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Review: Spatial Coupling
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I this observation implies SC benefits many applications:
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The BP GEXIT Curve of the Joint
Decoder
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the normalized area theorem is
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Conclusions and Future Work

I area theorem for GMAC

I threshold saturation extends to interference channels

I MAP threshold of regular LDPC codes becomes universal

I SC codes are essentially universal

I universality extends to the sensor reachback problem for
some correlation models
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