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Abstract—Following the work of Méasson, Montanari, and Ur- The idea of decoding a code transmitted over a channel
banke, this paper considers the maximum gosteriori (MAP) de-  with memory via iteration was first introduced by Douillard,
coding thresholds of three iterative decoding systems. Ft, irreg- et al. in the context of turbo codes and is knowntago

ular repeat-accumulate (IRA) and accumulate-repeat-acconulate o .
(ARA) code ensembles are analyzed on the binary erasure equalization[9]. Turbo equalization can also be extended to

channel (BEC). Next, the joint iterative decoding of LDPC cdes the joint decoding of LDPC codes by constructing one large
is studied on the dicode erasure channel (DEC). The DEC is graph which represents the constraints of both the chamoel a

a t_WO-Statde ﬁnt_9f5¥1mb9|-in}eff9fence (||S|)f0ham|1§|| Wtifh ealsuf(?h the code [10]. For finite-state (FS) channels, analysis iof jo
noise, and It Is the simplest example of an channel witl H H H H H
erasu,re noise. The MAPpthreshoId t?ound for the joint decoder Qecodlng requires the analysis of the BCJR algorithm which
is based on a slight generalization of the EXIT area theorem. is used to dECOde the Ch"?m_nel_' For_some Channels’_DE can be
done analytically for the joint iterative decoding of ircdgr

LDPC codes and the channel [11]. One such channel is the
dicode erasure channel (DEC), which is simply a binary-inpu
channel with a linear response bf- D and erasure noise.

In this paper, we apply the ideas of [12], [1], [2] to IRA

A thorough analysis of iterative decoding systems arehsembles, ARA ensembles, and the joint iterative decoding
the relationship between maximuen posteriori (MAP) and of irregular LDPC codes on the DEC. Both the MAP and
belief propagation (BP) decoding was initiated by MéassoBP erasure thresholds are computed and compared with each
Montanari, and Urbanke in [1], [2]. This analysis is basedther.
on density evolution (DE) and extrinsic information tragrsf In Section 1, a brief background is given for iterative
(EXIT) functions [3]. Their work focuses mainly on low-decoding, DE, EXIT functions, and the MAP threshold bound-
density parity-check (LDPC) and turbo codes, but they noteg technique. In Section Ill, the MAP threshold bounding
that these ideas can be extended to other iterative decodiachnique is applied to IRA and ARA codes. In Section IV,
systems. In this paper, we extend some of their resultseg-rr joint iterative decoding is briefly introduced and the MAP
ular repeat-accumulate (IRA), accumulate-repeat-actatau threshold bounding technique is applied to joint decoding.
(ARA), and the joint iterative decoding of LDPC codes ovefFinally, concluding remarks and open questions are discliss
channels with memory. in Section V.

DE is a method of evaluating iterative decoding systems
for asymptotically large block lengths and was introduced ) )
in [4]. EXIT functions were introduced by ten Brink asA- Low-Density Parity-Check Codes
an approximate technique to visualize the convergence ofLow-density parity-check (LDPC) codes are linear codes
iterative systems [3]. In fact, for the erasure channel, EXIwhich have a sparse graph representation; in general,¢hely t
functions satisfy a rigorous conservation law known as the exhibit good performance under message-passing degodin
area theorem [5]. The area theorem can be used to rigorouslyd,,, d.)-regular LDPC code is a binary linear code such
connect the performance of a code under MAP decoding tttat every bit node has degrdg and every check node has
its performance under BP decoding. Méasson, Montanari atelgreed.. An irregular LDPC ensemble is described by its
Urbanke give a graphical construction of the MAP thresholdegree distribution (d.d.), which encodes the fractionales
using an approach reminiscent of the Maxwell construction {or edges) with a particular degree. From an edge perspectiv
thermodynamics to provide a bridge between MAP and BRe d.d. of the bit and check nodes is given, respectively,
decoding [1], [2]. by A(z) = Yoo, hiat~! and p(z) = Y02, piz't, where

Jin, Khandekar, and McEliece proposed and analyzed IRA (or p;) represent the fraction of edges attached to a bit
codes in [6]. ARA codes were introduced by Abbasfar, DRode (or check node) of degréeFrom a node perspective,
vsalar, and Kung in [7]. Later, it was shown that the DEhe d.d. of bit and check nodes is given, respectively, by
analysis of IRA and ARA codes can be reduced to the DE(z) = .7, L;z* and R(z) = >.;°, R;z’, whereL; (or
analysis of LDPC codes via a technique known as graph) represent fraction of bit (or check) nodes of degiee
reduction [8]. Codes are chosen randomly from an ensemble by choosing a

Index Terms—MAP threshold, iterative decoding, LDPC codes,
EXIT function, erasure channel.

I. INTRODUCTION

Il. BACKGROUND



random permutation to connect the bit and check nodes [13, 1
p. 579][14]. The design rate of the code in terms of its degree
distribution is given by 0.8
L), e
R (1) fol)\(:c) dz

The performance of irregular LDPC codes can be signif- 0.4
icantly better than regular LDPC codes. Certain structural
modifications, such as those provided by IRA and ARA 0.2f
constructions can also improve performance. DE can be used
to analyze and design (e.g., optimize the degree distabjti 84 o5 o6 o7 08 09 1
LDPC, IRA, and ARA codes. DE works by recursively track- ¢
ing the dI_StnbUtlon of messages_ pagsed _around the Ga‘llag’—%&ure 1. The BP EXIT functiohB¥ (e) of a (3,6)-regular LDPC code on
Tanner-Wiberg (GTW) graph during iterative decoding. #oal the erasure channel. The left boundary of the shaded arbe ispper bound
gives a precise characterization of the asymptotic pedowe on<"*”, and the area of the shaded portion under the curve equatetiee
in terms of a noise threshold, where decoding almost surdf{f ©f 2+ This givese”™ = 0.4294 ande < 0.4881.
converges if the noise is less than the threshold. For a(BEC

Siz.,Dalé kr)érzréig;aszgebgh\?v?;tﬂnvg::hclirsaezu;irgrtzs?bdlw performance of a code under BP decoding to that under MAP
1 — .
decoding.

A (1 —p (1 —2;)), whereu; is the average fraction of erasure g uion . The BP EXIT functionof a lengthn code is
messages sent from the bit nodes to the check nodes duriri%n by '

iterations. 9
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B. EXIT Functions and the Area Theorem =1

EXIT functions first appeared as handy tools to visualize t¥€r€/;’” (E)nis the entropy of the iterative decoding estimate
iterative decoding process; from EXIT curves, one can gasff Xi from Y7" exceptY;. The iterative decoding estimate of

see the "bottlenecks” in the iterative decoding process [3] bit is given by the bit's extrinsic message in the BP decoder

Once these critical regions have been identified, the comon@/t€r ! iterations of decoding.

codes can be changed appropriately to "match” the curves anfemark 2:For ensembl_es of codes,_these expressions will
improve the performance of the system also refer to the asymptotic EXIT functions as— oc. In the

Definition 1: [1], [2] Let C be a lengths binary code case of BP EXIT functions, we assume also that the number

defined by the probability distributiomy (7). Let X7 of decoding iteration$ — oo as well (with then-limit taken
be chosen according tpxr (z7) and Y} be the result of first). These limits are well-defined and deterministic fd? B

transmitting X over a BEGe). Then, theMAP EXIT function EXIT functions because of the concentration theorem [14}. F
is defined to llae ’ the MAP EXIT function, a similar approach can be used to
N show thath™4” (¢) concentrates around its ensemble average
ZH (XY () \Y; (€)) . [15] which we will assume to be well-defined.

P The following parametric expression for the asymptotic BP
. _ EXIT function is given in [1], [2] for the standard ensemble
Remark 1:From this, we see that™ 4 (¢) is the average of LDPLé: C(I)deé given in [1], [2]

(Z\SFE al Plts)tent;(op;y of tt::e ogtlmmtpoiirlorl prot;)/ab_ll_l;]ty Theorem 2:For an irregular LDPC code, the asymptotic BP
( )es Imate oR; from the observations, " exceptr. The ey 1 cypve is given in parametric form by

notationY;" (e) andY; (e) is used to emphasize the dependence

hMAP (E) L

S

of these r.v. ore. Let M4 be the erasure threshold of MAP BP 0, z € [0,257)
decoding for a code ensemble. For asymptotically largthe h" (e(2)) = L(l-p(l-2)) ze€@BP 1]
average conditional entropy™4” (¢) converges to zero for ’

e < eMAP and is strictly positive foe > ¢MAP, wheree (z) £ 57—y andz"" denotes the location of

Theorem 1 (Area Theorem)et C be a lengths binary the unique minimum of (z) in the range (0,1] and®” £
code defined by the probability distributiopyr (z7). Let e(xBP) is the BP decoding threshold.
X{ be chosen according toxy(z7) and Yy* be the result  The BP EXIT functionk”” (¢) of a (3,6)-regular LDPC
of transmitting X" over a BEGe). To emphasize that?" code on the erasure channel is shown in Fig 1. Its BP threshold
depends on the channel parametawrite Y;" (). Then BT is given by the point wher&?” (¢) drops down to zero.

1 6
—H (XY (6) = [ hMAP () de. . .
n (XTYT (9) /0 (€) de C. Bounding the MAP Decoding Threshold

Proof: A nice history of this theorem and its various The following approach to bounding the MAP decoding
proofs can be found in [2, p. 44]. m threshold is based on the approach used in [1], [2]. The
In addition, there is another, perhaps more surprisingli-apgkey point is that the optimality of the MAP decoder implies
cation of EXIT functions; they can be used to connect the"4” (¢) < hBF (¢). Since the integral ok 4% (¢) is equal
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Figure 2. Gallager-Tanner-Wiberg graph for ARA and IRA c®de

1
to the code’s true rate (based on the area theorem), it follows fo A(z)dz
that .
a 1 1 2) BP EXIT Function and Bounds on the MAP Threshold
TLDpcgr:/ hMAP(e)deg/ hBP (€) de
eMAF eMAF Lemma 1:The asymptotic BP EXIT function of the IRA

becausehM4F (¢) = 0 for 0 < € < eprap andrpppe < r COde ensemble is given by
(i.e., linear dependencies in the parity-check matrix caly o
increase the rate). This bound is useful becak/é€ (¢) can
be computed easily. In some cases, it can also be shown that i , i
the bound is tight and that"' 47 (¢) = hBP (¢) for e > MAP W erexy,xz3 are given by thé — oo DE fixed point fore.
(1], [2]. Proof: IRA codes have multiple types of bits in the GTW
Fig. 1 shows the BP EXIT functioh”” (¢) and the integral graph. Then(1 — r) parity bits have an average extrinsic
bound one4”. In this construction, the left edge of theerasure probability ofz{")? after [ iterations. Likewise, the
shading is chosen so that the shaded area under the BP EXJT, , information bits of degreé-have an average extrinsic
function curve equals the code rate. This left edge providgszsyre probability Oflél))d after [ iterations. Therefore, we
the upper bound on the MAP threshaltf . can write the large-iteration long-block limit of the IRA de
EXIT function as

RBP—IRA (&) = prpa L(x3) + (1 — riga) 22,

I1l. MAP THRESHOLDBOUNDS FORIRA AND ARA
CODES

- S I -
A. Background on IRA and ARA Codes WP () = Jim Tim = 7T (e
=1

IRA and ARA codes can be viewed as subclasses of LDPC

codes that have natural linear-time encoding algorithms [6 “':“"llirgo [TIRAZLd (xél))d + (1 —rrga) (xil))ﬂ
[7]. Using iterative sum-product decoding, they can also be d=1

decoded with a per-iteration complexity that is linear i th =rira L (23) + (1 —r1ra) (21)°.

block length. From an encoding point of view, it is natural to

view IRA and ARA codes as interleaved serially concatenated u

codes [8]. From a decoding point of view, they are easily seégcordingly, we plot the BP EXIT function of the IRA
to be sparse-graph codes compatible with belief propagatieode and integrate backwards from the right end of the
decoding. There are a few slightly different definitions &#A curve wheree = 1. The integration process stops at
ensemble, and this paper uses the ensemble and DE equatigh@n f: hBF (€)de = rira. This gives the upper bound
defined in [8]. eMAP < ¢ for the IRA code ensemble (Fig. 3).

B. MAP Threshold Bounds for systematic IRA Codes

1) Density Evolution and Fixed Point Analysis of Iterativ
Decoding for IRA codes:Since IRA codes can be viewed%' MAP Threshold Bounds for ARA Codes

as LDPC codes with an accumulate structure attached to thd) Density Evolution of Systematic ARA Ensembhles
check nodes (see Fig. 2), they can also be defined by their dPfister and Sason [8] consider the asymptotic analysis of
pair A\(z), p(z). For any fixed number of decoding iteratians ensembles of ARA codes under the assumption that the codes
the DE equations give (almost surely ms— oo) the erasure are transmitted over a BEC and decoded with an iterative
rate of the internal messages passed by the BP decoder fonessaging-passing decoder. For this ensemble, they find tha
random code and channel erasure pattern. In [6], for any fixBé for the BEC can be computed in closed form. From Fig.
¢, the DE equations are given by 2, we see that
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Figure 3. The BP EXIT functioh?” (¢) of a (4, 4)-regular IRA code Figure 4. The BP EXIT function®” (e) of the ARA code with\ () = 22,
(i.e., M(z) = p(z) = %) on the erasure channel. The left boundary of the (z) = 2z + £ on the erasure channel. The left boundary of the shaded
shaded area is the upper boundedfi”*”, and the area of the shaded portionarea is the upper bound af/4”, and the area of the shaded portion under
under the curve equals the code ratelofThis giveseB? = 0.4451 and  the cyrve equals the code rate%).fThis giveseBP = 0.6412 andeM AP <

eMAP < .4872. 0.6593.

D. Tightness of the Upper Bound

e =1- (1 - xé“l)) (1—¢) It is worth noting that, for the BEC, graph reduction can be
o 0\2 (-1 used to reduce any IRA or ARA code into an LDPC code [8].
T = (IO ) A <I4 ) After this reduction, the LDPC code can be decoded with a
«P=1-R (1 _ xgl)) (1 _ xgH)) peeling decoder until the decoder gets stuck. If one analyze
o o this process carefully, one can compute the d.d. of residual
Ty = Xy graph and apply the the counting argument of [1], [2] to
eV =1- (1 _ xgw)z 0 (1 _ xﬁ”) (possibly) prove the tightness of the MAP threshold. We are

o o o currently pursuing this approach, but it is complicated g t
Ty =z L (I4 ) ) fact that the residual graph has nodes of unbounded degree.

wheree is the channel erasure probability amﬂ) tracks the
average fraction of erasure messages for edge ityret
iteration/. The rater4gr4 Of a systematic ARA code given

IV. MAP THRESHOLDBOUNDS FORJOINT DECODING
A. Background and System Description

can be written as Pfister and Siegel consider the achievable rate of joint
FARA = 1 — iterative decoding of LDPC codes and channels with memory
1+ }L%EB [11]. Here we use same system model and consider instead the

2) BP EXIT Function and Bounds on the MAP ThresholdMAP decoding threshold. The block diagram of the system

_ ) ) is shown in Fig. 5. It is a relatively standard setup for the
Lemma 2.The_ as}’mpto“c BP EXIT function of the ARA joint iterative decoding of an LDPC code and a channel with
code ensemble is given by

memory. Equiprobable information bité/f < {0,1}*, are
RBP=ARA (o) =y 11— (1= 25)%| + (1 — 7aga) 22, encoded into an LDPC codewor&? € {0,1}", which is
) ) ) observed through the dicode erasure channel (DEC) as the
wherexs, x, are given by thé — oo DE fixed point fore.  output vectory;” € {—1,0, 1, ?}. The decoder consists of the

Proof: ARA codes have two classes of bits are transmittédiannel APP detector an LDPC decoder which pass messages
across the channel. The- systematic bits have an averag&ack and forth. In the first half of decoding iterationthe

extrinsic erasure probability df— (1—2'")? after! iterations. Channel detector decod&§" using thea priori information

i, one LDPC decoding iteration is completed using internal
edge messages from the previous LDPC iteration and the
output of the channel detector. A random scrambling sequienc
is added to the codeword before transmission and removed
before LDPC decoding; this is very similar to using a random
coset of the LDPC code. Fig. 6 shows the GTW graph of the
joint iterative decoder.

erasure probability o@”)?, after( iterations. Thus, we can
write the large-iteration long-block limit of the ARA code
EXIT function as

- 1 & -
BP—-ARA _ i BP—-ARA
" (9= fim fim 73 AT

= TARA [1 —(1- I5)2} +(1- TARA):E;

. N N
The same integration process, that was used for LDPC adth--t | LDPC | X3 Xy (oo 4 YW | Joint | Un. U
; P Encodef anne Decode
IRA codes, is used to calculate the upper bound¥r* for
ARA codes (Fig. 4).

Figure 5. Block diagram of the system.
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1) The Dicode Erasure ChanneThe dicode erasure chan- bE outputs
nel (DEC) is a binary input channel based on the D linear channe
intersymbol-interference (I1SI) dicode channel. The ottpiu xa‘ ‘XZ code
the1 — D channel with binary inputs (e.g., +1, 0, -1) is erased bits
with probability e and transmitted perfectly with probability x| |, = S
[111]?,. More information about the DEC can be found in [16], \ﬂ/ \5/ M y pary

The simplicity of the DEC allows the BCJR algorithm forFigure 6. Gallager-Tanner-Wiberg graph of the joint itemtdecoder.
the channel to be analyzed in closed form. The method is
similar to the exact analysis of turbo codes on the BEC [2].
The EXIT function for the DEC is computed in [11] and if the Definition 3: Then, thejoint decoding MAP EXIT function
outputs are erased with probabilitythen the EXIT function is defined to be
of the channel detector is given by MAP-ID L1 .
h @& 53 HZT (9\Vi(0.51).

4e?
flae) = ———.
2-z(1-¢) Definition 4: Then, thejoint decoding BP EXIT functiois
The capacity of the DEC for independent equiprobable inpudefined to be
can be computed by analyzing only the forward recursion of 1
the BCJR algorithm [16] and is given ;. 4.(¢) = 1 — fi. RBE=ID (¢) £ - Z hEP=7P (¢),

=1
B. Density Evolution for Joint Decoding where hPT~7P (¢) is the entropy of the iterative decoding

The closed form analysis of this system is based on the fa&imate ofZ; from Y"\Y; and S;. The iterative decoding
that all the messages passed in decoding graph are eragdffinate of this output symbol is given by the symbol's
messages. This allows DE of the joint iterative decoder to Qtrinsic message in the joint decoder afteiterations of
represented by a single parameter recursion. f{et ¢) be decoding.

a function which maps the erasure probability, of the a Corollary 1: Let X} be chosen according tox; (+7) and
priori LLR distribution to the erasure probability at the outpuy» pe the result of transmittingk? over the above FS

of the channel detector for a channel erasure probability of|S| channel. To emphasize that” depends on the channel
Following [11], we refer tof (x; ¢) as theextrinsic information parametes write Y{(6). Then

transfer (EXIT) function of the channel. s
The joint decoding graph is shown in Fig. 6 and message- lH (XY (6),5:) = / pMAP—JD (€) de.
n

passing schedule and variables are shown on the Ieftcgl_)et 0
:cgl), :cél), anda:él) denote the erasure rate of messages passed Proof: The proof is a slight modification of the approach
during iterationl. The update equations are as follows taken in [1], [2]. The one-to-one correspondence betwEén

and Z7 (given S;) implies that

(+1) (D) Q)
o™ =2 (o) H(XP|VE, 81) = H(ZP|YP, Sh)

A =1—p (1 af™) = H(Z|Y{", 1) + H (ZP\Zi|Y}", Zi, S1) .
o = (a:&’“)) SinceY; is a noisy observation of;, we find thatZ}\ Z; —
(+1) (+1). Z; — Y; forms a Markov chain. Moreover, if each channel
v = (I2 ’E)' mappingZ; — Y; depends on a different parametgy then
The first two equations simply describe LDPC decodinge can write
when the channellerasure parametqufé instead of the fixed _ iH (XYP,8) = iH (Z:Y?, S1)
constante. The third equation describe the message passing € €

from the code to the channel detector. The fourth equatibecauseH (Z7'\ Z;|Y*, Z;,S1) is independent of;. If we
takes the channel detector bits into account and simply magsume also thdt; is either an erasure (with probability)
side information from the code through the EXIT functioror Y; = Z; (with probability 1 — ¢;), then we can write

[ (xs5€).
H (Z;|Y{",5) = H (Z;|Y{" \ Y;, 51)

C. The EXIT Area Theorem for Joint Decoding +(1— &) H(Z|YP\ Y, Zi, S1)

In this section, we consider the MAP EXIT function of . he derivati hod. this ai
the entire joint decoder. Consider any FS channel with det&fSing the derivative method, this gives

ministic ISI that is observed through an erasure channel. In d nvn _ =~ d v

this case, the output sequentg¢ consists of independently &H (XTYT 51) = Z; d_qH (ZIYT, 51)
erased observations (with probability of a deterministic o

sequenceZy that, given the initial state;, is in one-to-one = ZH (Zi|Y7"\ Yy, S1) .
correspondence with the input sequercg. i=1
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boundary of the integration area is the upper bound¥A”
of the joint iterative decoder for a (3,6)-regular LDPC code

hBP(e)

and the DEC channel.

V. CONCLUSIONS

In this paper, upper bounds on the MAP thresholds are

0.5 computed for three iterative decoding systems: IRA codes,
ARA codes, and the joint decoding of LDPC codes and chan-
nels with memory. These bounds are based on the techniques

85 o o5 o 1 introduced by Méasson, Montanari, and Urbanke in [1], [2].
e The bound for joint decoding requires a slight generalizati

of the EXIT area theorem that is introduced within.

Figure 7. The BP EXIT functiorh ¥ (¢) of the joint iterative decoder for
a (3,6)-regular LDPC code and the DEC channel. The left bagndf the

Some open questions include the tightness of these bounds

shaded area is the upper boundedA4, and the area of the shaded portion@Nd the existence of simpler (or closed-form) expressions.

under the curve equals the code rate%ofThis giveseBP = 0.5689 and
eMAP < 0.6386.

These bounds also have natural extensions to non-erasure
channel by way of the generalized EXIT (GEXIT) functions

introduced in [17].

D. BP EXIT Function and Bounds on the MAP Threshold

The joint decoding BP EXIT function simply can be com-[y;
puted by analyzing the BCJR decoding algorithm for the DEC.
Since the channel has only two states and the channel inplﬁ?
satisfy Pr(X; = 0) = Pr(X; = 1) = 3, the forward and
backward recursion vectors (which can have infinite supportsl
effectively take only two values; the state is either knowr[4]
(denotedk’) or unknown (denotedy) [11].

Lemma 3:The asymptotic BP EXIT function of the joint
decoder can be written as

RPP=P () =Pr(a e K,BE€U)-6+Pr(aeU,B €K)

(5]

6]
+Pr(aclU,Bel)- Ea+(1_5)]

_ 268 (4 + €0 — 20)
@-0(1-07

where§ = L(z;) andz; is given by thel — oo DE fixed
point for e.

Proof: To compute the BP EXIT function, we can simply [g]
analyze the output stage of the BCJR algorithm and compute
the entropy ofZ; given the current messages. Notice that, at
any point in the trellis, there are four distinct possielt for [10]
forward/backward recursiom(5) state knowledge(K/K),
(K/U), U/K), and (U/U). Let ¢ be the channel erasure
rate andd = L(z,) be thea priori erasure rate from the
LDPC code, and definél g = H(Z;|o; € A, Bi11 € B).
Examining the trellis shows that

Hixx =0  Hxy=6
3
Hyx =1 Huu:§6+(1—6)

(7]

(8]

[11]

[12]

(23]

From [11], the steady state probability that the forr14]
ward/backward recursion has no state knowledge is

20 [15]
Pricell) =5 —Sarat90
Pr(Bell) = 2¢ (16]

(I1—¢€)(2—06)+2¢

[ ]
Fig. 7 shows the BP EXIT functioh®” (¢), and area under
the BP EXIT function curve equals the code réteThe left

[17
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