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Abstract: This paper considers the joint iter-

ative decoding of irregular low-density parity-check

(LDPC) codes and channels with memory. It begins

by introducing a new class of erasure channels with

memory, known as generalized erasure channels. For

these channels, a single parameter recursion for the

density evolution of the joint iterative decoder is de-

rived. This provides a necessary and su�cient con-

dition for decoder convergence, and allows the alge-

braic construction of sequences of LDPC degree dis-

tributions. Under certain conditions, these sequences

can achieve the symmetric information rate (SIR) of

the channel using only iterative decoding. Example

code sequences are given for two channels, and it is

conjectured that they each achieve the respective SIR.
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1. INTRODUCTION

Sequences of irregular low-density parity-check
(LDPC) codes that achieve the capacity of the binary
erasure channel (BEC) under iterative decoding were
�rst constructed by Luby, et al. in [1]. Their con-
struction relies heavily on the fact that density evo-
lution (DE) for the BEC has a simple closed form ex-
pression. The joint iterative decoding of a code and a
channel with memory was �rst introduced by Douil-
lard, et al. for turbo codes and is known as turbo

equalization [2]. This approach can be generalized
to LDPC codes by constructing a single large graph
which includes both code and channel constraints [3].

In Section 2, we introduce the basic components
of our system. First, we de�ne a class of channels
with memory, which we refer to as generalized era-
sure channels (GECs). Then, we describe the di-
code erasure channel (DEC), which is a binary-input
GEC with a linear response of 1 − D and erasure
noise. In Section 3, we show that DE can be done
analytically for the joint iterative decoding of a GEC
and an irregular LDPC code. This allows us to al-
gebraically construct sequences of irregular LDPC
codes. Since we are using equiprobable signaling
(i.e., linear codes), the maximum achievable informa-
tion rate is the symmetric information rate (SIR) of
the channel. In Section 4, we construct sequences of

LDPC degree distributions which appear to achieve
the SIR using iterative decoding.

2. BACKGROUND

2.1. System Model

The system we consider is fairly standard for the
joint iterative decoding of an LDPC code and a chan-
nel with memory. Equiprobable information bits are
encoded into an LDPC codeword, X = X1, . . . , Xn,
which is observed through a GEC as the output vec-
tor, Y = Y1, . . . , Yn. The decoder consists of an
a posteriori probability (APP) detector matched to
the channel and an LDPC decoder. The �rst half of
decoding iteration i entails running the channel de-
tector on Y using the a priori information from the
LDPC code. The second half of decoding iteration i
corresponds to executing one LDPC iteration using
internal edge messages from the previous iteration
and the channel detector output. Figure 1 shows the
Gallager-Tanner-Wiberg (GTW) graph of the joint
iterative decoder.

2.2. Generalized Erasure Channels

Since the messages passed around the GTW graph
of the joint decoder are log-likelihood ratios (LLRs),
DE involves tracking the evolution of the distribu-
tion of LLR messages passed around the decoder.

Let L be a r.v. representing a randomly chosen LLR
at the output of the channel decoder. If the distri-
bution of L is supported on the set {−∞, 0,∞} and
Pr(L = −∞) = Pr(L = ∞), then we refer to it as
a symmetric erasure distribution. Such distributions
are one dimensional, and are completely de�ned by
the erasure probability Pr(L = 0). Our closed form
analysis of this system requires that all the densities
involved in DE are symmetric erasure distributions.

De�nition. A generalized erasure channel (GEC)
is any channel which satis�es the following condition
for i.i.d. equiprobable inputs. The LLR distribution
at the output of the channel detector is a symmet-
ric erasure distribution whenever the a priori LLR
distribution is a symmetric erasure distribution.

This allows DE of the joint iterative decoder to
be represented by a single parameter recursion. Let
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Figure 1: GTW graph of the joint iterative decoder.

f(x) be a function which maps the erasure proba-
bility of the a priori LLR distribution, x, to the
erasure probability at the output of the detector.
The e�ect of the channel on the DE depends only
on f(x), which we refer to as the erasure transfer

function (ETF) of the GEC. This function is very
similar to the mutual information transfer function,
T (I), used by the EXIT chart analysis of ten Brink
[4]. Since the mutual information of a BEC with era-
sure probability x is 1 − x, the mutual information
transfer function and f(x) are linked by the identity,
T (I) = 1 − f(1 − I).

A remarkable connection between the channel
SIR, Is, and its mutual information transfer func-
tion was also introduced by ten Brink in [5]. This
result,

lim
n→∞

1
n

I(X1, . . . , Xn; Y1, . . . , Yn) =
∫ 1

0

T (I)dI,

requires that T (I) is computed using a symmetric
erasure distribution as the a priori LLR distribution.
Assuming the input process is i.i.d. and equiprobable
makes the LHS equal the SIR, and using T (I) =
1 − f(1 − I) allows us to simplify this expression to

Is =
∫ 1

0

T (I)dI = 1 −
∫ 1

0

f(x)dx. (1)

Previously, we saw that f(x) completely character-
izes the DE properties of a GEC, and now we see
that it can also be used to compute the SIR.

2.3. The Dicode Erasure Channel

The dicode erasure channel (DEC) is a binary-
input channel based on the dicode channel used in
magnetic recording. Essentially, the output of the
standard dicode channel, {+1, 0,−1}, is erased with
probability ε and transmitted perfectly with prob-
ability 1 − ε. The precoded DEC is essentially the
same, except that the input bits are di�erentially en-
coded prior to transmission. The state diagrams of
these two channels are shown in [6, p. 161].

The simplicity of the DEC allows the BCJR algo-
rithm for the channel to be analyzed in closed form.
This analysis was done in [6, p. 179], and we sim-
ply state the ETFs for the DEC with and without

precoding. If there is no precoding and the outputs
of the DEC are erased with probability ε, then the
ETF of the channel detector is

f(x) =
4ε2

(2 − x(1 − ε))2
. (2)

On the other hand, using a precoder changes this
function to

f(x) =
4ε2x (1 − ε(1 − x))

(1 − ε(1 − 2x))2
. (3)

The SIR of the DEC was also computed in [6, p.
141], and is given by

Is(ε) = 1 − 2ε2

1 + ε
.

One can also get this expression for the SIR from
either (2) or (3) by applying (1).

2.4. Irregular LDPC Codes

We assume that the reader is familiar with ir-
regular LDPC codes and the standard polynomial
description of their degree distributions (DDs). Ac-
cordingly, we use λ(x) and ρ(x) to denote the bit and
check DDs from the edge perspective. This means
that λ(x) =

∑
ν≥1 λνxν−1, where λν (or ρν) denote

the fraction of edges attached to a bit (or check) node
of degree ν.

The DD of an irregular LDPC code can be viewed
either from the edge or node perspective, and this
paper is simpli�ed by using both perspectives. We
use L(x) and R(x) to denote the bit and check DDs
from the node perspective. This means that L(x) =∑

ν≥1 Lνxν , where Lν (or Rν) denote the fraction of
bit (or check) nodes with degree ν.

Each coe�cient represents a fraction of some
whole, and this means that λ(1) = ρ(1) = L(1) =
R(1) = 1. Since we do not allow degree 0 nodes, we
also note that L(0) = 0 and R(0) = 0. The possibil-
ity of degree 1 nodes is allowed, however, and there-
fore one cannot assume that λ(0) = 0 or ρ(0) = 0.

The rate of an irregular LDPC code is given by

R = 1 − aL/aR, where aL = L′(1) = 1/
∫ 1

0 λ(t)dt is

the average bit degree and aR = R′(1) = 1/
∫ 1

0
ρ(t)dt

is the average check degree. One can also switch
from the bit to edge perspective by noting that each
node of degree ν contributes ν edges to the edge
perspective. For the bit nodes, this gives λ(x) =
L′(x)/L′(1) = L′(x)/aL, and a similar formula holds
for the check nodes.

Iterative decoding of irregular LDPC codes on the
BEC, with erasure probability δ, was introduced by
Luby et al. in [1] and re�ned in [7]. These papers
show that the recursion for the erasure probability
of the bit-to-check messages is

xi+1 = δλ (1 − ρ(1 − xi)) . (4)



3. JOINT ITERATIVE DECODING

3.1. Density Evolution Recursion

Now, we consider a turbo equalization system
which performs one channel iteration for each LDPC
code iteration. The function, f(x), gives the fraction
of erasures produced by the extrinsic output of the
channel decoder when the a priori erasure rate is x.
The update equation for this system is almost identi-
cal to (4). The main di�erence is that the parameter
δ now changes with each iteration and is given by δi.

There is a fundamental di�erence between the
bit-to-check messages and bit-to-channel messages.
This di�erence is due to the fact that a degree ν
bit node sends ν messages to the check nodes and
only 1 message to the channel detector. If the era-
sure probability of all check-to-bit messages passed
to a degree ν bit node is x, then the erasure prob-
ability of the bit-to-channel message is xν . Com-
bining these two observations shows that the erasure
probability of all bit-to-channel messages is given by∑

ν≥1 Lνxν = L(x). Using (4), this means that the
recursion for the erasure probability of the bit-to-
check messages is given by

xi+1 = δiλ (1 − ρ(1 − xi)) , (5)

where δi = f (L (1 − ρ(1 − xi))).

3.2. Convergence Condition

Using the recursion (5), we can derive a necessary
and su�cient condition for the erasure probability
to converge to zero. This condition is written as a
basic condition which must hold for x ∈ (0, 1] and
an auxiliary stability condition which simpli�es the
analysis at x = 0. The basic condition,

f (L (1 − ρ(1 − x)))λ (1 − ρ(1 − x)) < x, (6)

implies there are no �xed points in the iteration for
x ∈ (0, 1]. Verifying this condition numerically for
very small x can be di�cult, so we require instead
that x = 0 is a stable �xed point of the recursion.
This is equivalent to evaluating the derivative of (6)
at x = 0, which gives the stability condition

λ2(0)f ′(0)aLρ′(1) + λ′(0)f(0)ρ′(1) < 1. (7)

Now, we can use (6) and (7) to say something
about the code properties required by various chan-
nels: (i) if the channel has f(0) > 0, then the code
cannot have any degree 1 bit nodes and the stabil-
ity condition simpli�es to λ2f(0)ρ′(1) ≤ 1, (ii) if
the channel has f(0) = 0, then some degree 1 bit
nodes can be used and the stability condition sim-
pli�es to λ2

1f
′(0)aLρ′(1) < 1, and (iii) if the channel

has f(1) = 1, then the code must have degree 1 check
nodes (which act as pilot bits) so that decoding pro-
gresses beyond x = 1.

3.3. Algebraic Degree Distributions

Armed with the convergence condition, we can
now solve for DD pairs which satisfy (6) with equal-
ity. The basic idea is that the equation

f (L (1 − ρ(1 − x)))λ (1 − ρ(1 − x)) = x

is actually a di�erential equation because λ(x) =
L′(x)/aL. This allows λ(x) to be written in terms
of ρ(x) as

λ(x) =
q(x)

f (F−1 (aLQ(x)))
, (8)

where q(x) = 1 − ρ−1(1 − x), F (x) =
∫ x

0 f(t)dt, and

Q(x) =
∫ x

0 q(t)dt. The details of this derivation can
be found in [6, p. 164]. The following theorem also
shows why meeting (6) with equality is desirable.

Theorem 1. Consider any LDPC code ensemble, de-

�ned by the DDs λ(x) and ρ(x), which satis�es (6)

for some GEC with ETF f(x). The non-negative

gap, ∆, between the rate of the LDPC code and the

SIR of the channel, Is, is given by

∆ = Is − R =
∫ 1

0

g(x)dx,

where g(x) = aLq(x)−f (L(x))L′(x) is non-negative.
Proof. This proof can be found in [6, p. 165].

3.4. Achieving the SIR

Now, we consider sequences of irregular LDPC
code ensembles which can be used to communicate
reliably at rates arbitrarily close to the SIR. The code
sequence is de�ned by the sequence of algebraically
generated DDs in a manner similar to [8]. The main
di�culty that we will encounter is that the implied
DDs generally have in�nite support and may have
negative components. We say that a DD is (i) ad-

missible if its power series expansion about x = 0
has only non-negative coe�cients and (ii) realizable
if it is a polynomial (i.e., �nite degree) whose coef-
�cients sum to one. We say that a sequence of DDs
is SIR achieving if, for any ε > 0, there exists an k0

such that, for all k > k0, the kth DD is (i) realizable,
(ii) satis�es (6), and (iii) has rate Rk > Is − ε.

In general, we construct SIR achieving sequences
by starting with a sequence of realizable check DDs
and de�ning algebraically a sequence of bit DDs, de-
noted λ̃(x). If each bit DD in this sequence is ad-

missible with λ̃(1) > 1, then we can form a sequence
of realizable bit DDs, denoted λ(x), by truncating

the power series of each λ̃(x) so that it sums to one.
Speci�cally, we generalize the notation of Section 2.4
and let λi = λ̃i for 1 ≤ i < Nk, where Nk is the
smallest integer such that

∑Nk

i=1 λ̃i ≥ 1. The last
term λNk

is then chosen so that λ(1) = 1.



a
(k)
R = k a

(k)
L Rk ∆k Nk αk

4 1.595 0.6011 0.0655 4 0.16

5 1.903 0.6193 0.0473 7 0.069

6 2.102 0.6496 0.0170 9 0.048

7 2.411 0.6555 0.0111 19 0.025

8 2.718 0.6602 0.0064 33 0.014

9 3.030 0.6632 0.0034 56 0.0075

10 3.349 0.6651 0.0016 101 0.0042

11 3.677 0.6657 0.0009 184 0.0023

Table 1: Results for the precoded DEC with ε = 0.5.

One problem with this method, which does not
occur for the BEC [8], is that the truncation may
cause the basic condition (6) to fail. To overcome
this problem, we require the codes in sequence to
satisfy the slightly stronger condition that

(1 + αk)f
(
L̃(k)(x)

)
λ̃(k)(x) = q(k)(x), (9)

where L̃(x) is de�ned implicitly via λ̃(x). This is the
same as designing codes for a sequence of degraded
channels given by f (k)(x) = (1 + αk)f(x). Solving
(9), in the same manner as (8), for the bit DD gives

λ̃(k)(x) =
(1 + αk)−1q(k)(x)

f
(
F−1

(
F (1)a(k)

R Q(k)(x)
)) . (10)

The details of this derivation can be found in [6, p.
166]. Each non-negative αk is chosen so that (6) is
satis�ed for the original channel. This is not too
di�cult in practice because varying αk only changes
the truncation point for λ(k)(x).

Theorem 2. Let ρ(k)(x) be a sequence of realizable

check DDs and let λ̃(k)(x) be the sequence of bit DDs

given by (10). Suppose that (i) the derivative of f(x)
is bounded on [0, 1] and f(1) < 1, (ii) each λ̃(x)
given by (10) with αk = 0 is admissible, and (iii) the

average check degree a
(k)
R and maximum bit degree

Nk satisfy a
(k)
R /Nk → 0. In this case, there exists a

αk sequence such that the sequence of DDs de�ned

above is SIR achieving.

Proof. This proof can be found in [6, p. 168].

4. Results

In this section, we apply the strategy of Theo-
rem 2 to a sequence of check distributions with a
single non-zero coe�cient. This type of check distri-
bution is called regular, and the sequence is de�ned
by ρ(k)(x) = xk−1. This allows us to rewrite (10) as

λ̃(k)(x) =
(1 + αk)−1

(
1 − (1 − x)1/(k−1)

)
f

(
F−1

(
F (1) (k−1)(1−x)k/(k−1)+kx

k

)) .

For the precoded DEC with ε = 0.5, we con-
structed the check regular code sequence for k =

a
(k)
R = k a

(k)
L Rk ∆k Nk αk

3 2.370 0.2101 0.0088 14 0.00053

4 3.129 0.2177 0.0011 107 0.00018

5 3.906 0.2187 0.0002 757 0.00003

Table 2: Results for the DEC with ε = 0.85.

4, . . . , 11. While we were unable to prove that the
coe�cients of each power series expansion are non-
negative, we did verify this numerically for the �rst
200 coe�cients. The results of this experiment are
shown in Table 1. Since the choice of αk in our con-
struction guarantees that each code satis�es the con-
vergence condition for the channel, all of the rates
(Rk) and rate gaps (∆k) are valid. Although, we
cannot prove that this sequence of codes satis�es the
conditions of Theorem 2, we can still compare the
results to the predictions of the theorem. For one,
we �nd that Nk appears to be growing exponentially
with k while ∆k seems to be exponentially decaying.

For the DEC with ε = 0.85 and no precoding, we
also constructed the check regular code sequence. In
this case, Nk grows so rapidly that we could only con-
struct the codes with k = 3, 4, 5. This time, we veri-
�ed numerically that the �rst 800 coe�cients of each
power series are non-negative. The results are shown
in Table 2, and again we see exponential growth of
Nk and decay of ∆k.
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