A rate-distortion exponent approach to multiple decoding attempts for Reed-Solomon codes

Phong S. Nguyen
(joint work with H. D. Pfister & K. R. Narayanan)

Department of Electrical & Computer Engineering
Texas A&M University

The IEEE International Symposium on Information Theory
June 15th, 2010
Reed-Solomon (RS) Codes

- RS codes are one of the most widely used error-correcting codes.
- \((N, K)\) RS codes have rate \(\frac{K}{N}\) and minimum distance \(d_{\text{min}} = N - K + 1\).
- Conventional hard-decision (HD) decoding algorithms such as Berlekamp-Massey (BM) can correct up to \(d_{\text{min}}/2\) errors.
- Researchers have put considerable effort into improving decoding.
 - Guruswami-Sudan (GS) - can correct errors well beyond \(d_{\text{min}}/2\).
 - Koetter-Vardy (KV) - algebraic soft-decision decoding (ASD) uses soft-information to improve this.

- Both algorithms, however, are quite computationally complex.
Recently, approaches based on multiple decoding attempts have attracted new interest.

For example, consider multiple runs of errors-and-erasures (BM) decoding, each time with a different set of erasure patterns (the least reliable symbols are usually erased).
Multiple Errors-and-Erasures Decoding (2)

- Use the following definition to represent erasure patterns and error patterns.

Definition

- \(\hat{x}^N \in \{0, 1\}^N \) as an **erasure pattern**: at index \(i \),
 \[
 \hat{x}_i = \begin{cases}
 0 & \text{if symbol is erased} \\
 1 & \text{if symbol is not erased}
 \end{cases}
 \]

- \(x^N \in \{0, 1\}^N \) as an **error pattern**: at index \(i \),
 \[
 x_i = \begin{cases}
 0 & \text{if error occurs} \\
 1 & \text{if error does not occur}
 \end{cases}
 \]
Example Sets of Erasure Patterns

- Sort the codeword positions in increasing reliability order.

- Generalized Minimum Distance (GMD) decoding [Forney]
 Repeat error-and-erasure decoding while successively erasing an even number of the least reliable positions (LRPs).

- Successive Error-and-erasure Decoding (SED) [Lee-Kumar]
 SED(/,f) repeats error-and-erasure decoding with every combination of an even number \(\leq f \) of erasures within the / LRPs.

- Motivation: How can one construct the “best” set of erasure patterns (in the sense of performance vs complexity)?
Example Sets of Erasure Patterns

- Sort the codeword positions in increasing reliability order.
 Error pattern 001011…

- Generalized Minimum Distance (GMD) decoding [Forney]
 Repeat error-and-erasure decoding while successively erasing an even number of the least reliable positions (LRPs).
 Erasure patterns of GMD 111111… 001111… 000011…

- Successive Error-and-erasure Decoding (SED) [Lee-Kumar]
 SED(\(l,f\)) repeats error-and-erasure decoding with every combination of an even number \(\leq f\) of erasures within the \(l\) LRPs.
 Erasure patterns of SED(3,2) 111111… 001111… 010111… 100111…

- Motivation: How can one construct the “best” set of erasure patterns (in the sense of performance vs complexity)?
Example Sets of Erasure Patterns

- Sort the codeword positions in increasing reliability order.

- Generalized Minimum Distance (GMD) decoding [Forney]
 Repeat error-and-erasure decoding while successively erasing an even number of the least reliable positions (LRPs).

- Successive Error-and-erasure Decoding (SED) [Lee-Kumar]
 SED(\(i, f\)) repeats error-and-erasure decoding with every combination of an even number \(\leq f\) of erasures within the \(i\) LRPs.

- **Motivation:** How can one construct the “best” set of erasure patterns (in the sense of performance vs complexity)?
Example Sets of Erasure Patterns

- Sort the codeword positions in increasing reliability order.

- Generalized Minimum Distance (GMD) decoding [Forney]
 Repeat error-and-erasure decoding while successively erasing an even number of the least reliable positions (LRPs).

- Successive Error-and-erasure Decoding (SED) [Lee-Kumar]

SED(\(l, f\)) repeats error-and-erasure decoding with every combination of an even number \(\leq f\) of erasures within the \(l\) LRPs.

- **Motivation:** How can one construct the “best” set of erasure patterns (in the sense of performance vs complexity)?
Connection to Rate-Distortion Theory

Single errors-and-erasures decoding threshold
Consider an \((N, K)\) RS code. If \(e\) symbols are erased, the BM algorithm can correct \(v\) errors in unerased positions if \(2v + e < N - K + 1\).

- A **multiple** errors-and-erasures decoding succeeds if the decoding threshold is satisfied during any decoding attempt.

- **Idea** [Nguyen et. al., Allerton ’09]: Connect multiple decoding to a R-D (covering) problem where the decoder succeeds if the error pattern ■ is covered by any decoding ball centered at an erasure pattern ●.
Distortion Measure

Definition
Given a letter-by-letter distortion measure δ, the distortion between and error pattern x^N and an erasure pattern \hat{x}^N is $d(x^N, \hat{x}^N) = \sum_{i=1}^{N} \delta(x_i, \hat{x}_i)$.

Proposition
If we choose $\delta : \{0,1\} \times \{0,1\} \rightarrow \mathbb{R}_{\geq 0}$ as follows

\[
\begin{align*}
\delta(0,0) &= 1 & \delta(0,1) &= 2 \\
\delta(1,0) &= 1 & \delta(1,1) &= 0
\end{align*}
\]

then $2v + e < N - K + 1$ reduces to the form $d(x^N, \hat{x}^N) < N - K + 1$.

- **Extension**: Can be applied to other decoding schemes (e.g. ASD decoding, generalized errors-and-erasures decoding).
Top-ℓ Generalized Errors-and-Erasured Decoding.

Definition
Consider a positive integer ℓ.

- $x^N \in \{0,1,\ldots,\ell\}^N$ is a **generalized error pattern**, and at index i,
 \[
 x_i = \begin{cases}
 0, & \text{none of the first } \ell \text{ most likely symbols is correct} \\
 j, & \text{if the } j\text{-th most likely symbol is correct} \quad (j = 1,2,\ldots,\ell)
 \end{cases}
 \]

- $\hat{x}^N \in \{0,1,\ldots,\ell\}^N$ is an **generalized erasure pattern**, and at index i,
 \[
 \hat{x}_i = \begin{cases}
 0, & \text{if an erasure is used} \\
 j, & \text{if the } j\text{-th most likely symbol is used as HD} \quad (j = 1,2,\ldots,\ell)
 \end{cases}
 \]

Theorem
We choose $\delta : \{0,1,\ldots,\ell\} \times \{0,1,\ldots,\ell\} \to \mathbb{R}_{\geq 0}$ **defined by**
$\delta(x,\hat{x}) = [\Delta]_{x,\hat{x}}$ **in terms of**
\[
\Delta = \begin{pmatrix}
1 & 2 & \ldots & 2 & 2 \\
1 & 0 & \ldots & 2 & 2 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
1 & 2 & \ldots & 0 & 2 \\
1 & 2 & \ldots & 2 & 0
\end{pmatrix}
\]

decoding threshold becomes
$\quad d(x^N,\hat{x}^N) < N - K + 1.$
Choosing the Erasure Patterns

- **Problem statement**: Build a set (codebook) B_R of no more than 2^R erasure patterns \hat{x}^N in order to

\[
\max_{B_R: |B_R| \leq 2^R} \Pr \left(\min_{\hat{x}^N \in B_R} d(x^N, \hat{x}^N) < N - K + 1 \right).
\]

- **RD approach** [Nguyen et. al., Allerton ’09] (for $R = N\bar{R}$ and $D = N\bar{D}$):
 - View the error pattern x^N as a source sequence and the erasure pattern \hat{x}^N as a reproduction sequence
 - R-D theory: Trade-off between \bar{R} and \bar{D} such that sets $B_{N\bar{R}}$ of $2^{N\bar{R}}$ reproduction (erasure) sequences can be generated randomly so that

\[
\lim_{n \to \infty} \frac{1}{N} E \left[\min_{\hat{x}^N \in B_{N\bar{R}}} d(x^N, \hat{x}^N) \right] < \bar{D}
\]

 - Then, for N fixed but large enough, it is very likely that

\[
\min_{\hat{x}^N \in B_R} d(x^N, \hat{x}^N) < D
\]
Choosing the Erasure Patterns

- **Problem statement**: Build a set (codebook) B_R of no more than 2^R erasure patterns \hat{x}^N in order to

$$\max_{B_R: |B_R| \leq 2^R} \Pr \left(\min_{\hat{x}^N \in B_R} d(x^N, \hat{x}^N) < N - K + 1 \right).$$

- **RD approach** [Nguyen et. al., Allerton ’09] (for $R = N\bar{R}$ and $D = ND$):
 - View the error pattern x^N as a source sequence and the erasure pattern \hat{x}^N as a reproduction sequence
 - R-D theory: Trade-off between \bar{R} and \bar{D} such that sets $B_{N\bar{R}}$ of $2^{N\bar{R}}$ reproduction (erasure) sequences can be generated randomly so that

$$\lim_{n \to \infty} \frac{1}{N} E \left[\min_{\hat{x}^N \in B_{N\bar{R}}} d(x^N, \hat{x}^N) \right] < \bar{D}$$

 - Then, for N fixed but large enough, it is very likely that

$$\min_{\hat{x}^N \in B_R} d(x^N, \hat{x}^N) < D$$
Rate-Distortion Exponent (RDE) approach

For random codes, let $Z = \min_{\hat{x}^N \in B_R} d(\hat{x}^N, x^N)$ be a random variable.

- **RD approach**: minimize the average minimum distortion $E[Z]

- **RDE approach**: maximize the exponent F at which $p_e = \Pr(Z > D)$ decays with N.

\[
\lim_{N \to \infty} -\frac{1}{N} \log p_e = F(R, D)
\]

RS decoding has a fixed threshold $D = N - K + 1$, so there is an F vs R trade-off.
Advantages of RDE approach

- Gives an estimate of \(p_e \approx 2^{-N\overline{F}(R,D)} \) for each \(R \) where \(2^R \) is the number of decoding attempts.

- This is the near-optimal choice of \(\mathcal{B}_R \) (the set of erasure patterns) since
 - **Upperbound**: For the set \(\mathcal{B}_R \) using RDE approach, for every \(\varepsilon > 0 \),
 \[
 p_e \leq 2^{-N[\overline{F}(R,D) - \varepsilon]}
 \]
 for \(N \) large enough.
 - **Lowerbound**: Consider an arbitrary set \(\mathcal{B}_R \), for any \(\varepsilon > 0 \),
 \[
 p_e \geq 2^{-N[\overline{F}(R,D) + \varepsilon]}
 \]
 for \(N \) large enough
Proposed Multiple-Decoding Algorithm (1)

- **Step 1**: Transmit codeword c_1^N (where $c_i \in \mathbb{F}_m$) and receive r_1^N
- **Step 2**: Compute the $m \times N$ reliability matrix $[\Pi]_{j;i} = \Pr(c_i = \alpha_j | r_i)$.

Example: Consider the (7,5) RS code over \mathbb{F}_8 with $d_{min} = 3$. Suppose the all-zero codeword was transmitted.

$$
\Pi = \begin{bmatrix}
 c_1 & c_2 & c_3 & c_4 & c_5 & c_6 & c_7 \\
 .95 & .37 & .88 & .79 & .95 & .24 & .97 \\
 .01 & .01 & .09 & .01 & .01 & .19 & .02 \\
 .01 & 0 & 0 & .09 & 0 & .10 & .01 \\
 0 & .62 & 0 & 0 & 0 & 0 & 0 \\
 .03 & 0 & .33 & .11 & .04 & .47 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}
$$

$\alpha_1 = 0$

α_2

α_3

α_4

α_5

α_6

α_7

α_8
Proposed Multiple-Decoding Algorithm (2)

- **Step 3:** Process Π, keeping top-ℓ symbols and a "not top-\ell" symbol to get P where $p_{i,j} = \Pr(x_i = j)$.

Example: Consider $\ell = 2$.

$$P = \begin{bmatrix}
 x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & x_7 \\
 .02 & .01 & .03 & .10 & .01 & .29 & .01 \\
 .95 & .62 & .88 & .79 & .95 & .47 & .97 \\
 .03 & .37 & .09 & .11 & .04 & .24 & .02 \\
 \end{bmatrix}
\begin{array}{c}
\Pr(x_i = 0) \\
\Pr(x_i = 1) \\
\Pr(x_i = 2)
\end{array}$$

Distortion measure matrix for *multiple BM top-2* (mBM-2) decoding is

$$\Delta = \begin{pmatrix} 1 & 2 & 2 \\ 1 & 0 & 2 \\ 1 & 2 & 0 \end{pmatrix}.$$
Step 4: Compute the RDE function for the processed reliabilities and the distortion measure for top-ℓ decoding. For the desired rate-distortion (R, D) pair, find the corresponding test-channel input-distribution Q.

Example: Consider $R = 2$ and $D = N - K + 1 = 3$, we have

$$F(R, D) = 1.415 > 0$$

$$Q = \begin{bmatrix}
\hat{x}_1 & \hat{x}_2 & \hat{x}_3 & \hat{x}_4 & \hat{x}_5 & \hat{x}_6 & \hat{x}_7 \\
0 & 0 & 0 & .28 & 0 & .63 & 0 \\
.93 & .58 & .82 & .61 & .91 & .26 & .96 \\
.67 & .42 & .18 & .11 & .09 & .11 & .04
\end{bmatrix}$$

- $\Pr(\hat{x}_i = 0)$: erase
- $\Pr(\hat{x}_i = 1)$: use 1st-ML symbol
- $\Pr(\hat{x}_i = 2)$: use 2nd-ML symbol
Proposed Multiple-Decoding Algorithm (4)

- **Step 5**: Generate a set of 2^R candidate patterns by randomly sampling the test-channel input-probability distribution Q.

Example: $R = 2$ yields the set (codebook) of 4 erasure patterns

$$B = \{1111111, 1210111, 1221111, 1111121\}.$$

- **Step 6**: Run the corresponding decoding scheme for each candidate pattern to produce a list of candidate codewords. Use the ML rule to choose the best codeword on the list.
A Range of Algorithms

- Berlekamp-Massey (BM) Based Algorithms
 - mBM-\(l \) = Multiple runs on Berlekamp-Massey using top-\(l \) decoding
 - mBM-1 = Either use hard decision or erasure
 - mBM-2 = Either use 1st-ML symbol, 2nd ML-symbol, or erasure
 - Related to symbol-flipping Chase decoding [Kavcic-Bellorado]

- Algebraic Soft-Decision (ASD) Based Algorithms
 - Columns of the multiplicity matrix are chosen i.i.d. according to an RDE optimized distribution
 - mASD-\(\mu \) = Sum of multiplicity in each column not greater than \(\mu \)
 - mASD-1 = Set of multiplicity types = (1,0),(0,1),(0,0)
 - mASD-2 = Set of multiplicity types = (2,0),(1,1),(0,2),(0,0)
Some Special Cases of RDE Approach

- When $F = 0$, the RDE approach becomes the RD approach.

- When $R = 0$, the codebook has only one entry.
 - The random codebook becomes deterministic (i.e., test-channel input-distribution Q consists of only entries of only 0 and 1).
 - Related to the following lines of work considered by other researchers.
 - Design an erasure pattern for a single BM decoding.
 - Design a multiplicity matrix for a single ASD decoding.
The RDE curves at $E_b/N_0 = 6$dB for the $(255,239)$ RS code over \mathbb{F}_2^8 with BPSK over an AWGN channel.
Simulation Results for RS(255,239)

Frame Error Rate vs. \(\frac{E_b}{N_0} \) (dB)

Performance of various decoding algorithms for the (255,239) RS code over \(\mathbb{F}_2^8 \) with BPSK over an AWGN channel.
Simulation Results for RS(458,410)

Performance of various decoding algorithms for the (458,410) RS code over $\mathbb{F}_{2^{10}}$ with BPSK over an AWGN channel.
Summary and Open Questions

- A RDE-based approach is proposed for multiple decoding attempts of RS codes.
- Can be applied to a wide range of decoders and error models.
- Open Questions:
 - Can we solve the decoding problem for each candidate more easily by using previous computations (c.f., Kavcic-Bellorado)?
 - Can we extend our framework to intersymbol interference channels?
THANK YOU!