Spatial Coupling, Potential Functions, and the Maxwell Construction

Yung-Yih Jian and Henry D. Pfister

Department of Electrical and Computer Engineering
Texas A&M University

ITA 2013
UC San Diego
Outline

- Coupled scalar recursions
- Simple proof of threshold saturation
- Extension to entire curve (NEW)
- Examples
Problem Setup

Let $f : \mathcal{X} \rightarrow \mathcal{X}$ and $g : \mathcal{X} \rightarrow \mathcal{X}$ be non-decreasing Lipschitz continuous functions on $\mathcal{X} = [0, x_{\text{max}}] \subseteq \mathbb{R}$. This talk will describe how the dynamics of the scalar recursion (from $x^{(0)} = x_{\text{max}}$)

$$
\begin{align*}
 y^{(\ell+1)} &= g \left(x^{(\ell)} \right) \\
 x^{(\ell+1)} &= f \left(y^{(\ell+1)} \right)
\end{align*}
$$

gives the fixed point of the coupled recursion (from $x^{(0)}_i = x_{\text{max}}$)

$$
\begin{align*}
 y^{(\ell+1)}_i &= g \left(x^{(\ell)}_i \right) \\
 x^{(\ell+1)}_i &= \sum_{j=1}^{M-w+1} A_{j,i} f \left(\sum_{k=1}^{M} A_{j,k} y^{(\ell+1)}_k \right) (i = 1, \ldots, M)
\end{align*}
$$

(scalar notation)
Let $f : \mathcal{X} \to \mathcal{X}$ and $g : \mathcal{X} \to \mathcal{X}$ be non-decreasing Lipschitz continuous functions on $\mathcal{X} = [0, x_{\text{max}}] \subseteq \mathbb{R}$. This talk will describe how the dynamics of the scalar recursion (from $x^{(0)} = x_{\text{max}}$)

$$y^{(\ell+1)} = g(x^{(\ell)})$$

$$x^{(\ell+1)} = f(y^{(\ell+1)})$$

gives the fixed point of the coupled recursion (from $x^{(0)} = x_{\text{max}}$)

$$y^{(\ell+1)} = g(x^{(\ell)})$$

$$x^{(\ell+1)} = A^\top f(A y^{(\ell+1)})$$

(vector notation)
A Few Details

Moving average of \(w \) values defined by \(A_{j,k} \triangleq [A]_{j,k} \) with

\[
A = \frac{1}{w} \begin{bmatrix}
1 & 1 & \ldots & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & \ddots & 1 & 0 & 0 \\
0 & 0 & \ddots & \ddots & \ddots & \ddots & 0 \\
0 & 0 & 0 & 1 & 1 & \ldots & 1
\end{bmatrix}
\]

Monotonicity and continuity of \(f, g \) imply:

- convergence to fixed points
- scalar case: \(x^{(\ell)} \downarrow x^{(\infty)} \) and \(y^{(\ell)} \downarrow y^{(\infty)} \)
- vector case: \(x_i^{(\ell)} \downarrow x_i^{(\infty)} \) and \(y_i^{(\ell)} \downarrow y_i^{(\infty)} \) for \(i = 1, \ldots, M \)

Q: What can we say about the coupled fixed point \(x^{(\infty)} \)?
A Few Details

Moving average of w values defined by $A_{j,k} \triangleq [A]_{j,k}$ with

$$A = \frac{1}{w} \begin{bmatrix} 1 & 1 & \cdots & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & \cdots & 1 & 0 & 0 \\ 0 & 0 & \ddots & \cdots & \ddots & \ddots & 0 \\ 0 & 0 & 0 & 1 & 1 & \cdots & 1 \end{bmatrix}$$

Monotonicity and continuity of f, g imply:

- convergence to fixed points
- scalar case: $x^{(\ell)} \downarrow x^{(\infty)}$ and $y^{(\ell)} \downarrow y^{(\infty)}$
- vector case: $x_i^{(\ell)} \downarrow x_i^{(\infty)}$ and $y_i^{(\ell)} \downarrow y_i^{(\infty)}$ for $i = 1, \ldots, M$

Q: What can we say about the coupled fixed point $x_i^{(\infty)}$?
Let the potential function $U_s: \mathcal{X} \to \mathbb{R}$ of the scalar recursion be

$$U_s(x) \triangleq x g(x) - G(x) - F(g(x)),$$

where $F(x) = \int_0^x f(z)dz$ and $G(x) = \int_0^x g(z)dz$.

Derivative of $U_s(x)$ describes the dynamics

$$\frac{d}{dx} U_s(x) = (x - f(g(x))) g'(x)$$
Let the potential function \(U_s : \mathcal{X} \rightarrow \mathbb{R} \) of the scalar recursion be

\[
U_s(x) \triangleq xg(x) - G(x) - F(g(x)),
\]

where \(F(x) = \int_0^x f(z)dz \) and \(G(x) = \int_0^x g(z)dz \).

Derivative of \(U_s(x) \) describes the dynamics

\[
\frac{d}{dx}U_s(x) = (x - f(g(x)))g'(x)
\]

Theorem (YJNP)

If \(f(g(x)) < x \) for \(x \in (0, u) \) and \(\min_{x \in \mathcal{X} \setminus [0,u]} U_s(x) > 0 \), then \(\exists w_0 < \infty \): for \(w > w_0 \), only fixed point of coupled recursion is \(x^{(\infty)} = 0 \)

- For LDPC DE, equals conjectured condition for MAP decoder
History of Threshold Saturation Proofs

For:

- the BEC by KRU in 2010
 - Established **many properties and tools** used by later approaches
- the Curie-Weiss model in physics by HMU in 2010
- CDMA using a GA by TTK in 2011
- CDMA with outer code via GA by Truhachev in 2011
- compressed sensing using a GA by DJM in 2011
- regular codes on BMS channels by KRU in 2012
- monotonic scalar and vector recursions by YJNP in 2012
- irregular LDPC codes on BMS channels by KYMP in 2012
- general scalar recursions by KRU in 2012
Simple Proof

Outline:

1. Define coupled-system potential function $U_c : \mathcal{X}^M \rightarrow \mathbb{R}$

$$U_c(x) = x^\top g(x) - G(x) - F(Ag(x))$$
Simple Proof

Outline:

1. Define coupled-system potential function $U_c: \mathcal{X}^M \rightarrow \mathbb{R}$

 $$U_c(x) = x^\top g(x) - G(x) - F(Ag(x))$$

2. Run modified recursion with free boundary to fixed point $x^{(\infty)}$
Outline:

1. Define coupled-system potential function $U_c : \mathcal{X}^M \to \mathbb{R}$

 \[U_c(x) = x^\top g(x) - G(x) - F(Ag(x)) \]

2. Run modified recursion with free boundary to fixed point $x^{(\infty)}$

3. Show that, if $x^{(\infty)} \neq 0$, then shifting x towards the free boundary reduces $U_c(x)$ by a positive constant ind. of w
Simple Proof

Outline:

1. Define coupled-system potential function $U_c : \mathcal{X}^M \to \mathbb{R}$

 $$U_c(x) = x^\top g(x) - G(x) - F(Ag(x))$$

2. Run modified recursion with free boundary to fixed point $x^{(\infty)}$

3. Show that, if $x^{(\infty)} \neq 0$, then shifting x towards the free boundary reduces $U_c(x)$ by a positive constant ind. of w

4. But, Taylor expansion of the vector potential at fixed point shows potential change due to shift must vanish as $w \to \infty$
Outline:

1. Define coupled-system potential function $U_c : \mathcal{X}^M \rightarrow \mathbb{R}$

 $$U_c(x) = x^\top g(x) - G(x) - F(Ag(x))$$

2. Run modified recursion with free boundary to fixed point $x^{(\infty)}$

3. Show that, if $x^{(\infty)} \neq 0$, then shifting x towards the free boundary reduces $U_c(x)$ by a positive constant ind. of w

4. But, Taylor expansion of the vector potential at fixed point shows potential change due to shift must vanish as $w \rightarrow \infty$

5. **Contradiction implies that** $x^{(\infty)} = 0$
For $w > w_0$, the coupled fixed point satisfies

$$\max_{i \in \{1, \ldots, M\}} x_i^{(\infty)} \leq \bar{x}^* \triangleq \max \left(\arg \min_{x \in \mathcal{X}} U_s(x) \right)$$

For all w, the coupled fixed point satisfies

$$\max_{i \in \{1, \ldots, M\}} x_i^{(\infty)} \geq \bar{x}^* \triangleq \min \left(\arg \min_{x \in \mathcal{X}} U_s(x) \right) - \kappa \left(\frac{w-1}{M-w+1} \right)$$

$$\lim_{t \to 0} \kappa(t) = 0$$
Example: BEC Density Evolution of an LDPC Ensemble

\[U(x; \varepsilon) = \varepsilon \lambda(y) \]
\[\lambda(x) = \frac{4}{20} x + \frac{5}{20} x^2 + \frac{2}{20} x^6 + \frac{9}{20} x^{20} \]
\[g(x; \varepsilon) = 1 - \rho(1 - x) \]
\[\rho(x) = \frac{6}{10} x^4 + \frac{4}{10} x^{12} \]
Example: BEC Density Evolution of an LDPC Ensemble

\[\begin{align*}
 f(y; \varepsilon) &= \varepsilon \lambda(y) \\
 g(x; \varepsilon) &= 1 - \rho(1 - x) \\
 \lambda(x) &= \frac{4}{20} x + \frac{5}{20} x^2 + \frac{2}{20} x^6 + \frac{9}{20} x^{20} \\
 \rho(x) &= \frac{6}{10} x^4 + \frac{4}{10} x^{12}
\end{align*} \]
Example: BEC Density Evolution of an LDPC Ensemble

\[f(y; \varepsilon) = \varepsilon \lambda(y) \]
\[g(x; \varepsilon) = 1 - \rho(1 - x) \]

\[\lambda(x) = \frac{4}{20} x + \frac{5}{20} x^2 + \frac{2}{20} x^6 + \frac{9}{20} x^{20} \]
\[\rho(x) = \frac{6}{10} x^4 + \frac{4}{10} x^{12} \]
Example: BEC Density Evolution of an LDPC Ensemble

\[f(y; \varepsilon) = \varepsilon \lambda(y) \]
\[g(x; \varepsilon) = 1 - \rho(1 - x) \]
\[\lambda(x) = \frac{4}{20} x + \frac{5}{20} x^2 + \frac{2}{20} x^6 + \frac{9}{20} x^{20} \]
\[\rho(x) = \frac{6}{10} x^4 + \frac{4}{10} x^{12} \]
Example: BEC Density Evolution of an LDPC Ensemble

\[U(x; \varepsilon) = \varepsilon \lambda(y) \]

\[g(x; \varepsilon) = 1 - \rho(1 - x) \]

\[\lambda(x) = \frac{4}{20} x + \frac{5}{20} x^2 + \frac{2}{20} x^6 + \frac{9}{20} x^{20} \]

\[\rho(x) = \frac{6}{10} x^4 + \frac{4}{10} x^{12} \]
Example: BEC Density Evolution of an LDPC Ensemble

\[U(x; \varepsilon) = \varepsilon \lambda(y) \]
\[g(x; \varepsilon) = 1 - \rho(1 - x) \]
\[\lambda(x) = \frac{4}{20} x + \frac{5}{20} x^2 + \frac{2}{20} x^6 + \frac{9}{20} x^{20} \]
\[\rho(x) = \frac{6}{10} x^4 + \frac{4}{10} x^{12} \]
Example: BEC Density Evolution of an LDPC Ensemble

\[
f(y; \varepsilon) = \varepsilon \lambda(y) \quad \lambda(x) = \frac{4}{20} x + \frac{5}{20} x^2 + \frac{2}{20} x^6 + \frac{9}{20} x^{20} \\
g(x; \varepsilon) = 1 - \rho(1 - x) \quad \rho(x) = \frac{6}{10} x^4 + \frac{4}{10} x^{12}
\]
Example: BEC Density Evolution of an LDPC Ensemble

\[f(y; \varepsilon) = \varepsilon \lambda(y) \]
\[g(x; \varepsilon) = 1 - \rho(1 - x) \]
\[\lambda(x) = \frac{4}{20} x + \frac{5}{20} x^2 + \frac{2}{20} x^6 + \frac{9}{20} x^{20} \]
\[\rho(x) = \frac{6}{10} x^4 + \frac{4}{10} x^{12} \]
Example: BEC Density Evolution of an LDPC Ensemble

\[f(y; \varepsilon) = \varepsilon \lambda(y) \]

\[g(x; \varepsilon) = 1 - \rho(1 - x) \]

\[\lambda(x) = \frac{4}{20} x + \frac{5}{20} x^2 + \frac{2}{20} x^6 + \frac{9}{20} x^{20} \]

\[\rho(x) = \frac{6}{10} x^4 + \frac{4}{10} x^{12} \]
Example: BEC Density Evolution of an LDPC Ensemble

\[U(x; \varepsilon) = \varepsilon \lambda(y) \]

\[f(y; \varepsilon) = \varepsilon \lambda(y) \]

\[g(x; \varepsilon) = 1 - \rho(1 - x) \]

\[\lambda(x) = \frac{4}{20} x + \frac{5}{20} x^2 + \frac{2}{20} x^6 + \frac{9}{20} x^{20} \]

\[\rho(x) = \frac{6}{10} x^4 + \frac{4}{10} x^{12} \]
Example: BEC Density Evolution of an LDPC Ensemble

\[f(y; \varepsilon) = \varepsilon \lambda(y) \]
\[g(x; \varepsilon) = 1 - \rho(1 - x) \]
\[\lambda(x) = \frac{4}{20} x + \frac{5}{20} x^2 + \frac{2}{20} x^6 + \frac{9}{20} x^{20} \]
\[\rho(x) = \frac{6}{10} x^4 + \frac{4}{10} x^{12} \]
Example: BEC Density Evolution of an LDPC Ensemble

\[f(y; \varepsilon) = \varepsilon \lambda(y) \]
\[g(x; \varepsilon) = 1 - \rho(1 - x) \]
\[\lambda(x) = \frac{4}{20} x + \frac{5}{20} x^2 + \frac{2}{20} x^6 + \frac{9}{20} x^{20} \]
\[\rho(x) = \frac{6}{10} x^4 + \frac{4}{10} x^{12} \]
Example: BEC Density Evolution of an LDPC Ensemble

\[f(y; \varepsilon) = \varepsilon \lambda(y) \]
\[g(x; \varepsilon) = 1 - \rho(1 - x) \]

\[\lambda(x) = \frac{4}{20} x + \frac{5}{20} x^2 + \frac{2}{20} x^6 + \frac{9}{20} x^{20} \]
\[\rho(x) = \frac{6}{10} x^4 + \frac{4}{10} x^{12} \]
Example: BEC Density Evolution of an LDPC Ensemble

\[U(x; \varepsilon) = \varepsilon \lambda(y) \]

\[f(y; \varepsilon) = \varepsilon \lambda(y) \]

\[g(x; \varepsilon) = 1 - \rho(1 - x) \]

\[\lambda(x) = \frac{4}{20} x + \frac{5}{20} x^2 + \frac{2}{20} x^6 + \frac{9}{20} x^{20} \]

\[\rho(x) = \frac{6}{10} x^4 + \frac{4}{10} x^{12} \]
Example: BEC Density Evolution of an LDPC Ensemble

\[f(y; \varepsilon) = \varepsilon \lambda(y) \]
\[g(x; \varepsilon) = 1 - \rho(1 - x) \]
\[\lambda(x) = \frac{4}{20}x + \frac{5}{20}x^2 + \frac{2}{20}x^6 + \frac{9}{20}x^{20} \]
\[\rho(x) = \frac{6}{10}x^4 + \frac{4}{10}x^{12} \]
Example: BEC Density Evolution of an LDPC Ensemble

\[U(x; \varepsilon) = \varepsilon \lambda(y) \]

\[f(y; \varepsilon) = \varepsilon \lambda(y) \]

\[g(x; \varepsilon) = 1 - \rho(1 - x) \]

\[\lambda(x) = \frac{4}{20} x + \frac{5}{20} x^2 + \frac{2}{20} x^6 + \frac{9}{20} x^{20} \]

\[\rho(x) = \frac{6}{10} x^4 + \frac{4}{10} x^{12} \]
Example: BEC Density Evolution of an LDPC Ensemble

\[f(y; \varepsilon) = \varepsilon \lambda(y) \]

\[g(x; \varepsilon) = 1 - \rho(1 - x) \]

\[\lambda(x) = \frac{4}{20} x + \frac{5}{20} x^2 + \frac{2}{20} x^6 + \frac{9}{20} x^{20} \]

\[\rho(x) = \frac{6}{10} x^4 + \frac{4}{10} x^{12} \]
Example: BEC Density Evolution of an LDPC Ensemble

\[f(y; \varepsilon) = \varepsilon \lambda(y) \quad \lambda(x) = \frac{4}{20} x + \frac{5}{20} x^2 + \frac{2}{20} x^6 + \frac{9}{20} x^{20} \]

\[g(x; \varepsilon) = 1 - \rho(1 - x) \quad \rho(x) = \frac{6}{10} x^4 + \frac{4}{10} x^{12} \]
Example: BEC Density Evolution of an LDPC Ensemble

\[U(x; \varepsilon) = \varepsilon \lambda(y) \]

\[f(y; \varepsilon) = \varepsilon \lambda(y) \]
\[g(x; \varepsilon) = 1 - \rho(1 - x) \]

\[\lambda(x) = \frac{4}{20} x + \frac{5}{20} x^2 + \frac{2}{20} x^6 + \frac{9}{20} x^{20} \]
\[\rho(x) = \frac{6}{10} x^4 + \frac{4}{10} x^{12} \]
That Looks Familiar

$$U(x;\varepsilon) = 10^{-2} \cdot 10^\varepsilon x$$
That Looks Familiar
That Looks Familiar

\[U(x; \varepsilon) = \varepsilon x \]
That Looks Familiar

\[U(x; \varepsilon) \]

\[\varepsilon \]

\[x \]

\[0 \cdot 10^{-2} \]

\[3 \]

\[-3 \]

\[-6 \]
That Looks Familiar

\[
U(x; \varepsilon) = 0 \cdot 10^{-2}
\]

Spatial Coupling, Potential Functions, and the Maxwell Construction
That Looks Familiar

\[U(x; \epsilon) = 10^{-2} \cdot \epsilon x \]
That Looks Familiar

\[U(x; \varepsilon) \]

\[\varepsilon \]

\[x \]

\[U(x; \varepsilon) = 0 \]

\[U(x; \varepsilon) = -6 \]

\[U(x; \varepsilon) = -3 \]

\[U(x; \varepsilon) = 0 \]

\[U(x; \varepsilon) = 3 \]

\[U(x; \varepsilon) = 6 \]

\[U(x; \varepsilon) = 9 \]

\[U(x; \varepsilon) = 12 \]

\[U(x; \varepsilon) = 15 \]

\[U(x; \varepsilon) = 18 \]

\[U(x; \varepsilon) = 21 \]

\[U(x; \varepsilon) = 24 \]

\[U(x; \varepsilon) = 27 \]
That Looks Familiar

\[U(x; \varepsilon) = \frac{1}{10} \cdot 10^{3 \cdot \varepsilon} \]

\[\varepsilon \]

\[U(x; \varepsilon) \]

\[x \]

\[\varepsilon \]

\[0.2 \]

\[0.4 \]

\[0.6 \]

\[0.8 \]

\[1 \]

\[0.6 \cdot 10^{3 \cdot \varepsilon} \]

\[0.7 \]

\[0.8 \]

\[0.9 \]

\[10 \]
That Looks Familiar

\[x \]

\[\varepsilon \]
That Looks Familiar

\[\text{EBP Fixed Points} \]
\[\max_i x_i^{(\infty)} \text{ via DE} \]
\[\arg \min_{x \in \mathcal{X}} U(x; \varepsilon) \]
Example: Analysis of an LDGM Ensemble

\[f(y; \varepsilon) = \lambda(y) \]
\[g(x; \varepsilon) = 1 - (1 - \varepsilon)\rho(1 - x) \]
\[\lambda(x) = x^5 \]
\[\rho(x) = \frac{2}{45} + \frac{2}{45}x + \frac{7}{15}x^2 + \frac{4}{9}x^3 \]
Example: Analysis of an LDGM Ensemble

\[f(y; \varepsilon) = \lambda(y) \]
\[g(x; \varepsilon) = 1 - (1 - \varepsilon)\rho(1 - x) \]
\[\lambda(x) = x^5 \]
\[\rho(x) = \frac{2}{45} + \frac{2}{45}x + \frac{7}{15}x^2 + \frac{4}{9}x^3 \]
Sketch of Proof for New Result

- Proof of new upper bound similar to “simple proof”
 - Only modified (i.e., one-sided) coupled recursion is changed
 - Vector values $\lt \bar{x}^*$ are increased to \bar{x}^* after each iteration
 - Shift bound lemma refined to
 $$U_c(Sx) - U_c(x) \leq U_s(\bar{x}^*) - U_s([x]_N)$$

- Proof of new lower bound is based on a few observations
 - Initializing recursion to \bar{x}^* lower bounds coupled fixed point
 - Iterations only decrease the potential
 - But, initial potential value implies $\max_i x_i^{(\infty)} \geq \bar{x}^* - o(1)$
Dependence on a Parameter

- **Family of admissible recursions** increasing in $\varepsilon \in \mathcal{E} = [0, \varepsilon_{\text{max}}]$
 - Scalar recursion defined by $f, g : \mathcal{X} \times \mathcal{E} \to \mathcal{X}$ with
 \[
 x^{(\ell+1)} = f \left(y^{(\ell+1)}; \varepsilon \right) \quad y^{(\ell+1)} = g \left(x^{(\ell)}; \varepsilon \right)
 \]
 - Scalar potential function $U_s : \mathcal{X} \times \mathcal{E} \to \mathbb{R}$ defined by
 \[
 U_s(x; \varepsilon) = x g(x; \varepsilon) - G(x; \varepsilon) - F(g(x; \varepsilon); \varepsilon)
 \]
 - Our new result bounds coupled fixed point as a function of ε
 \[
 \bar{x}^*(\varepsilon) \triangleq \max \{ x \in \mathcal{X} \mid U_s(x; \varepsilon) = \Psi(\varepsilon) \} \quad \Psi(\varepsilon) \triangleq \min_{x \in \mathcal{X}} U_s(x; \varepsilon)
 \]
The Maxwell Construction (1)

- Under mild conditions, the envelope theorem says that

\[
\frac{d}{d\epsilon} \Psi(\epsilon) = \frac{d}{d\epsilon} \min_{x \in X} U_s(x; \epsilon) \overset{a.e.}{=} U_s^{(0,1)}(\bar{x}^*(\epsilon); \epsilon)
\]

- Proof sketch: derivative of minimum depends on location \(\bar{x}^*(\epsilon) \) and \(\epsilon \) but the location term is zero due to minimum

- Computing \(U_s^{(0,1)}(x; \epsilon) \overset{\Delta}{=} \frac{d}{d\epsilon} U_s(x; \epsilon) \) shows that

\[
\Psi(\epsilon) = -\int_0^\epsilon \left(G^{(0,1)}(\bar{x}^*(t); t) + F^{(0,1)}(g(\bar{x}^*(t); \epsilon); t) \right) dt
\]

- For LDPC codes, we get \(-\frac{1}{L'(1)}\) times the MAP EXIT integral

\[
\Psi(\epsilon) = -\frac{1}{L'(1)} \int_0^\epsilon L(1 - \rho(1 - \bar{x}^*(t))) dt
\]
The curve $\Psi(\varepsilon) = \min_{x \in \mathcal{X}} U_s(x; \varepsilon)$ is Lipschitz continuous.

The curve $\bar{x}^*(\varepsilon)$ only jumps when the above minimum is achieved at multiple x values.

Consider two ends of a $\bar{x}^*(\varepsilon)$ jump discontinuity:

- They must have the same value of the potential.
- If smooth fixed-point curve connects them, the integral along fixed-point curve must be zero.
- This is equivalent to the Maxwell construction.
Conclusions

- We analyze coupled scalar recursions
 - Coupled fixed point given by minimizer of scalar potential
 - Extends “saturation” from threshold to Maxwell curve
 - Valuable for systems with trivial perfect decoding thresholds
 - For example, LDGM codes have $x_i^{(\infty)} \to 0$ only if $\varepsilon \to 0$

- Dependence on a parameter easily incorporated
 - Min-potential curve $\Psi(\varepsilon) = \min_{x \in x} U_s(x; \varepsilon)$ of SC system is analogous to the “negative BP conditional entropy”
 - If smooth fixed-point curve connects discontinuities, then Maxwell construction gives the $x^*(\varepsilon)$ curve, which is analogous to the Maxwell or “conjectured MAP” curve