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Introduction  Coding Connections

Motivation for This Work

@ Connections between coding and compressed sensing
@ Analyze CS systems with tools from coding theory

@ Analyze CS systems based on high rate scaling of LDPC codes
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Introduction  Coding Connections

Compressed Sensing

e Compressed sensing (CS) is a relatively new area of signal

processing and statistics that focuses on signal reconstruction
from a small number of linear (i.e. dot product) measurements

@ Use m dot-product samples to reconstruct a signal

o The signal vector is x € R”
o The m x n measurement matrix is & € R™*"
o The length-m sample vector is y = ®x

e Given y, the valid signal set is V(y) = {&’ € R"|®x’ =y}

e If m < n, then a unique solution is not possible
e With prior knowledge, we try to choose a “good” solutions
o Ifxis sparse (w.r.t. Hamming weight ||-||;;), then

&= arg min <],
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Introduction

Coding Connections

Compressed Sensing and Coding

Compressed Sensing

e Signal: x € R”
e sparse: [|x||y < dn

@ Measurement matrix:
d ¢ RM™*n

e Blind to nullspace of ®

e Sample vector: y = $x

@ Dec: x =arg min ||«|y
x'y=x’

Zhang and Pfister (Texas A&M)
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Coding

e Error pattern: e € F"
e sparse: Pr(e; #0) =¢

o Parity-check matrix:
H ¢ Fmxn

o Code is nullspace of H
@ Syndrome: s = He

@ Dec: é = arg min |le
g min [/l
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Introduction  Coding Connections

Analysis Tools and Reconstruction Measures

Compressed Sensing Tools from Coding

@ Uniform reconstruction
(some ® works form all x)

@ Stopping set analysis
ignoring false verification

e Stopping set analysis
including false verification

@ Uniform-in-probability (For
any x, random ® works,
prob. in )

@ Density evolution
@ Randomized reconstruction
(work w.h.p. for random x

and @, prob. in both x and ®)
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Introduction  Compressed Sensing

Low-Density Parity-Check (LDPC) Codes

@ Linear codes with sparse parity-check matrix H

o Codes over GF(q) defined by H;; €GF(q) s.t. > Hx; = 0
e Bipartite graph representation

o An edge connects check node i to symbol node j if H;; # 0

o Irregular codes defined by degree distributions A(x), p(x)
@ Message Passing (MP) Decoding

o Nodes iteratively pass symbol estimates to one another
e Density evolution (DE) analysis and stopping set analysis

e For (3,6) codes, the DE threshold is 43%, SS threshold is 1.8%
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Introduction = Compressed Sensing

Verification Based Decoding Algorithm

@ Idea: Verify messages which are correct w.h.p.
@ Algorithms by Luby and Mitzenmacher (Allerton02, IT05)
o 1st Alg. (LM1): Verify all symbols if check sums to zero
e 2nd Alg. (LM2): LM1 + Verify if two msgs match at symbol
o False verification: event that message verified but not correct

o Assumption that the weighted sum of non-zero coefficients does
not equal to zero
o can be avoided by assumption or by randomizing ¢

@ These algorithms can be used in CS system over real numbers
since the assumption “verified symbols are correct w.h.p.” holds
equally well over the GF(q) with large q and the real numbers.
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Introduction  Compressed Sensing

CS Reconstruction via LM1

Let ® be the following parity-check matrix H

1100100 0]
10100100
10010010
01001001
00101100
(000101 11|

Note: We choose edge weights of one for simplicity
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Introduction Compresse d Sensing

CS Reconstruction via LM1

Signal (circles) measurement (squares) model
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Introduction Compressed Sensing

CS Reconstruction via LM1

With measurements exposed
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Introduction Compressed Sensing

CS Reconstruction via LM1

3 0 4 7

All-zero signal assumed for decoding
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Introduction Compressed Sensing

CS Reconstruction via LM1

3 0 4 7 0

Assume all satisfied checks are correct
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Introduction Compressed Sensing

CS Reconstruction via LM1

O 0 0 O

! Lbddd

4 3 4 7

Remove edges and fix values
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Introduction Compressed Sensing

CS Reconstruction via LM1

0 0

PEEX!

[]
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Use degree-1 check to determine a variable
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Introduction = Compressed Sensing

CS Reconstruction via LM1

0 0 3 0

! Lbddd

4 4 7

This value can be removed from all equations
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Introduction = Compressed Sensing

CS Reconstruction via LM1

0 0 3 0

! L bddd

4 4 7

Another variable is determined
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Introduction = Compressed Sensing

CS Reconstruction via LM1

4 4

This value can be removed from all equations
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Introduction = Compressed Sensing

CS Reconstruction via LM1

4 4

Final value is determined in two ways
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Introduction = Compressed Sensing

CS Reconstruction via LM1

bbobbabd

Reconstruction is successful
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Coding Perspective =~ DE-BEC

Introduction to DE and Scaling Law Analysis

@ Given a code ensemble, DE tracks the evolution of the
distribution of the message on the graph as decoding proceeds.

@ DE gives the threshold below which the decoding succeeds
w.h.p. as the number of iterations goes to infinity.

e Consider a sequence of ensembles, scaling law analysis shows
how the thresholds scale with the parameters of the ensembles.

Example 1:

A (j, k) code with cE check nodes can recover E erasures w.h.p. (the
number of check nodes scales linearly with the number of erasures).

Example 2:

A (j, k) code with LM2 decoding can recover a K-sparse signal with
only cK measurements for randomized reconstruction.
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Coding Perspective =~ DE-BEC

An Example for Scaling Analysis

10+

06
04+

02+

0.2 0.4 0.6 0.8 10

Unscaled DE equation:y = 6o(1 — (1 — x)5)2
What’s the DE curve like when rate— 1, or, fixj and let £ — ~0?
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Coding Perspective =~ DE-BEC

An Example for Scaling Law Analysis
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scaled by x < x/2
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Coding Perspective =~ DE-BEC

DE Scaling Analysis for the BEC

@ Consider the sequence of (j, k) regular ensemble.

o Fixedj,ask — oo = rate — 1

o aj=sup{a:\(l—e %) <x, forx € (0,1]}

o Letd = (kijl) , the iterative decoding fails (w.h.p as n — oo) for
all & if o > @;.

e Conversely, if « < @}, then 3K < oo such that iterative decoding
succeeds (w.h.pasn — oco) for all &k > K.

a; means the fraction of the capacity that can be achieved. For (j, %)
regular LDPC codes, as = 0.5, a3 ~ 0.8184, and a4 ~ 0.7722.
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Coding Perspective = DE-qSC-LM1
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Coding Perspective = DE-qSC-LM1

DE Scaling Analysis for the ¢-SC with LM1

CS via LM1 DE

LM1 decoding succeeds w.h.p. when error probability (of the ¢-SC)

§ < (kfliﬁ with j > 2. In CS language, randomized ]
reconstruction with LM1 succeeds when sparsity no < il

®—1y/G-D "

| \

Remark

CS by LM1 with randomized reconstruction has an oversampling
ratio of e[In %] .

\
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Coding Perspective = DE-qSC-LM1

DE Scaling Analysis for the ¢-SC with LM2

LM2 decoding succeeds w.h.p. when error probability (of the g-SC)
§ < & with j > 3. In CS, randomized reconstruction with LM2

succeeds when nd < %.

CS using LM2 with randomized reconstruction has a constant
oversampling ratio of 6.
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High Rate Scaling Stopping Set Analysis  Scaling Law Analysis for Stopping Sets on the BEC

Scaling Law Analysis for Stopping Sets on the BEC

@ Stopping set is the set of nodes that decoding algorithm stops
making progress.

@ No stopping sets of size less than na implies decoding succeeds
with certainty when fraction of erasure 0 < «.

@ Based on the work on stopping sets analysis on BEC in
[ZVO05], we can show that there is a (j, k) LDPC code s.t.
decoding succeeds when § < e(k — 1) 7/U=2),

@ BEC model can not be applied to CS system.
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High Rate Scaling Stopping Set Analysis  Scaling Law Analysis for Stopping Sets on the ¢g-SC With LM1

Scaling Law Analysis for LM1 Stopping Sets

There is a (j, k)-regular LDPC code (j > 3) and a constant K such
that for all £ > K all g-SC error patterns of size né for
§ < e(k —1)7/U-2) can be recovered by LM1 (w.h.p as n — o).

o Idea of the proof:

o Combinatorial analysis
e Handle small stopping sets separately

CS with LM1 achieves uniform-in-probability reconstruction by
using a (j, k) code with an oversampling ratio of je=U=2/§=2/.
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Summary

Summary and Open Problems

@ Connections between coding and compressed sensing

e Apply verification based decoding alg’s to compressed sensing.

@ Analyze the scaling law of the MP decoding in the high rate
regime for both the BEC and ¢g-SC with LM1/2 decoding)

o LM2 achieves a constant oversampling ratio for randomized
reconstruction

@ Stopping set analysis for the BEC and ¢-SC (with LM1)
@ Open Questions

o Extension of this analysis to stopping set analysis with LM2
(Does it achieve linear scaling?)
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Summary

Thank you

Thank you
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