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Abstract—Following the work of Méasson, Montanari, and Ur-
banke, this paper considers the maximum aposteriori (MAP) de-
coding thresholds of three iterative decoding systems. First, irreg-
ular repeat-accumulate (IRA) and accumulate-repeat-accumulate
(ARA) code ensembles are analyzed on the binary erasure
channel (BEC). Next, the joint iterative decoding of LDPC codes
is studied on the dicode erasure channel (DEC). The DEC is
a two-state intersymbol-interference (ISI) channel with erasure
noise, and it is the simplest example of an ISI channel with
erasure noise. The MAP threshold bound for the joint decoder
is based on a slight generalization of the EXIT area theorem.

Index Terms—MAP threshold, iterative decoding, LDPC codes,
EXIT function, erasure channel.

I. I NTRODUCTION

A thorough analysis of iterative decoding systems and
the relationship between maximuma posteriori (MAP) and
belief propagation (BP) decoding was initiated by Méasson,
Montanari, and Urbanke in [1], [2]. This analysis is based
on density evolution (DE) and extrinsic information transfer
(EXIT) functions [3]. Their work focuses mainly on low-
density parity-check (LDPC) and turbo codes, but they note
that these ideas can be extended to other iterative decoding
systems. In this paper, we extend some of their results to irreg-
ular repeat-accumulate (IRA), accumulate-repeat-accumulate
(ARA), and the joint iterative decoding of LDPC codes over
channels with memory.

DE is a method of evaluating iterative decoding systems
for asymptotically large block lengths and was introduced
in [4]. EXIT functions were introduced by ten Brink as
an approximate technique to visualize the convergence of
iterative systems [3]. In fact, for the erasure channel, EXIT
functions satisfy a rigorous conservation law known as the
area theorem [5]. The area theorem can be used to rigorously
connect the performance of a code under MAP decoding to
its performance under BP decoding. Méasson, Montanari and
Urbanke give a graphical construction of the MAP threshold
using an approach reminiscent of the Maxwell construction in
thermodynamics to provide a bridge between MAP and BP
decoding [1], [2].

Jin, Khandekar, and McEliece proposed and analyzed IRA
codes in [6]. ARA codes were introduced by Abbasfar, Di-
vsalar, and Kung in [7]. Later, it was shown that the DE
analysis of IRA and ARA codes can be reduced to the DE
analysis of LDPC codes via a technique known as graph
reduction [8].

The idea of decoding a code transmitted over a channel
with memory via iteration was first introduced by Douillard,
et al. in the context of turbo codes and is known asturbo
equalization[9]. Turbo equalization can also be extended to
the joint decoding of LDPC codes by constructing one large
graph which represents the constraints of both the channel and
the code [10]. For finite-state (FS) channels, analysis of joint
decoding requires the analysis of the BCJR algorithm which
is used to decode the channel. For some channels, DE can be
done analytically for the joint iterative decoding of irregular
LDPC codes and the channel [11]. One such channel is the
dicode erasure channel (DEC), which is simply a binary-input
channel with a linear response of1−D and erasure noise.

In this paper, we apply the ideas of [12], [1], [2] to IRA
ensembles, ARA ensembles, and the joint iterative decoding
of irregular LDPC codes on the DEC. Both the MAP and
BP erasure thresholds are computed and compared with each
other.

In Section II, a brief background is given for iterative
decoding, DE, EXIT functions, and the MAP threshold bound-
ing technique. In Section III, the MAP threshold bounding
technique is applied to IRA and ARA codes. In Section IV,
joint iterative decoding is briefly introduced and the MAP
threshold bounding technique is applied to joint decoding.
Finally, concluding remarks and open questions are discussed
in Section V.

II. BACKGROUND

A. Low-Density Parity-Check Codes

Low-density parity-check (LDPC) codes are linear codes
which have a sparse graph representation; in general, they tend
to exhibit good performance under message-passing decoding.
A (dv, dc)-regular LDPC code is a binary linear code such
that every bit node has degreedv and every check node has
degreedc. An irregular LDPC ensemble is described by its
degree distribution (d.d.), which encodes the fraction of nodes
(or edges) with a particular degree. From an edge perspective,
the d.d. of the bit and check nodes is given, respectively,
by λ(x) =

∑∞

i=1 λix
i−1 and ρ(x) =

∑∞

i=1 ρix
i−1, where

λi (or ρi) represent the fraction of edges attached to a bit
node (or check node) of degreei. From a node perspective,
the d.d. of bit and check nodes is given, respectively, by
L(x) =

∑∞

i=1 Lix
i and R(x) =

∑∞

i=1 Rix
i, whereLi (or

Ri) represent fraction of bit (or check) nodes of degreei.
Codes are chosen randomly from an ensemble by choosing a



random permutation to connect the bit and check nodes [13,
p. 579][14]. The design rate of the code in terms of its degree
distribution is given by

rLDPC = 1−
L′ (1)

R′ (1)
= 1−

∫ 1

0
ρ (x) dx

∫ 1

0
λ (x) dx

.

The performance of irregular LDPC codes can be signif-
icantly better than regular LDPC codes. Certain structural
modifications, such as those provided by IRA and ARA
constructions can also improve performance. DE can be used
to analyze and design (e.g., optimize the degree distribution)
LDPC, IRA, and ARA codes. DE works by recursively track-
ing the distribution of messages passed around the Gallager-
Tanner-Wiberg (GTW) graph during iterative decoding. It also
gives a precise characterization of the asymptotic performance
in terms of a noise threshold, where decoding almost surely
converges if the noise is less than the threshold. For a BEC(ǫ)
(i.e., a binary erasure channel with erasure probabilityǫ),
the DE recursion can be written in closed form asxi+1 =
ǫλ (1− ρ (1− xi)), wherexi is the average fraction of erasure
messages sent from the bit nodes to the check nodes during
iteration i.

B. EXIT Functions and the Area Theorem

EXIT functions first appeared as handy tools to visualize the
iterative decoding process; from EXIT curves, one can easily
see the "bottlenecks" in the iterative decoding process [3].
Once these critical regions have been identified, the component
codes can be changed appropriately to "match" the curves and
improve the performance of the system.

Definition 1: [1], [2] Let C be a length-n binary code
defined by the probability distributionpXn

1
(xn

1 ). Let Xn
1

be chosen according topXn

1
(xn

1 ) and Y n
1 be the result of

transmittingXn
1 over a BEC(ǫ). Then, theMAP EXIT function

is defined to be

hMAP (ǫ) ,
1

n

n
∑

i=1

H (Xi|Y
n
1 (ǫ) \Yi (ǫ)) .

Remark 1:From this, we see thathMAP (ǫ) is the average
(over all bits) entropy of the optimala posteriori probability
(APP) estimate ofXi from the observationsY n

1 exceptYi. The
notationY n

1 (ǫ) andYi (ǫ) is used to emphasize the dependence
of these r.v. onǫ. Let ǫMAP be the erasure threshold of MAP
decoding for a code ensemble. For asymptotically largen, the
average conditional entropyhMAP (ǫ) converges to zero for
ǫ < ǫMAP and is strictly positive forǫ > ǫMAP .

Theorem 1 (Area Theorem):Let C be a length-n binary
code defined by the probability distributionpXn

1
(xn

1 ). Let
Xn

1 be chosen according topXn

1
(xn

1 ) and Y n
1 be the result

of transmittingXn
1 over a BEC(ǫ). To emphasize thatY n

1

depends on the channel parameterδ write Y n
1 (δ). Then

1

n
H (Xn

1 |Y
n
1 (δ)) =

∫ δ

0

hMAP (ǫ) dǫ.

Proof: A nice history of this theorem and its various
proofs can be found in [2, p. 44].
In addition, there is another, perhaps more surprising, appli-
cation of EXIT functions; they can be used to connect the
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Figure 1. The BP EXIT functionhBP (ǫ) of a (3,6)-regular LDPC code on
the erasure channel. The left boundary of the shaded area is the upper bound
on ǫMAP , and the area of the shaded portion under the curve equals thecode
rate of 1

2
. This givesǫBP = 0.4294 and ǫMAP ≤ 0.4881.

performance of a code under BP decoding to that under MAP
decoding.

Definition 2: The BP EXIT functionof a length-n code is
given by

hBP (ǫ) ,
1

n

n
∑

i=1

hBP
i (ǫ) ,

wherehBP
i (ǫ) is the entropy of the iterative decoding estimate

of Xi from Y n
1 exceptYi. The iterative decoding estimate of

a bit is given by the bit’s extrinsic message in the BP decoder
after l iterations of decoding.

Remark 2:For ensembles of codes, these expressions will
also refer to the asymptotic EXIT functions asn → ∞. In the
case of BP EXIT functions, we assume also that the number
of decoding iterationsl → ∞ as well (with then-limit taken
first). These limits are well-defined and deterministic for BP
EXIT functions because of the concentration theorem [14]. For
the MAP EXIT function, a similar approach can be used to
show thathMAP (ǫ) concentrates around its ensemble average
[15] which we will assume to be well-defined.
The following parametric expression for the asymptotic BP
EXIT function is given in [1], [2] for the standard ensemble
of LDPC codes.

Theorem 2:For an irregular LDPC code, the asymptotic BP
EXIT curve is given in parametric form by

hBP (ǫ(x)) =

{

0, x ∈ [0, xBP )

L (1− ρ (1− x)) x ∈ (xBP , 1]
,

whereǫ (x) , x
λ(1−ρ(1−x)) , andxBP denotes the location of

the unique minimum ofǫ (x) in the range (0,1] andǫBP ,

ǫ(xBP ) is the BP decoding threshold.
The BP EXIT functionhBP (ǫ) of a (3,6)-regular LDPC

code on the erasure channel is shown in Fig 1. Its BP threshold
ǫBP is given by the point wherehBP (ǫ) drops down to zero.

C. Bounding the MAP Decoding Threshold

The following approach to bounding the MAP decoding
threshold is based on the approach used in [1], [2]. The
key point is that the optimality of the MAP decoder implies
hMAP (ǫ) ≤ hBP (ǫ). Since the integral ofhMAP (ǫ) is equal



Figure 2. Gallager-Tanner-Wiberg graph for ARA and IRA codes

to the code’s true rater (based on the area theorem), it follows
that

rLDPC ≤ r =

∫ 1

ǫMAP

hMAP (ǫ) dǫ ≤

∫ 1

ǫMAP

hBP (ǫ) dǫ

becausehMAP (ǫ) = 0 for 0 ≤ ǫ ≤ ǫMAP and rLDPC ≤ r
(i.e., linear dependencies in the parity-check matrix can only
increase the rate). This bound is useful becausehBP (ǫ) can
be computed easily. In some cases, it can also be shown that
the bound is tight and thathMAP (ǫ) = hBP (ǫ) for ǫ > ǫMAP

[1], [2].
Fig. 1 shows the BP EXIT functionhBP (ǫ) and the integral

bound onǫMAP . In this construction, the left edge of the
shading is chosen so that the shaded area under the BP EXIT
function curve equals the code rate. This left edge provides
the upper bound on the MAP thresholdǫMAP .

III. MAP T HRESHOLDBOUNDS FORIRA AND ARA
CODES

A. Background on IRA and ARA Codes

IRA and ARA codes can be viewed as subclasses of LDPC
codes that have natural linear-time encoding algorithms [6],
[7]. Using iterative sum-product decoding, they can also be
decoded with a per-iteration complexity that is linear in the
block length. From an encoding point of view, it is natural to
view IRA and ARA codes as interleaved serially concatenated
codes [8]. From a decoding point of view, they are easily seen
to be sparse-graph codes compatible with belief propagation
decoding. There are a few slightly different definitions of ARA
ensemble, and this paper uses the ensemble and DE equations
defined in [8].

B. MAP Threshold Bounds for systematic IRA Codes

1) Density Evolution and Fixed Point Analysis of Iterative
Decoding for IRA codes:Since IRA codes can be viewed
as LDPC codes with an accumulate structure attached to the
check nodes (see Fig. 2), they can also be defined by their d.d.
pairλ(x), ρ(x). For any fixed number of decoding iterationsl,
the DE equations give (almost surely asn → ∞) the erasure
rate of the internal messages passed by the BP decoder for a
random code and channel erasure pattern. In [6], for any fixed
ǫ, the DE equations are given by

x
(l)
0 = ǫλ

(

x
(l)
3

)

x
(l)
1 = 1−

(

1− x
(l−1)
2

)

R
(

1− x
(l−1)
0

)

x
(l)
2 = ǫx

(l)
1

x
(l)
3 = 1−

(

1− x
(l)
2

)2

ρ
(

1− x
(l−1)
0

)

,

whereǫ is the channel erasure probability andx(l)
i tracks the

average fraction of erasure messages for edge type-i and
iteration l. The raterIRA of a systematic IRA code given
can be written as

rIRA =

(

1 +

∫ 1

0
ρ(x)dx

∫ 1

0 λ(x)dx

)−1

.

2) BP EXIT Function and Bounds on the MAP Threshold:

Lemma 1:The asymptotic BP EXIT function of the IRA
code ensemble is given by

hBP−IRA (ǫ) = rIRA L (x3) + (1− rIRA)x
2
1,

wherex0, x3 are given by thel → ∞ DE fixed point forǫ.

Proof: IRA codes have multiple types of bits in the GTW
graph. Then(1 − r) parity bits have an average extrinsic
erasure probability of(x(l)

1 )2 after l iterations. Likewise, the
nrLd information bits of degree-d have an average extrinsic
erasure probability of (x(l)

3 )d after l iterations. Therefore, we
can write the large-iteration long-block limit of the IRA code
EXIT function as

h
BP−IRA (ǫ) = lim

l→∞

lim
n→∞

1

n

n
∑

i=1

h
BP−IRA

i (ǫ)

a.s.
= lim

l→∞

[

rIRA

∞
∑

d=1

Ld

(

x
(l)
3

)d

+ (1− rIRA)
(

x
(l)
1

)2
]

= rIRA L (x3) + (1− rIRA) (x1)
2
.

Accordingly, we plot the BP EXIT function of the IRA
code and integrate backwards from the right end of the
curve whereǫ = 1. The integration process stops atǫ∗

when
∫ 1

ǫ∗
hBP (ǫ) dǫ = rIRA. This gives the upper bound

ǫMAP ≤ ǫ∗ for the IRA code ensemble (Fig. 3).

C. MAP Threshold Bounds for ARA Codes

1) Density Evolution of Systematic ARA Ensembles:
Pfister and Sason [8] consider the asymptotic analysis of
ensembles of ARA codes under the assumption that the codes
are transmitted over a BEC and decoded with an iterative
messaging-passing decoder. For this ensemble, they find that
DE for the BEC can be computed in closed form. From Fig.
2, we see that
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Figure 3. The BP EXIT functionhBP (ǫ) of a (4, 4)-regular IRA code
(i.e., λ(x) = ρ(x) = x3) on the erasure channel. The left boundary of the
shaded area is the upper bound onǫMAP , and the area of the shaded portion
under the curve equals the code rate of1

2
. This givesǫBP = 0.4451 and

ǫMAP ≤ 0.4872.

x
(l)
0 = 1−

(

1− x
(l−1)
5

)

(1− ǫ)

x
(l)
1 =

(

x
(l)
0

)2

λ
(

x
(l−1)
4

)

x
(l)
2 = 1−R

(

1− x
(l)
1

)(

1− x
(l−1)
3

)

x
(l)
3 = ǫx

(l)
2

x
(l)
4 = 1−

(

1− x
(l)
3

)2

ρ
(

1− x
(l)
1

)

x
(l)
5 = x

(l)
0 L

(

x
(l)
4

)

,

whereǫ is the channel erasure probability andx(l)
i tracks the

average fraction of erasure messages for edge type-i and
iteration l. The raterARA of a systematic ARA code given
can be written as

rARA =
1

1 + L′(1)
R′(1)

.

2) BP EXIT Function and Bounds on the MAP Threshold:

Lemma 2:The asymptotic BP EXIT function of the ARA
code ensemble is given by

hBP−ARA (ǫ) = rARA

[

1− (1− x5)
2
]

+ (1− rARA)x
2
2,

wherex5, x2 are given by thel → ∞ DE fixed point forǫ.

Proof: ARA codes have two classes of bits are transmitted
across the channel. Thenr systematic bits have an average
extrinsic erasure probability of1−(1−x

(l)
5 )2 after l iterations.

Likewise, then (1− r) code bits have an average extrinsic
erasure probability of(x(l)

2 )2, after l iterations. Thus, we can
write the large-iteration long-block limit of the ARA code
EXIT function as

h
BP−ARA (ǫ) = lim

l→∞

lim
n→∞

1

n

n
∑

i=1

h
BP−ARA

i (ǫ)

= rARA

[

1− (1− x5)
2
]

+ (1− rARA) x
2
2.

The same integration process, that was used for LDPC and
IRA codes, is used to calculate the upper bound onǫMAP for
ARA codes (Fig. 4).
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Figure 4. The BP EXIT functionhBP (ǫ) of the ARA code withλ (x) = x2,
ρ (x) = 2

3
x + 1

3
on the erasure channel. The left boundary of the shaded

area is the upper bound onǫMAP , and the area of the shaded portion under
the curve equals the code rate of1

3
. This givesǫBP = 0.6412 andǫMAP ≤

0.6593.

D. Tightness of the Upper Bound

It is worth noting that, for the BEC, graph reduction can be
used to reduce any IRA or ARA code into an LDPC code [8].
After this reduction, the LDPC code can be decoded with a
peeling decoder until the decoder gets stuck. If one analyzes
this process carefully, one can compute the d.d. of residual
graph and apply the the counting argument of [1], [2] to
(possibly) prove the tightness of the MAP threshold. We are
currently pursuing this approach, but it is complicated by the
fact that the residual graph has nodes of unbounded degree.

IV. M AP THRESHOLDBOUNDS FORJOINT DECODING

A. Background and System Description

Pfister and Siegel consider the achievable rate of joint
iterative decoding of LDPC codes and channels with memory
[11]. Here we use same system model and consider instead the
MAP decoding threshold. The block diagram of the system
is shown in Fig. 5. It is a relatively standard setup for the
joint iterative decoding of an LDPC code and a channel with
memory. Equiprobable information bits,Uk

1 ∈ {0, 1}k, are
encoded into an LDPC codeword,Xn

1 ∈ {0, 1}n, which is
observed through the dicode erasure channel (DEC) as the
output vector,Y n

1 ∈ {−1, 0, 1, ?}. The decoder consists of the
channel APP detector an LDPC decoder which pass messages
back and forth. In the first half of decoding iterationi, the
channel detector decodesY n

1 using thea priori information
from the LDPC code. In the second half of decoding iteration
i, one LDPC decoding iteration is completed using internal
edge messages from the previous LDPC iteration and the
output of the channel detector. A random scrambling sequence
is added to the codeword before transmission and removed
before LDPC decoding; this is very similar to using a random
coset of the LDPC code. Fig. 6 shows the GTW graph of the
joint iterative decoder.

1

Encoder

^
1U ,...,Uk 1n Y ,...,Yn U ,...,U1 k

^Joint
DecoderChannel

X ,...,XLDPC

Figure 5. Block diagram of the system.



1) The Dicode Erasure Channel:The dicode erasure chan-
nel (DEC) is a binary input channel based on the1−D linear
intersymbol-interference (ISI) dicode channel. The output of
the1−D channel with binary inputs (e.g., +1, 0, -1) is erased
with probability ǫ and transmitted perfectly with probability
1− ǫ. More information about the DEC can be found in [16],
[11].

The simplicity of the DEC allows the BCJR algorithm for
the channel to be analyzed in closed form. The method is
similar to the exact analysis of turbo codes on the BEC [2].
The EXIT function for the DEC is computed in [11] and if the
outputs are erased with probabilityǫ, then the EXIT function
of the channel detector is given by

f (x; ǫ) =
4ǫ2

(2− x (1− ǫ))2
.

The capacity of the DEC for independent equiprobable inputs
can be computed by analyzing only the forward recursion of
the BCJR algorithm [16] and is given byCi.u.d.(ǫ) = 1− 2ǫ2

1+ǫ
.

B. Density Evolution for Joint Decoding

The closed form analysis of this system is based on the fact
that all the messages passed in decoding graph are erasure
messages. This allows DE of the joint iterative decoder to be
represented by a single parameter recursion. Letf(x; ǫ) be
a function which maps the erasure probability,x, of the a
priori LLR distribution to the erasure probability at the output
of the channel detector for a channel erasure probability ofǫ.
Following [11], we refer tof(x; ǫ) as theextrinsic information
transfer (EXIT) function of the channel.

The joint decoding graph is shown in Fig. 6 and message-
passing schedule and variables are shown on the left. Letx

(l)
0 ,

x
(l)
1 , x(l)

2 , andx(l)
3 denote the erasure rate of messages passed

during iterationl. The update equations are as follows

x
(l+1)
0 = x

(l)
3 λ

(

x
(l)
1

)

x
(l+1)
1 = 1− ρ

(

1− x
(l+1)
0

)

x
(l+1)
2 = L

(

x
(l+1)
1

)

x
(l+1)
3 = f

(

x
(l+1)
2 ; ǫ

)

.

The first two equations simply describe LDPC decoding
when the channel erasure parameter isx

(l)
3 instead of the fixed

constantǫ. The third equation describe the message passing
from the code to the channel detector. The fourth equation
takes the channel detector bits into account and simply maps
side information from the code through the EXIT function
f (x; ǫ).

C. The EXIT Area Theorem for Joint Decoding

In this section, we consider the MAP EXIT function of
the entire joint decoder. Consider any FS channel with deter-
ministic ISI that is observed through an erasure channel. In
this case, the output sequenceY n

1 consists of independently
erased observations (with probabilityǫ) of a deterministic
sequenceZn

1 that, given the initial stateS1, is in one-to-one
correspondence with the input sequenceXn

1 .

Π

x2x3

x0 x1

DE

parity
checks

code
bits

outputs
channel

channel
detector

����������������������������������
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����������������������������������
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Figure 6. Gallager-Tanner-Wiberg graph of the joint iterative decoder.

Definition 3: Then, thejoint decoding MAP EXIT function
is defined to be

hMAP−JD (ǫ) ,
1

n

n
∑

i=1

H (Zi|Y
n
1 (ǫ) \Yi (ǫ) , S1) .

Definition 4: Then, thejoint decoding BP EXIT functionis
defined to be

hBP−JD (ǫ) ,
1

n

n
∑

i=1

hBP−JD
i (ǫ),

where hBP−JD
i (ǫ) is the entropy of the iterative decoding

estimate ofZi from Y n
1 \Yi and S1. The iterative decoding

estimate of this output symbol is given by the symbol’s
extrinsic message in the joint decoder afterl iterations of
decoding.

Corollary 1: Let Xn
1 be chosen according topXn

1
(xn

1 ) and
Y n
1 be the result of transmittingXn

1 over the above FS
ISI channel. To emphasize thatY n

1 depends on the channel
parameterδ write Y n

1 (δ). Then

1

n
H (Xn

1 |Y
n
1 (δ) , S1) =

∫ δ

0

hMAP−JD (ǫ) dǫ.

Proof: The proof is a slight modification of the approach
taken in [1], [2]. The one-to-one correspondence betweenXn

1

andZn
1 (givenS1) implies that

H (Xn
1 |Y

n
1 , S1) = H (Zn

1 |Y
n
1 , S1)

= H (Zi|Y
n
1 , S1) +H (Zn

1 \Zi|Y
n
1 , Zi, S1) .

SinceYi is a noisy observation ofZi, we find thatZn
1 \Zi →

Zi → Yi forms a Markov chain. Moreover, if each channel
mappingZi → Yi depends on a different parameterǫi, then
we can write

d

dǫi
H (Xn

1 |Y
n
1 , S1) =

d

dǫi
H (Zi|Y

n
1 , S1)

becauseH (Zn
1 \Zi|Y

n
1 , Zi, S1) is independent ofǫi. If we

assume also thatYi is either an erasure (with probabilityǫi)
or Yi = Zi (with probability 1− ǫi), then we can write

H (Zi|Y
n
1 , S1) = ǫiH (Zi|Y

n
1 \ Yi, S1)

+ (1− ǫi)H (Zi|Y
n
1 \ Yi, Zi, S1)

Using the derivative method, this gives

d

dǫ
H (Xn

1 |Y
n
1 , S1) =

n
∑

i=1

d

dǫi
H (Zi|Y

n
1 , S1)

=

n
∑

i=1

H (Zi|Y
n
1 \ Yi, S1) .
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Figure 7. The BP EXIT functionhBP (ǫ) of the joint iterative decoder for
a (3,6)-regular LDPC code and the DEC channel. The left boundary of the
shaded area is the upper bound onǫMAP , and the area of the shaded portion
under the curve equals the code rate of1

2
. This givesǫBP = 0.5689 and

ǫMAP ≤ 0.6386.

D. BP EXIT Function and Bounds on the MAP Threshold

The joint decoding BP EXIT function simply can be com-
puted by analyzing the BCJR decoding algorithm for the DEC.
Since the channel has only two states and the channel inputs
satisfy Pr(Xi = 0) = Pr(Xi = 1) = 1

2 , the forward and
backward recursion vectors (which can have infinite support)
effectively take only two values; the state is either known
(denotedK) or unknown (denotedU) [11].

Lemma 3:The asymptotic BP EXIT function of the joint
decoder can be written as

h
BP−JD (ǫ) =Pr (α ∈ K, β ∈ U) · δ + Pr (α ∈ U , β ∈ K)

+ Pr (α ∈ U , β ∈ U) ·

[

3

2
δ + (1− δ)

]

=
2ǫδ (4 + ǫδ − 2δ)

(2− δ (1− ǫ))2
,

whereδ = L(x1) and x1 is given by thel → ∞ DE fixed
point for ǫ.

Proof: To compute the BP EXIT function, we can simply
analyze the output stage of the BCJR algorithm and compute
the entropy ofZi given the current messages. Notice that, at
any point in the trellis, there are four distinct possibilities for
forward/backward recursion (α/β) state knowledge:(K/K),
(K/U), (U/K), and (U/U). Let ǫ be the channel erasure
rate andδ = L(x1) be the a priori erasure rate from the
LDPC code, and defineHAB = H(Zi|αi ∈ A, βi+1 ∈ B).
Examining the trellis shows that

HKK = 0 HKU = δ

HUK = 1 HUU =
3

2
δ + (1− δ).

From [11], the steady state probability that the for-
ward/backward recursion has no state knowledge is

Pr (α ∈ U) =
2ǫδ

2− δ (1 + ǫ) + 2ǫδ

Pr (β ∈ U) =
2ǫ

(1− ǫ) (2− δ) + 2ǫ
.

Fig. 7 shows the BP EXIT functionhBP (ǫ), and area under
the BP EXIT function curve equals the code rate1

2 . The left

boundary of the integration area is the upper bound onǫMAP

of the joint iterative decoder for a (3,6)-regular LDPC code
and the DEC channel.

V. CONCLUSIONS

In this paper, upper bounds on the MAP thresholds are
computed for three iterative decoding systems: IRA codes,
ARA codes, and the joint decoding of LDPC codes and chan-
nels with memory. These bounds are based on the techniques
introduced by Méasson, Montanari, and Urbanke in [1], [2].
The bound for joint decoding requires a slight generalization
of the EXIT area theorem that is introduced within.

Some open questions include the tightness of these bounds
and the existence of simpler (or closed-form) expressions.
These bounds also have natural extensions to non-erasure
channel by way of the generalized EXIT (GEXIT) functions
introduced in [17].
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