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Matrix Completion via Iterative Information Processing

Matrix Completion Problem

“In its simplest form, the problem is to recover a matrix from

a small sample of its entries,...

Imagine now that we only observe a few entries of a data

matrix. Then is it possible to accurately—or even

exactly—guess the entries that we have not seen?...”

- Candes and Plan ’09
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Matrix Completion via Iterative Information Processing

Motivation: The Netflix Challenge (’06-’09)

An overwhelming portion of the user-movie matrix (e.g., 99%) is
unknown and the few observed movie ratings are noisy!
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Matrix Completion via Iterative Information Processing

Recent Work on Matrix Completion

Efficient Models and Practical Algorithms

Low rank matrix models and clustering models
Convex relaxation (SDP) and Bayesian approaches

Exploration of the Fundamental Limits

Relationship between sparse observation and the recovery of
missing entries
Cold-start problem in recommender systems

Main Differences
1 Focus on the matrix where the entries (drawn from a finite

alphabet) are modeled by a factor graph

2 MP based algorithm to learn the missing information and
eventually estimate missing entries
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Matrix Completion via Iterative Information Processing

Our Goal: Matrix Completion via Iterative Processing

Basic Approach

Establish a factor-graph model

Estimate parameters of model

Use for inference via message-passing (IMP)

Benefits of our factor-graph model

Establishes a generative model for data matrices

Sparse observations reduce complexity

Drawbacks of this approach

Mixes clustering and message-passing

Difficult to analyze behavior
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Factor Graph Model for Matrix Completion

Factor Graph Model (1): Conditional Independence
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Assumption
The movie ratings Rnm (user n, movie m) are conditionally
independent given the user group Un and the movie group Vm

Pr (RO|U,V) ,
∏

(n,m)∈O

w (Rnm|Un,Vm)

where w(r|u, v) , Pr(Rnm = r|Un = u,Vm = v)
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Factor Graph Model for Matrix Completion

Factor Graph Model (2): Computational Tree
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Factor Graph Model for Matrix Completion

Factor Graph Model (3): Matrix Decomposition

MMSE estimates can be written as a matrix factorization

In contrast to the standard low-rank matrix model, this adds
non-negativity and normalization constraints
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IMP Algorithm and Performance Results

Inference by Message-Passing (IMP) Algorithm (1)

Step I. Initialize Group Rating Probabilities w(r|u, v)

Cluster users (and movies) using variable-dimension vector
quantization (VDVQ), which is a variant of VQ where the
codebook vectors are full, but training vectors are sparse.

Training is based on based on the generalized Lloyd algorithm
(GLA) and the distance computed only on overlapping entries.

For user clustering, the K codebook vectors can be thought of as
K critics which have rated every movie.

After clustering users/movies each into user/movie groups,
estimate w(r|u, v) from the frequencies of each user-group /
movie-group / rating triple.
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IMP Algorithm and Performance Results

IMP Algorithm (2)
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Notation

Let T(i)
m→n be m → n computation tree after i iterations, then

message from movie m to user n is x(i)
m→n , Pr(Vm = v|T(i)

m→n) and
message from user n to movie m is y(i)

n→m , Pr(Un = u|T(i)
n→m)
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IMP Algorithm and Performance Results

IMP Algorithm (3)

Step II. Message-Passing Update of Group Vectors
1 Initialization of user/movie to prior group probabilities

x(0)
m (v)=pV(v), y(0)

n (u)=pU(u)

2 Recursive update for user/movie group probabilities

x(i+1)
m→n(v)∝x(0)

m (v)
∏

k∈Um\n

∑
u

w (r|u, v)y(i)
k→m(u)

y(i+1)
n→m(u)∝y(0)

n (u)
∏

k∈Vn\m

∑
v

w (r|u, v)x(i)
k→n(v)

Um: all users who rated movie m
Vn: all movies whose rating by user n was observed

3 Update w(r|u, v) for group ratings
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IMP Algorithm and Performance Results

IMP Algorithm (4)

Step III. Approximate Matrix Completion

After i iterations of message-passing update,
Output probability of rating Rnm given observed ratings

p̂(i+1)
Rnm|RO

(r)∝
∑
u,v

x(i+1)
m→n(v)w (r|u, v)y(i+1)

n→m(u)

Minimize the mean-squared prediction error with

r̂(i+1)
n,m =

∑
r∈R

r p̂(i+1)
Rnm|RO

(r)
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IMP Algorithm and Performance Results

IMP Improves the Cold-Start Problem
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Dataset Description
Netflix submatrix of 5,035 movies and 5,017 users by avoiding
movies and users with less than 3 ratings
16% of the users and 41% of the movies have less than 10 ratings
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IMP Algorithm and Performance Results

Generation of Synthetic Datasets
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Dataset Description
Synthetic Dataset generated after learning Netflix Data Matrix with
16 movie/user groups and randomly subsampled
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Conclusion

Conclusion

Main Contributions
1 Factor Graph Model: Probabilistic low-rank matrix model

2 IMP Algorithm: Combines clustering with message-passing

Avenues for Future Research
1 Combine with clustering via message-passing to get a fully

iterative approach

2 Obtain performance analysis of IMP algorithm via density
evolution
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Thank you
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