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Introduction Coding Connections

Motivation for This Work

Connections between coding and compressed sensing

Analyze CS systems with tools from coding theory

Analyze CS systems based on high rate scaling of LDPC codes
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Introduction Coding Connections

Compressed Sensing

Compressed sensing (CS) is a relatively new area of signal
processing and statistics that focuses on signal reconstruction
from a small number of linear (i.e. dot product) measurements

Use m dot-product samples to reconstruct a signal
The signal vector is x ∈ Rn

The m× n measurement matrix is Φ ∈ Rm×n

The length-m sample vector is y = Φx

Given y, the valid signal set is V(y) = {x′ ∈ Rn|Φx′ = y}
If m < n, then a unique solution is not possible
With prior knowledge, we try to choose a “good” solutions
If x is sparse (w.r.t. Hamming weight ‖·‖H), then

x̂ = arg min
x′∈V(y)

∥∥x′
∥∥

H
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Introduction Coding Connections

Compressed Sensing and Coding

Compressed Sensing

Signal: x ∈ Rn

sparse: ‖x‖H ≤ δn

Measurement matrix:
Φ ∈ Rm×n

Blind to nullspace of Φ

Sample vector: y = Φx

Dec: x̂ = arg min
x′:y=Φx′

‖x′‖H

|
|
|
|
|
|
|
|
|
|
|

Coding

Error pattern: e ∈ Fn

sparse: Pr(ei 6= 0) = δ

Parity-check matrix:
H ∈ Fm×n

Code is nullspace of H

Syndrome: s = He

Dec: ê = arg min
e′:s=He′

‖e′‖H
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Introduction Coding Connections

Analysis Tools and Reconstruction Measures

Compressed Sensing

Uniform reconstruction
(some Φ works form all x)

Uniform-in-probability (For
any x, random Φ works,
prob. in Φ)

Randomized reconstruction
(work w.h.p. for random x
and Φ, prob. in both x and Φ)

|
|
|
|
|
|
|
|
|
|
|

Tools from Coding

Stopping set analysis
ignoring false verification

Stopping set analysis
including false verification

Density evolution
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Introduction Compressed Sensing

Low-Density Parity-Check (LDPC) Codes

Linear codes with sparse parity-check matrix H
Codes over GF(q) defined by Hij ∈GF(q) s.t.

∑
j Hijxj = 0

Bipartite graph representation
An edge connects check node i to symbol node j if Hij 6= 0
Irregular codes defined by degree distributions λ(x), ρ(x)

Message Passing (MP) Decoding
Nodes iteratively pass symbol estimates to one another
Density evolution (DE) analysis and stopping set analysis

For (3,6) codes, the DE threshold is 43%, SS threshold is 1.8%
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Introduction Compressed Sensing

Verification Based Decoding Algorithm

Idea: Verify messages which are correct w.h.p.
Algorithms by Luby and Mitzenmacher (Allerton02, IT05)

1st Alg. (LM1): Verify all symbols if check sums to zero
2nd Alg. (LM2): LM1 + Verify if two msgs match at symbol

False verification: event that message verified but not correct
Assumption that the weighted sum of non-zero coefficients does
not equal to zero
can be avoided by assumption or by randomizing Φ

These algorithms can be used in CS system over real numbers
since the assumption “verified symbols are correct w.h.p.” holds
equally well over the GF(q) with large q and the real numbers.
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Introduction Compressed Sensing

CS Reconstruction via LM1

Example
Let Φ be the following parity-check matrix H

1 1 0 0 1 0 0 0
1 0 1 0 0 1 0 0
1 0 0 1 0 0 1 0
0 1 0 0 1 0 0 1
0 0 1 0 1 1 0 0
0 0 0 1 0 1 1 1


Note: We choose edge weights of one for simplicity
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Introduction Compressed Sensing

CS Reconstruction via LM1

Signal (circles) measurement (squares) model
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Introduction Compressed Sensing

CS Reconstruction via LM1

7 0034 4

With measurements exposed
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Introduction Compressed Sensing

CS Reconstruction via LM1

7 0034

0 0 0 0 0 0 0 0

4

All-zero signal assumed for decoding
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Introduction Compressed Sensing

CS Reconstruction via LM1

7 0034

0 0 0 0 0 0 0 0

4

Assume all satisfied checks are correct
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Introduction Compressed Sensing

CS Reconstruction via LM1

4

0 0 0 0 0 0 0 0

4 73

Remove edges and fix values
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Introduction Compressed Sensing

CS Reconstruction via LM1

4

0 0 0 0 0 0 0 0

4 73

Use degree-1 check to determine a variable
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Introduction Compressed Sensing

CS Reconstruction via LM1

4

0 0 3 0 0 0 0 0

4 7

This value can be removed from all equations
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Introduction Compressed Sensing

CS Reconstruction via LM1

4

0 0 3 0 4 0 0 0

4 7

Another variable is determined
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CS Reconstruction via LM1

4

0 0 3 0 4 0 0 0
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This value can be removed from all equations
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Introduction Compressed Sensing

CS Reconstruction via LM1

00 3 0 4 0 0 0

44

Final value is determined in two ways
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Introduction Compressed Sensing

CS Reconstruction via LM1

00 3 0 4 0 0 0

Reconstruction is successful
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Coding Perspective DE-BEC

Introduction to DE and Scaling Law Analysis

Given a code ensemble, DE tracks the evolution of the
distribution of the message on the graph as decoding proceeds.
DE gives the threshold below which the decoding succeeds
w.h.p. as the number of iterations goes to infinity.
Consider a sequence of ensembles, scaling law analysis shows
how the thresholds scale with the parameters of the ensembles.

Example 1:
A (j,k) code with cE check nodes can recover E erasures w.h.p. (the
number of check nodes scales linearly with the number of erasures).

Example 2:
A (j,k) code with LM2 decoding can recover a K-sparse signal with
only cK measurements for randomized reconstruction.
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Coding Perspective DE-BEC

An Example for Scaling Analysis

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Unscaled DE equation:y = δ0(1− (1− x)5)2

What’s the DE curve like when rate→ 1, or, fix j and let k→∞?
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Coding Perspective DE-BEC

An Example for Scaling Law Analysis
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δ = δ0/2, k = 2k0 δ = δ0/4, k = 4k0 δ = δ0/8, k = 8k0
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scaled by x← x/2 scaled by x← x/4 scaled by x← x/8
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Coding Perspective DE-BEC

DE Scaling Analysis for the BEC

Consider the sequence of (j,k) regular ensemble.
Fixed j, as k→∞⇒ rate→ 1
αj , sup

{
α : λ

(
1− e−αjx) ≤ x, for x ∈ (0,1]

}
Let δ = αj

(k−1) , the iterative decoding fails (w.h.p as n→∞) for
all k if α > αj.
Conversely, if α < αj, then ∃K <∞ such that iterative decoding
succeeds (w.h.p as n→∞) for all k ≥ K.

Remark
ᾱj means the fraction of the capacity that can be achieved. For (j,k)
regular LDPC codes, α2 = 0.5, α3 ≈ 0.8184, and α4 ≈ 0.7722.

Zhang and Pfister (Texas A&M) High Rate Analysis of Iterative Decoding Allerton 2008 17 / 26



Coding Perspective DE-qSC-LM1
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Coding Perspective DE-qSC-LM1

DE Scaling Analysis for the q-SC with LM1

CS via LM1 DE
LM1 decoding succeeds w.h.p. when error probability (of the q-SC)
δ ≤ ᾱj

(k−1)j/(j−1) with j ≥ 2. In CS language, randomized

reconstruction with LM1 succeeds when sparsity nδ ≤ nᾱj
(k−1)j/(j−1) .

Remark
CS by LM1 with randomized reconstruction has an oversampling
ratio of edln 1

δ e.
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Coding Perspective DE-qSC-LM1

DE Scaling Analysis for the q-SC with LM2

CS via LM2 DE
LM2 decoding succeeds w.h.p. when error probability (of the q-SC)
δ ≤ j

6k with j ≥ 3. In CS, randomized reconstruction with LM2
succeeds when nδ ≤ nj

6k .

Remark
CS using LM2 with randomized reconstruction has a constant
oversampling ratio of 6.
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High Rate Scaling Stopping Set Analysis Scaling Law Analysis for Stopping Sets on the BEC
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High Rate Scaling Stopping Set Analysis Scaling Law Analysis for Stopping Sets on the BEC

Scaling Law Analysis for Stopping Sets on the BEC

Stopping set is the set of nodes that decoding algorithm stops
making progress.

No stopping sets of size less than nα implies decoding succeeds
with certainty when fraction of erasure δ ≤ α.

Based on the work on stopping sets analysis on BEC in
[ZVO05], we can show that there is a (j,k) LDPC code s.t.
decoding succeeds when δ < e(k− 1)−j/(j−2).

BEC model can not be applied to CS system.
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High Rate Scaling Stopping Set Analysis Scaling Law Analysis for Stopping Sets on the q-SC With LM1

Scaling Law Analysis for LM1 Stopping Sets

CS via LM1 SS
There is a (j,k)-regular LDPC code (j ≥ 3) and a constant K such
that for all k ≥ K all q-SC error patterns of size nδ for
δ < e(k− 1)−j/(j−2) can be recovered by LM1 (w.h.p as n→∞).

Idea of the proof:
Combinatorial analysis
Handle small stopping sets separately

Example
CS with LM1 achieves uniform-in-probability reconstruction by
using a (j,k) code with an oversampling ratio of je−(j−2)/jδ−2/j.
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Summary

Summary and Open Problems

Connections between coding and compressed sensing
Apply verification based decoding alg’s to compressed sensing.

Analyze the scaling law of the MP decoding in the high rate
regime for both the BEC and q-SC with LM1/2 decoding)

LM2 achieves a constant oversampling ratio for randomized
reconstruction

Stopping set analysis for the BEC and q-SC (with LM1)

Open Questions

Extension of this analysis to stopping set analysis with LM2
(Does it achieve linear scaling?)
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Summary

Thank you

Thank you
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