LDPC Code Design for Transmission of Correlated Sources Across Noisy Channels Without CSIT

Henry Pfister
(Joint work with Arvind Yedla & Krishna Narayanan)

Texas A&M University

ISTC 2010
Brest, France
The Sensor Reachback Problem

[BS03]
The Sensor Reachback Problem

[sources]

Design of Universal LDPC Codes
WCL, Texas A&M University
The Sensor Reachback Problem

i.i.d. draws from S correlated sources $\sim \Pr(X_1, X_2, \cdots, X_S)$ with independent encoding

[BS03]
The Sensor Reachback Problem

S independent memoryless channels

$$\Pr(Y_1^S \mid X_1^S) = \prod_i \Pr(Y_i \mid X_i)$$

i.i.d. draws from S correlated sources $\sim \Pr(X_1, X_2, \ldots, X_S)$ with independent encoding

[BS03]
The Sensor Reachback Problem

S independent memoryless channels

$\Pr(Y_1^S \mid X_1^S) = \prod_i \Pr(Y_i \mid X_i)$

i.i.d. draws from S correlated sources $\sim \Pr(X_1, X_2, \cdots, X_S)$

with independent encoding

$[BS03]$
A Simplified Model

Correlated Sources

Source 1 → Encoder 1 → Channel 1 → Decoder

Source 2 → Encoder 2 → Channel 2

Each source is characterized by a single parameter, not known at the transmitter.

Each code has rate R.

x_1 and y_1 are outputs of Channel 1.

x_2 and y_2 are outputs of Channel 2.
A Simplified Model

- each capacity characterized by a single parameter α
A Simplified Model

- each capacity characterized by a single parameter α
- α_1 and α_2 not known at transmitter
A Simplified Model

- each capacity characterized by a single parameter α
- α_1 and α_2 not known at transmitter
- each code has rate R
Slepian-Wolf Conditions

α_2

(α_1, α_2)-plane

α_1
Slepian-Wolf Conditions

\[\frac{C_2(\alpha_2)}{R_2} \geq H(U_2|U_1) \]

\[\frac{C_1(\alpha_1)}{R_1} + \frac{C_2(\alpha_2)}{R_2} \geq H(U_1, U_2) \]

\[\frac{C_1(\alpha_1)}{R_1} \geq H(U_1|U_2) \]

illustrated for the BEC case where \(C(\alpha) = 1 - \alpha \)
Slepian-Wolf Conditions

\[
\frac{C_2(\alpha_2)}{R_2} \geq H(U_2|U_1)
\]

\[
\frac{C_1(\alpha_1)}{R_1} + \frac{C_2(\alpha_2)}{R_2} \geq H(U_1, U_2)
\]

\[
\frac{C_1(\alpha_1)}{R_1} \geq H(U_1|U_2)
\]

SW channel parameter region
Slepian-Wolf Conditions

\[1 - H(U_2 | U_1) R_2 \]

\[1 - H(U_1) R_1 \]

\[1 - H(U_1 | U_2) R_1 \]

symmetric channel condition
Slepian-Wolf Conditions

\[1 - H(U_2 | U_1) R_2 \]

\[1 - H(U_2) R_2 \]

symmetric channel condition

achievable channel parameter region (ACPR) of a code optimized for the symmetric channel condition
Slepian-Wolf Conditions

what if the channel condition happened to be different?
Slepian-Wolf Conditions

\[1 - H(U_2 | U_1) R_2 \]

\[1 - H(U_2) R_2 \]

the performance is bad.
Slepian-Wolf Conditions

\[1 \! - \! H(U_2 | U_1) R_2 \]

\[1 \! - \! H(U_2) R_2 \]

need convergence on the dominant face
Slepian-Wolf Conditions

universal codes

ACPR = full SW region
random codes with ML decoding are universal.
what about LDPC codes with iterative decoding?
Prior Work and Summary

- Prior Work

Optimized LT codes are not universal [YPN09]
carefully designed turbo codes have large ACPRs [AFMFR09]
systematic LDPC codes perform poorly [MFAFR10]

Summary of this work

systematic codes ⇒ correlated codes ⇒ suboptimal

optimized non-systematic LDPC codes have large ACPRs
Prior Work and Summary

- Prior Work
 - Optimized LT codes are not universal [YPN09]
Prior Work and Summary

Prior Work

- Optimized LT codes are not universal [YPN09]
- carefully designed turbo codes have large ACPRs [AFMFR09]
Prior Work and Summary

- Prior Work
 - Optimized LT codes are not universal [YPN09]
 - carefully designed turbo codes have large ACPRs [AFMFR09]
 - systematic LDPC codes perform poorly [MFAFR10]
Prior Work and Summary

- Prior Work
 - Optimized LT codes are not universal [YPN09]
 - carefully designed turbo codes have large ACPRs [AFMFR09]
 - systematic LDPC codes perform poorly [MFAFR10]

- Summary of this work
Prior Work and Summary

- Prior Work
 - Optimized LT codes are not universal [YPN09]
 - carefully designed turbo codes have large ACPRs [AFMFR09]
 - systematic LDPC codes perform poorly [MFAFR10]

- Summary of this work
 - systematic codes \Rightarrow correlated codes \Rightarrow suboptimal
Prior Work and Summary

- Prior Work
 - Optimized LT codes are not universal [YPN09]
 - carefully designed turbo codes have large ACPRs [AFMFR09]
 - systematic LDPC codes perform poorly [MFAFR10]

- Summary of this work
 - systematic codes ⇒ correlated codes ⇒ suboptimal
 - optimized non-systematic LDPC codes have large ACPRs
Tanner Graph & Density Evolution

\[\begin{align*}
\lambda(x) & \quad \cdots \quad \cdots \cdots \\
\rho(x) & \quad \text{permutation } \pi_1 \\
\end{align*} \]
Tanner Graph & Density Evolution

\[\rho(x) \]
\[\lambda(x) \]

permutation \(\pi_2 \)

\[\gamma \]
\[\lambda(x) \]
\[\rho(x) \]

permutation \(\pi_1 \)
Tanner Graph & Density Evolution

\[\rho(x) \]

\[\lambda(x) \]

\[\text{permutation } \pi_2 \]

\[\text{permutation } \pi_1 \]

\[f(\cdot) \]

\[p \]

\[\gamma \]
Tanner Graph & Density Evolution

\[\begin{align*}
\rho(x) & \quad \cdots \quad \pi_2 \quad \cdots \\
\lambda(x) & \quad \cdots \\
\gamma & \quad f(\cdot) \\
\lambda(x) & \quad \cdots \\
\rho(x) & \quad \cdots
\end{align*} \]

BMSC

BMSC

BMSC

BMSC
Tanner Graph & Density Evolution

\[\rho(x) \]
\[\lambda(x) \]
\[\rho(x) \]
\[\lambda(x) \]

\[\text{permutation } \pi_2 \]

\[b_\ell \]
\[a_\ell \]

\[\text{permutation } \pi_1 \]

\[p \]
\[f(\cdot) \]
\[\gamma \]

\[b_{BMSC} \]
\[a_{BMSC} \]
Tanner Graph & Density Evolution

\[a_{\ell+1} = \left[\begin{array}{c} \end{array} \right] \otimes \lambda(\rho(a_\ell)) \]
\[a_{\ell+1} = \left[(1 - \gamma)a_{\text{BMSC}} \right] \otimes \lambda(\rho(a_\ell)) \]
Tanner Graph & Density Evolution

$$L(\rho(b_\ell))$$

$$a_{\ell+1} = \left[\gamma f(L(\rho(b_\ell))) + (1 - \gamma) a_{BMSC} \right] \odot \lambda(\rho(a_\ell))$$
Tanner Graph & Density Evolution

\[
\begin{align*}
a_{\ell+1} &= \left[\gamma f\left(L(\rho(b_\ell)) \right) + (1 - \gamma) a_{BMSC} \right] \otimes \lambda(\rho(a_\ell)) \\
b_{\ell+1} &= \left[\gamma f\left(L(\rho(a_\ell)) \right) + (1 - \gamma) b_{BMSC} \right] \otimes \lambda(\rho(b_\ell))
\end{align*}
\]
Tanner Graph & Density Evolution

\[\Gamma_{\lambda, \rho}(\alpha_1, \alpha_2) - \text{residual error probability} \]
Code Design

- fix the desired rate R_d
Code Design

- fix the desired rate R_d
- pick a set of channel conditions C

\[\text{cost function: } A_x = \left\{ \left(\alpha_1; \alpha_2 \right) \mid \alpha_1 \alpha_2 \in C \right\} \]

\[F(x) = a \sum \left(\alpha_1; \alpha_2 \right)^2 C_1 - C \left(A_x \right) + b \left(R_d - R(x) \right) \]

search using differential evolution
Code Design

- fix the desired rate R_d
- pick a set of channel conditions C
- require *convergence* on C

$$\Gamma_{\lambda, \rho}(\alpha_1, \alpha_2) \leq (\tau, \tau) \forall (\alpha_1, \alpha_2) \in C$$
Code Design

- fix the desired rate R_d
- pick a set of channel conditions C
- require convergence on C

$$\Gamma_{\lambda, \rho}(\alpha_1, \alpha_2) \leq (\tau, \tau) \forall (\alpha_1, \alpha_2) \in C$$

- cost function: $(x = [\lambda \ \rho])$

$$A_x = \{(\alpha_1, \alpha_2) | \Gamma_x(\alpha_1, \alpha_2) \leq (\tau, \tau)\}$$

$$F(x) =$$

$$+$$
Code Design

- fix the desired rate R_d
- pick a set of channel conditions C
- require convergence on C

$$
\Gamma_{\lambda, \rho}(\alpha_1, \alpha_2) \leq (\tau, \tau) \ \forall \ (\alpha_1, \alpha_2) \in C
$$

- cost function: $(x = [\lambda \ \rho])$

$$
A_x = \{(\alpha_1, \alpha_2) | \Gamma_x(\alpha_1, \alpha_2) \leq (\tau, \tau)\}
$$

$$
\mathcal{F}(x) = \sum_{(\alpha_1, \alpha_2) \in \mathbb{C}} \left(1 - \mathbb{1}_{\{(\alpha_1, \alpha_2) \in A_x\}}\right)
$$
Code Design

- fix the desired rate R_d
- pick a set of channel conditions C
- require *convergence* on C

$$\Gamma_{\lambda, \rho}(\alpha_1, \alpha_2) \leq (\tau, \tau) \quad \forall \ (\alpha_1, \alpha_2) \in C$$

- cost function: $(x = [\lambda \ \rho])$

$$A_x = \{ (\alpha_1, \alpha_2) | \Gamma_x(\alpha_1, \alpha_2) \leq (\tau, \tau) \}$$

$$\mathcal{F}(x) = \sum_{(\alpha_1, \alpha_2) \in C} \left(1 - \mathbb{1}_{(\alpha_1, \alpha_2) \in A_x} \right)$$

$$+ \quad (R_d - R(x))$$
Code Design

- fix the desired rate R_d
- pick a set of channel conditions C
- require convergence on C

$$\Gamma_{\lambda, \rho}(\alpha_1, \alpha_2) \leq (\tau, \tau) \forall (\alpha_1, \alpha_2) \in C$$

- cost function: $(x = [\lambda \ \rho])$

$$A_x = \{(\alpha_1, \alpha_2) | \Gamma_x(\alpha_1, \alpha_2) \leq (\tau, \tau)\}$$

$$\mathcal{F}(x) = a \cdot \sum_{(\alpha_1, \alpha_2) \in C} \left(1 - \mathbb{1}_{\{(\alpha_1, \alpha_2) \in A_x\}}\right) + b \cdot (R_d - R(x))$$
Code Design

- fix the desired rate R_d
- pick a set of channel conditions C
- require *convergence* on C

$$\Gamma_{\lambda, \rho}(\alpha_1, \alpha_2) \leq (\tau, \tau) \forall (\alpha_1, \alpha_2) \in C$$

- cost function: $(x = [\lambda \; \rho])$

$$A_x = \{(\alpha_1, \alpha_2) | \Gamma_x(\alpha_1, \alpha_2) \leq (\tau, \tau)\}$$

$$F(x) = a \cdot \sum_{(\alpha_1, \alpha_2) \in C} \left(1 - \mathbb{1}_{(\alpha_1, \alpha_2) \in A_x}\right)$$

$$+ b \cdot (R_d - R(x))$$

- search using differential evolution
Code Design contd.,

- BSC correlated sources
Code Design contd.,

- BSC correlated sources
 - \(\Pr(U_1 = U_2) = p \), \(\Pr(U_1) = \Pr(U_2) = 1/2 \)

\[
f(a) = a \cdot (1 - p) + p \cdot a
\]
Code Design contd.,

- BSC correlated sources
 - \(\text{Pr}(U_1 = U_2) = p, \text{Pr}(U_1) = \text{Pr}(U_2) = 1/2 \)
 - all-zero codeword assumption not valid
Code Design contd.,

- BSC correlated sources
 - \(\Pr(U_1 = U_2) = p, \Pr(U_1) = \Pr(U_2) = 1/2 \)
 - all-zero codeword assumption not valid
 - \(f(a) = a_{BSC(1-p)} \ast a \)

\[a_{BSC} \]

\[a \]
• BSC correlated sources
 • $\Pr(U_1 = U_2) = p$, $\Pr(U_1) = \Pr(U_2) = 1/2$
 • all-zero codeword assumption not valid
 • $f(a) = a_{BSC}(1-p) \ast a$
 • transmission through AWGN channels
Code Design contd.,

- **BSC correlated sources**
 - $\text{Pr}(U_1 = U_2) = p$, $\text{Pr}(U_1) = \text{Pr}(U_2) = 1/2$
 - all-zero codeword assumption not valid
 - $f(a) = a_{BSC}(1-p) \ast a$
 - transmission through AWGN channels

- **erasure correlated sources**
Code Design contd.,

- **BSC correlated sources**
 - $\Pr(U_1 = U_2) = p$, $\Pr(U_1) = \Pr(U_2) = 1/2$
 - all-zero codeword assumption not valid
 - $f(a) = a_{BSC(1-p)} \star a$
 - transmission through AWGN channels

- **erasure correlated sources**
 - $Z \sim \text{Ber}(p)$
 - $(U_1, U_2) = \begin{cases}
 \text{i.i.d. Bernoulli } \frac{1}{2} \text{ r.v.s, if } Z = 0 \\
 \text{same Bernoulli } \frac{1}{2} \text{ r.v. } U, \text{ if } Z = 1
 \end{cases}$
Code Design contd.,

- **BSC correlated sources**
 - $\Pr(U_1 = U_2) = p$, $\Pr(U_1) = \Pr(U_2) = 1/2$
 - All-zero codeword assumption not valid
 - $f(a) = a_{BSC(1-p)} \ast a$
 - Transmission through AWGN channels

- **Erasure correlated sources**
 - $Z \sim \text{Ber}(p)$
 - $(U_1, U_2) = \begin{cases}
 \text{i.i.d. Bernoulli } \frac{1}{2} \text{ r.v.s, if } Z = 0 \\
 \text{same Bernoulli } \frac{1}{2} \text{ r.v. } U, \text{ if } Z = 1
 \end{cases}$
 - $f(a) = (1 - p) + pa$
Code Design contd.,

- **BSC correlated sources**
 - $\Pr(U_1 = U_2) = p$, $\Pr(U_1) = \Pr(U_2) = 1/2$
 - all-zero codeword assumption not valid
 - $f(a) = a_{BSC}(1-p) \ast a$
 - transmission through AWGN channels
- **erasure correlated sources**
 - $Z \sim \text{Ber}(p)$
 - \[(U_1, U_2) = \begin{cases}
 \text{i.i.d. Bernoulli } \frac{1}{2} \text{ r.v.s, if } Z = 0 \\
 \text{same Bernoulli } \frac{1}{2} \text{ r.v. } U \text{, if } Z = 1
 \end{cases}\]
 - $f(a) = (1 - p) + pa$
 - transmission through erasure channels
Results: AWGN ($p = 0.9$)

code rate = 0.282
Results: AWGN ($p = 0.9$)

code rate = 0.282

![Graph showing SNR1 vs. SNR2 with ACPR and SW region shaded areas, with points at (-2.1, -2.1) and (-2.68, -2.68) and a SNR gain of 0.58 dB.]
Results: AWGN ($p = 0.9$)

code rate $= 0.282$

block length $= 10^5$
Results: BEC \((p = 0.5) \)

code rate = 0.330
Results: BEC ($p = 0.5$)

code rate $= 0.330$
Results: BEC ($p = 0.5$)

code rate = 0.330

block length = 10^5
Thank You!

