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Matrix Completion via Iterative Information Processing

Matrix Completion Problem

“In its simplest form, the problem is to recover a matrix from
a small sample of its entries, ...
Imagine now that we only observe a few entries of a data
matrix. Then is it possible to accurately—or even

”

exactly—gquess the entries that we have not seen?...

- Candes and Plan ‘09
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Matrix Completion via Iterative Information Processing

Motivation: The Netflix Challenge ('06-'09)
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An overwhelming portion of the user-movie matrix (e.g., 99%) is
unknown and the few observed movie ratings are noisy!
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Matrix Completion via Iterative Information Processing

Recent Work on Matrix Completion

o Efficient Models and Practical Algorithms

e Low rank matrix models and clustering models
e Convex relaxation (SDP) and Bayesian approaches

@ Exploration of the Fundamental Limits

o Relationship between sparse observation and the recovery of
missing entries

e Cold-start problem in recommender systems
Main Differences

@ Focus on the matrix where the entries (drawn from a finite
alphabet) are modeled by a factor graph

© MP based algorithm to learn the missing information and
eventually estimate missing entries
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Matrix Completion via Iterative Information Processing

Our Goal: Matrix Completion via lterative Processing

@ Basic Approach

o Establish a factor-graph model
e Estimate parameters of model
e Use for inference via message-passing (IMP)

@ Benefits of our factor-graph model
o Establishes a generative model for data matrices
e Sparse observations reduce complexity

@ Drawbacks of this approach

e Mixes clustering and message-passing
o Difficult to analyze behavior
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Factor Graph Model for Matrix Completion

Factor Graph Model (1): Conditional Independence
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Assumption

The movie ratings R, (user n, movie m) are conditionally
independent given the user group U,, and the movie group V,,

Pr(Ro[U V)2 [ w(Rum|Un, Vi)
(n,m)e0
where w(r|u,v) 2 Pr(Ruym = r|Uy = u, Vi = v)
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Factor Graph Model for Matrix Completion

Factor Graph Model (2): Computational Tree

[l Unknown Rating

. Known Rating
. Movie Group

@ User Group
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Factor Graph Model for Matrix Completion

Factor Graph Model (3): Matrix Decomposition

@ MMSE estimates can be written as a matrix factorization

i Conditional
movies mean rating
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@ In contrast to the standard low-rank matrix model, this adds
non-negativity and normalization constraints
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IMP Algorithm and Performance Results

Inference by Message-Passing (IMP) Algorithm (1)

Step I. Initialize Group Rating Probabilities w(r|u,v)

@ Cluster users (and movies) using variable-dimension vector
quantization (VDVQ), which is a variant of VQ where the
codebook vectors are full, but training vectors are sparse.

@ Training is based on based on the generalized Lloyd algorithm
(GLA) and the distance computed only on overlapping entries.

@ For user clustering, the K codebook vectors can be thought of as
K critics which have rated every movie.

@ After clustering users/movies each into user/movie groups,
estimate w(r|u,v) from the frequencies of each user-group /
movie-group / rating triple.
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IMP Algorithm and Performance Results

IMP Algorithm (2)
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Notation

Let Tm_m be m — n computation tree after i iterations, then

message from movie m to user n is x,(n)% =Pr(V,, = v\T,,Hn) and

message from user n to movie m is yff)_nn 2 Pr(U, = u|T,(f)_>m)
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IMP Algorithm and Performance Results

IMP Algorithm (3)

Step Il. Message-Passing Update of Group Vectors
@ Initialization of user/movie to prior group probabilities

Xy (0)=py(v), y& (1) =pu(u)

© Recursive update for user/movie group probabilities
x5 () ocx P H Zw (rlu,v) y,gllm( )

) keum\n u
v oy w) [ Y rlu.v)x,, )
keV,\m v

Un,: all users who rated movie m
V,: all movies whose rating by user n was observed

© Update w(r|u,v) for group ratings
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IMP Algorithm and Performance Results

IMP Algorithm (4)

Step lll. Approximate Matrix Completion

After i iterations of message-passing update,
@ Output probability of rating R,,, given observed ratings

A (i41) H—l (i+1)
an|R0 O(me—m w (r|u,v) yn-sm(w)
@ Minimize the mean-squared prediction error with

A(4+1) A~ (i41)
rn 1 :E:: })Ignm|ll0
reR
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IMP Algorithm and Performance Results

IMP Improves the Cold-Start Problem

Netflix Data Matrix 2
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Dataset Description
@ Netflix submatrix of 5,035 movies and 5,017 users by avoiding
movies and users with less than 3 ratings
@ 16% of the users and 41% of the movies have less than 10 ratings
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IMP Algorithm and Performance Results

Generation of Synthetic Datasets

Synthetic Dataset 2
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Dataset Description
@ Synthetic Dataset generated after learning Netflix Data Matrix with
16 movie/user groups and randomly subsampled
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Conclusion

Conclusion

Main Contributions
@ Factor Graph Model: Probabilistic low-rank matrix model

@ IMP Algorithm: Combines clustering with message-passing

Avenues for Future Research
@ Combine with clustering via message-passing to get a fully
iterative approach

©@ Obtain performance analysis of IMP algorithm via density
evolution
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Thank you
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