacement for the distribution used
in Step 2 of the RD based algorithm given in the previous
section. Apart from this, the other steps of that algorithm are
unchanged for the proposed RDE-based algorithm.

Remark 1: The RDE approach possesses several advan-
tages. First, it can help one estimate the smallest number
of decoding attempts to get to a RDE of F (or get to an
error probability of roughly 2−NF̄ ) or, similarly, allow one to
estimate the RDE (and error probability) for a fixed number
of decoding attempts. Second, it provides a converse based on
the sphere-packing bound lower bound for pe. This implies
that, given an arbitrary set B of roughly 2NR̄ erasure patterns
and any ε > 0, the probability pe cannot be made lower than
2−N[F̄(R,D)+ε] for N large enough. Thus, no matter how one
chooses the set B of erasure patterns, the difference between
the induced probability of error and the pe for the RDE
approach becomes negligible for N large enough.

Remark 2: It is interesting to note that the RDE approach
for ASD decoding schemes contains the special case where
the codebook has only one entry (i.e., ASD decoding is run
one time). In this case, the distribution of the codebook that
maximizes the exponent implicitly generates the optimal mul-
tiplicity matrix. This is similar to the line of work [9], [10],
[11] where various researchers tried to find the multiplicity
matrix that optimizes the error-exponent obtained by either
applying a Chernoff bound [9], [10] or using Sanov’s theorem
[11].

IV. COMPUTING THE RDE FUNCTION
In this section, we first present an extension of Arimoto’s

numerical method for computing the RDE function [12] that
works for any chosen discrete distortion measure. Next, we
consider some special case where we can give an analytical
treatment of the function.
A. Numerical computation of RDE function

For each discrete source component xi, given two param-
eters s ≥ 0 and t ≤ 0, the Arimoto algorithm given in [12]

computes the RDE function numerically as follows.
• Step 1: Choose an arbitrary all-positive distribution

vector q(0) =
(

q(0)
1 ,q(0)

2 , . . . ,q(0)
|X̂ |

)
.

• Step 2: Iterate the following steps at τ = 0,1, . . .

w(τ)
k| j =

q(τ)
k 2tδ jk

∑k q(τ)
k 2tδ jk

q(τ+1)
k =

{
∑ j p j2−stδ jk(w(τ)

k| j )
(1+s)

} 1
1+s

∑k

{
∑ j p j2−stδ jk(w(τ)

k| j )
(1+s)

} 1
1+s

.

for j ∈ X and k ∈ X̂ .
It is shown by Arimoto that w(τ)

k| j → w?
k| j and q(τ)

k → q?
k as

τ → ∞. Using the resulting w?
k| j and q?

k , we can compute

F = ∑
j

p̃?
j log

p̃?
j

p j
(5)

R = ∑
j
∑
k

p̃?
jw

?
k| j log

w?
k| j

∑ j p̃?
jw

?
k| j

(6)

D = ∑
j
∑
k

p̃?
jw

?
k| jδ jk (7)

where p̃?
j = p j(∑k q?

k2tδ jk )−s

∑ j p j(∑k q?
k2tδ jk )−s

.

However, in the context we consider, the source (error
pattern) xN comprises independent but not necessarily iden-
tical source components xi’s. The complexity is a problem
if we consider a group of source letters ( j1, j2, . . . , jN) as
a supper-source letter J , a group of reproduction letters
(k1,k2, . . . ,kN) as a super-reproduction letter K and apply
the Arimoto algorithm straightforwardly . Instead, we can
avoid this computational obstacle by choosing the initial
distribution still arbitrarily but following a factorization rule
q(0)
K = ∏

N
i=1 q(0)

ki
. Then, we can verify that this factorization

rule still holds for w(τ)
K|J and q(τ)

K after every step of the
Arimoto algorithm. This leads to

w?
K|J = ∏

N
i=1 w?

ki| ji and q?
J = ∏

N
i=1 q?

ki
.

Combining with δJK = ∑
N
i=1 δ jiki and pJ = ∏

N
i=1 p ji , we

have
p̃?
J =

N

∏
i=1

p̃?
ji .

This gives the following proposition.
Proposition 1: (Factored Arimoto algorithm for RDE

function) Consider a discrete source xN of independent but
non-identical source components xi’s. Given parameters s≥ 0
and t ≤ 0, the exponent, rate and distortion are given by

F |s,t =
N

∑
i=1

Fi|s,t , R|s,t =
N

∑
i=1

Ri|s,t , D|s,t =
N

∑
i=1

Di|s,t

where the components Fi|s,t , Ri|s,t , Di|s,t are computed para-
metrically by the Arimoto algorithm.

B. Analytical computation of RDE function

In this subsection, we consider the case m-BM1 whose
distortion measure is given in (3). We study the setup that
RS codewords defined over Galois field Fm are transmitted



over the m-ary symmetric channel (m-SC) which for each
parameter p can be modeled as

Pr(r|c) =

{
p if r = c
(1− p)/(m−1) if r 6= c.

Here, c (resp. r) is the transmitted (resp. received) symbol
and r,c ∈ Fm. With this channel model, we consider p not
too small so that p > (1− p)/(m− 1). Therefore, at each
index i of the codeword, the hard-decision is also the received
symbol and then it is correct with probability p. Thus, we
have pi,1 , Pr(xi = 1) = p for every index i of the error
pattern xN . That means, in this context we have a source
xN with i.i.d. binary components xi. Since the components
xi are i.i.d we can treat each xi as a binary source X with
Pr(X = 1) , p and Pr(X = 0) = 1− p , p̄ and first compute
the RDE function for this source X .

According to [5], for any admissible (R,D) pair we can
find two parameters s ≥ 0 and t ≤ 0 so that F(R,D) can be
parametrically evaluated as

F(R,D) = sR− stD+max
q1

(− log f (q1))

= sR− stD− logmin
q1

f (q1)

where
f (q1) = p̄

(
∑
k

qk2tδ0k

)−s

+ p

(
∑
k

qk2tδ1k

)−s

and R,D are given in terms of optimizing q? which we will
discuss later.

For the distortion measure in (3) and note that q0 = 1−q1,
we have

f (q1) = p̄
(
(1−q1)2t +q122t)−s

+ p
(
(1−q1)2t +q1

)−s

which is a convex function in q1. We then see that
∂ f
∂q1

= 0⇔ q?
1 =

1+2t

1−2t

(
1

1+2t −
p̄

1
s+1

2
st

s+1 p
1

s+1 + p̄
1

s+1

)
, β .

In order to minimize f (q1) over q1 ∈ [0,1], we consider
three following cases where the optimal q?

1 is either on the
boundary or at a point with zero gradient.
• Case 1: 0 ≤ p ≤ 2t

1+2t then β ≤ 0. Since f convex, it
is non-decreasing in the interval [β ,∞) and therefore in the
interval [0,1]. Thus, the optimal q?

1 = 0 and we can also
compute from (5), (6), (7) that

D = 1; R = 0; F = 0 = DKL(u||p)
where in this case u = p.
• Case 2: 1 ≥ p ≥ 1

1+2t(2s+1) then β ≥ 1. Since f convex,
it is non-increasing in the interval (−∞,β ] and therefore in
the interval [0,1]. Thus, the optimal q?

1 = 1 and similarly we
get

D = 2p̄
p22ts+p̄ ; R = 0; F = DKL(u||p)

where in this case u = 1− D
2 . We can further see that D ∈

[2(1− p),1] and u ∈ [1−D, p].
• Case 3: 2t

1+2t < p < 1
1+2t(2s+1) then β ∈ [0,1]. In this

case, the optimal q?
1 = β . We then can find w?

k| j = q?
k2tδ jk

∑k q?
k2tδ jk

according to [5] and plug in (5), (6), (7) to get3

D =
2t

1+2t +1−u

R = H(u)−H(u+D−1)
F = DKL(u||p)

where u = 2
st

s+1 p
1

s+1

2
st

s+1 p
1

s+1 +p̄
1

s+1
. With this notation of u, we can

express q?
1 = 1−D

3−2(u+D) and q?
0 = 2(1−u)−D

3−2(u+D) . We can see that
D ∈ (1− p,1). It can also be verified that, in this case,
by varying s and t, u spans (1−D,1−D/2) and R spans
(0,H(1−D)).

Based on the above analysis, we obtain the following
lemmas and theorems.

Lemma 1: Let h(u) = H(u) − H(u + D − 1) map u ∈
[1−D,1−D/2) to R. Then, the inverse mapping of h,

h−1 : (0,H(1−D)]→ [1−D,1−D/2) ,

is well-defined and maps R to u.
Proof: We first notice that h(u) is strictly decreasing

since the derivative is negative over [1−D,1−D/2), hence
the mapping h : [1−D,1−D/2)→ (0,H(1−D)] is one-to-
one. From the analysis above, one can also see that h is
onto.

Theorem 1: Using mBM-1 with 2R decoding attempts
where R ∈ (0,NH(1− D

N )], the maximum rate-distortion ex-
ponent that can be achieved is

F = N DKL
(
h−1 (R/N) || p

)
. (8)

Proof: First, note that in our context where we have a
source sequence xN of N i.i.d. source components, the rate
and exponent for each source component is now R

N and F
N .

From Case 3 in the analysis above and from Lemma 1, we
have

F/N = DKL(u||p) = DKL
(
h−1 (R/N) || p

)
and the theorem follows.

Lemma 2: Let g(u) = DKL(u||p) map u ∈ [1−D, p] to F .
Then, the inverse mapping of g,

g−1 : [0,DKL(1−D || p)]→ [1−D, p]

is well-defined and maps F to u.
Proof: We first see that g(u) is a strictly convex function

and achieved minimum value at u = p and therefore g(u) is
strictly decreasing over [1−D, p]. Thus, the mapping g : [1−
D, p]→ [0,DKL(1−D || p)] is one-to-one. From the analysis
above, one can also see that g is onto.

Theorem 2: In order to achieve a rate-distortion exponent
of F ∈ [0,N DKL (1−D || p)], the minimum number of decod-
ing attempts required for mBM-1 is 2R where

R = N
[
H
(
g−1 (F/N)

)
−H

(
g−1 (F/N)+D/N−1

)]+
Proof: We also note that the rate, distortion and exponent

for each source component is R
N , D

N and F
N respectively.

Combining all the cases in the above analysis, we have

R/N =
[
H
(
g−1 (F/N)

)
−H

(
g−1 (F/N)+D/N−1

)]+
3The binary entropy function is H(u) ,−u logu− (1−u) log(1−u) and

the Kullback-Leibler divergence is DKL(u||p) , u log u
p +(1−u) log 1−u

1−p .
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Figure 1. Performance of various decoding algorithms for the (255,239)
RS code over an AWGN channel.

and the theorem follows.

V. SIMULATION
Simulations of the proposed algorithm were conducted

for the (255,239) RS code over an AWGN channel with
BPSK as the modulation format. In Fig. 1, the mBM-
2(RD,11) curve belongs to the algorithm mBM-2 using RD
approach proposed in [4] while the mBM-2(RDE,11) one
corresponds to the algorithm mBM-2 using RDE approach
proposed in this paper. The label SED(12,12) denotes the
algorithm presented in [2]. While all these three algorithms
use the same number of 211 erasure patterns, at a FER of
10−4, the mBM2(RDE,11) provides a performance gain of
roughly 0.4 dB over the SED(12,12) and outperforms the
mBM2(RD,11) by about 0.1 dB. The conventional HDD and
the GMD algorithms have modest performance since they
use only one or a few decoding attempts. Compared to the
conventional HDD, the proposed algorithm mBM-2(RDE,11)
gives approximately a 0.9 dB gain. It also outperforms the
Koetter-Vardy (KV) algorithm [13] with infinite multiplicity
(µ = ∞). The performance of mBM-2(RDE,11) is roughly the
same as the performance of mASD-3(RDE,11). This implies
that, for this setup, algorithms based on multiple trials of BM
decoding perform as good as algorithms based on running
the more complicated ASD decoding multiple times. In Fig.
2, we simulate the performance mBM-1(RDE,11) for the
same RS code over an m-SC channel. One curve reflects
the simulated frame-error rate (FER) and the other is the
approximation derived from 2−F where F is given in (8)
with R = 11.

VI. CONCLUSION
A RDE-based algorithm has been proposed for multi-

ple decoding attempts of RS codes. The RDE analysis
shows that this approach has several advantages. Firstly,
the RDE approach achieves a near optimal performance-
versus-complexity trade-off among algorithms that consider
running a decoding scheme multiple times (see Remark 1).
Secondly, it can help one estimate the error probability using
exponentially tight bounds for N large enough. Simulations

0 0.005 0.01 0.015 0.02
10

−8

10
−6

10
−4

10
−2

10
0

p

F
ra

m
e 

E
rr

or
 R

at
e

 

 

mBM1−RDE(11)
Upper bound

Figure 2. Performance of mBM-1(RDE,11) and its approximation 2−F

where F is given in (8) for the (255,239) RS code over an m-SC(p) channel.

are used to confirm that algorithms using this approach
achieve a better trade-off than previously known algorithms.
Along with this, a numerical method is given to compute the
required RDE function.

Our future work focuses on extending this approach to
analyze multiple decoding attempts for ISI channels. In this
case, it makes sense for the decoder to consider multiple
candidate error-events during decoding. Extending the RD
approach directly gives a RD problem for Markov sources
in the large distortion regime. Some work is required though
because this is a well-known open problem.
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