Iterative Decoding of High Rate LDPC Codes With Applications in Compressed Sensing

Fan Zhang and Henry D. Pfister

Texas A&M University College Station

Allerton Conference 2008 University of Illinois at Urbana-Champaign September 23, 2008

Zhang and Pfister (Texas A&M) High Rate Analysis of Iterative Decoding

Allerton 2008 1 / 26

Outline

Introduction

- Compressed Sensing and Connections with Coding
- Low-Density Parity-Check (LDPC) Codes
- Bigh Rate Scaling of Density Evolution
 - DE Scaling Analysis for the BEC
 - DE Scaling Analysis for the *q*-SC
- High Rate Scaling Stopping Set Analysis
 - Scaling Law Analysis for Stopping Sets on the BEC
 - Scaling Law Analysis for Stopping Sets on the *q*-SC With LM1

Summary and Open Problems

Outline

Introduction

• Compressed Sensing and Connections with Coding

• Low-Density Parity-Check (LDPC) Codes

High Rate Scaling of Density Evolution
 DE Scaling Analysis for the BEC

• DE Scaling Analysis for the *q*-SC

High Rate Scaling Stopping Set Analysis

- Scaling Law Analysis for Stopping Sets on the BEC
- Scaling Law Analysis for Stopping Sets on the q-SC With LM1

Summary and Open Problems

・ロト ・同ト ・ヨト ・ヨ

Motivation for This Work

- Connections between coding and compressed sensing
- Analyze CS systems with tools from coding theory
- Analyze CS systems based on high rate scaling of LDPC codes

Compressed Sensing

- Compressed sensing (CS) is a relatively new area of signal processing and statistics that focuses on signal reconstruction from a small number of linear (i.e. dot product) measurements
- Use m dot-product samples to reconstruct a signal
 - The signal vector is $x \in \mathbb{R}^n$
 - The m imes n measurement matrix is $\Phi \in \mathbb{R}^{m imes n}$
 - The length-*m* sample vector is $y = \Phi x$
- Given y, the valid signal set is $V(y) = \{x' \in \mathbb{R}^n | \Phi x' = y\}$
 - If m < n, then a unique solution is not possible
 - With prior knowledge, we try to choose a "good" solutions
 - If x is sparse (w.r.t. Hamming weight $\|\cdot\|_H$), then

$$\hat{x} = \arg\min_{x' \in V(y)} \left\|x'\right\|_{H}$$

・ロト ・ 厚 ト ・ ヨ ト ・ ヨ

Compressed Sensing and Coding

Compressed Sensing

- Signal: $x \in \mathbb{R}^n$
 - sparse: $\|x\|_H \leq \delta n$
- Measurement matrix: $\Phi \in \mathbb{R}^{m \times n}$
 - Blind to nullspace of Φ
- Sample vector: $y = \Phi x$

• Dec:
$$\hat{x} = \arg\min_{x': y = \Phi x'} \|x'\|_H$$

Coding

- Error pattern: $e \in F^n$
 - sparse: $\Pr(e_i \neq 0) = \delta$
- Parity-check matrix: $H \in F^{m imes n}$
 - Code is nullspace of *H*

イロト イポト イヨト イヨト

- Syndrome: s = He
- Dec: $\hat{e} = \arg\min_{e':s=He'} \|e'\|_H$

Analysis Tools and Reconstruction Measures

Compressed Sensing

- Uniform reconstruction (some Φ works form all x)
- Uniform-in-probability (For any *x*, random Φ works, prob. in Φ)
- Randomized reconstruction (work w.h.p. for random x and Φ, prob. in both x and Φ)

Tools from Coding

- Stopping set analysis ignoring false verification
- Stopping set analysis including false verification
- Density evolution

Outline

Introduction

- Compressed Sensing and Connections with Coding
- Low-Density Parity-Check (LDPC) Codes
- High Rate Scaling of Density Evolution
 - DE Scaling Analysis for the BEC
 - DE Scaling Analysis for the *q*-SC
- High Rate Scaling Stopping Set Analysis
 - Scaling Law Analysis for Stopping Sets on the BEC
 - Scaling Law Analysis for Stopping Sets on the q-SC With LM1

Summary and Open Problems

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Low-Density Parity-Check (LDPC) Codes

- $\bullet\,$ Linear codes with sparse parity-check matrix H
 - Codes over GF(q) defined by $H_{ij} \in GF(q)$ s.t. $\sum_{j} H_{ij}x_j = 0$
- Bipartite graph representation
 - An edge connects check node i to symbol node j if $H_{ij}
 eq 0$
 - Irregular codes defined by degree distributions $\lambda(\mathbf{x}), \rho(\mathbf{x})$
- Message Passing (MP) Decoding
 - Nodes iteratively pass symbol estimates to one another
 - Density evolution (DE) analysis and stopping set analysis
 - For (3,6) codes, the DE threshold is 43%, SS threshold is 1.8%

<ロト < 同ト < 回ト < 回ト = 三日

Verification Based Decoding Algorithm

- Idea: Verify messages which are correct w.h.p.
- Algorithms by Luby and Mitzenmacher (Allerton02, IT05)
 - 1st Alg. (LM1): Verify all symbols if check sums to zero
 - 2nd Alg. (LM2): LM1 + Verify if two msgs match at symbol
- False verification: event that message verified but not correct
 - Assumption that the weighted sum of non-zero coefficients does not equal to zero
 - can be avoided by assumption or by randomizing Φ
- These algorithms can be used in CS system over real numbers since the assumption "verified symbols are correct w.h.p." holds equally well over the GF(q) with large q and the real numbers.

・ロト ・ 厚 ト ・ ヨ ト ・ ヨ

Example

Let Φ be the following parity-check matrix H

1	1	0	0	1	0	0	0]
1	0	1	0	0	1	0	0
1	0	0	1	0	0	1	0
0	1	0	0	1	0	0	1
0	0	1	0	1	1	0	0
0	0	0	1	0	1	1	1

Note: We choose edge weights of one for simplicity

Introduction Compress

Compressed Sensing

CS Reconstruction via LM1

Signal (circles) measurement (squares) model

Zhang and Pfister (Texas A&M)

High Rate Analysis of Iterative Decoding

Allerton 2008 12 / 26

ヘロト ヘ戸ト ヘヨト ヘヨ

Introduction Compress

Compressed Sensing

CS Reconstruction via LM1

With measurements exposed

Zhang and Pfister (Texas A&M)

High Rate Analysis of Iterative Decoding

Allerton 2008 12 / 26

(日) (同) (日) (日) (日)

Compressed Sensing

CS Reconstruction via LM1

All-zero signal assumed for decoding

э

イロト イ押ト イヨト イヨト

Compressed Sensing

CS Reconstruction via LM1

Assume all satisfied checks are correct

Zhang and Pfister (Texas A&M)

High Rate Analysis of Iterative Decoding

Allerton 2008

Э

イロト イ理ト イヨト イヨト

12/26

Remove edges and fix values

Zhang and Pfister (Texas A&M)

High Rate Analysis of Iterative Decoding

Allerton 2008 12/26

Use degree-1 check to determine a variable

Zhang and Pfister (Texas A&M)

High Rate Analysis of Iterative Decoding

Allerton 2008 12/26

• • • • • • • • •

This value can be removed from all equations

Zhang and Pfister (Texas A&M)

High Rate Analysis of Iterative Decoding

Allerton 2008 12/26

(日)

Another variable is determined

Zhang and Pfister (Texas A&M)

High Rate Analysis of Iterative Decoding

ъ Allerton 2008 12/26

This value can be removed from all equations

Zhang and Pfister (Texas A&M)

High Rate Analysis of Iterative Decoding

Allerton 2008 12/26

< 口 > < 同

Compressed Sensing

CS Reconstruction via LM1

Final value is determined in two ways

Zhang and Pfister (Texas A&M)

High Rate Analysis of Iterative Decoding

Allerton 2008 12 / 26

Reconstruction is successful

Zhang and Pfister (Texas A&M)

High Rate Analysis of Iterative Decoding

Allerton 2008 12 / 26

Outline

Introduction

- Compressed Sensing and Connections with Coding
- Low-Density Parity-Check (LDPC) Codes

High Rate Scaling of Density Evolution DE Scaling Analysis for the BEC

- DE Scaling Analysis for the *q*-SC
- High Rate Scaling Stopping Set Analysis
 - Scaling Law Analysis for Stopping Sets on the BEC
 - Scaling Law Analysis for Stopping Sets on the q-SC With LM1

Summary and Open Problems

Introduction to DE and Scaling Law Analysis

- Given a code ensemble, DE tracks the evolution of the distribution of the message on the graph as decoding proceeds.
- DE gives the threshold below which the decoding succeeds w.h.p. as the number of iterations goes to infinity.
- Consider a sequence of ensembles, scaling law analysis shows how the thresholds scale with the parameters of the ensembles.

Example 1:

A (j, k) code with *cE* check nodes can recover *E* erasures w.h.p. (the number of check nodes scales linearly with the number of erasures).

Example 2:

A (j, k) code with LM2 decoding can recover a K-sparse signal with only cK measurements for randomized reconstruction.

An Example for Scaling Analysis

An Example for Scaling Law Analysis

э

イロト イポト イヨト イヨト

DE Scaling Analysis for the BEC

- Consider the sequence of (j, k) regular ensemble.
- Fixed j, as $k \to \infty \Rightarrow \text{rate} \to 1$
- $\overline{\alpha}_{j} \triangleq \sup \left\{ \alpha : \lambda \left(1 e^{-\alpha j x} \right) \leq x, \text{ for } x \in (0, 1] \right\}$
- Let $\delta = \frac{\alpha j}{(k-1)}$, the iterative decoding fails (w.h.p as $n \to \infty$) for all k if $\alpha > \overline{\alpha}_j$.
- Conversely, if $\alpha < \overline{\alpha}_j$, then $\exists K < \infty$ such that iterative decoding succeeds (w.h.p as $n \to \infty$) for all $k \ge K$.

Remark

 $\bar{\alpha}_j$ means the fraction of the capacity that can be achieved. For (j,k) regular LDPC codes, $\bar{\alpha}_2 = 0.5$, $\bar{\alpha}_3 \approx 0.8184$, and $\bar{\alpha}_4 \approx 0.7722$.

▲□▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨー ののの

Outline

Introduction

- Compressed Sensing and Connections with Coding
- Low-Density Parity-Check (LDPC) Codes

High Rate Scaling of Density Evolution DE Scaling Analysis for the BEC

• DE Scaling Analysis for the *q*-SC

High Rate Scaling Stopping Set Analysis

- Scaling Law Analysis for Stopping Sets on the BEC
- Scaling Law Analysis for Stopping Sets on the q-SC With LM1

Summary and Open Problems

DE Scaling Analysis for the q-SC with LM1

CS via LM1 DE

LM1 decoding succeeds w.h.p. when error probability (of the *q*-SC) $\delta \leq \frac{\bar{\alpha}_j}{(k-1)^{j/(j-1)}}$ with $j \geq 2$. In CS language, randomized

reconstruction with LM1 succeeds when sparsity $n\delta \leq rac{nar{lpha}_j}{(k-1)^{j/(j-1)}}.$

Remark

CS by LM1 with randomized reconstruction has an oversampling ratio of $e \lceil \ln \frac{1}{\delta} \rceil$.

DE Scaling Analysis for the q-SC with LM2

CS via LM2 DE

LM2 decoding succeeds w.h.p. when error probability (of the *q*-SC) $\delta \leq \frac{j}{6k}$ with $j \geq 3$. In CS, randomized reconstruction with LM2 succeeds when $n\delta \leq \frac{nj}{6k}$.

Remark

CS using LM2 with randomized reconstruction has a constant oversampling ratio of 6.

Zhang and Pfister (Texas A&M) High Rate Analysis of Iterative Decoding

・ロト ・ 厚 ト ・ ヨ ト ・ ヨ

Outline

1 Introduction

- Compressed Sensing and Connections with Coding
- Low-Density Parity-Check (LDPC) Codes
- Density Evolution
 - DE Scaling Analysis for the BEC
 - DE Scaling Analysis for the *q*-SC
- Bigh Rate Scaling Stopping Set Analysis
 Scaling Law Analysis for Stopping Sets on the BEC
 Scaling Law Analysis for Stopping Sets on the q-SC With LM1

Summary and Open Problems

Scaling Law Analysis for Stopping Sets on the BEC

- Stopping set is the set of nodes that decoding algorithm stops making progress.
- No stopping sets of size less than $n\alpha$ implies decoding succeeds with certainty when fraction of erasure $\delta \leq \alpha$.
- Based on the work on stopping sets analysis on BEC in [ZVO05], we can show that there is a (j,k) LDPC code s.t. decoding succeeds when $\delta < e(k-1)^{-j/(j-2)}$.
- BEC model can not be applied to CS system.

・ロト ・ 厚 ト ・ ヨ ト ・ ヨ

Outline

Introduction

- Compressed Sensing and Connections with Coding
- Low-Density Parity-Check (LDPC) Codes

2 High Rate Scaling of Density Evolution

- DE Scaling Analysis for the BEC
- DE Scaling Analysis for the *q*-SC

High Rate Scaling Stopping Set Analysis
Scaling Law Analysis for Stopping Sets on the BEC

• Scaling Law Analysis for Stopping Sets on the q-SC With LM1

Summary and Open Problems

Scaling Law Analysis for LM1 Stopping Sets

CS via LM1 SS

There is a (j,k)-regular LDPC code $(j \ge 3)$ and a constant K such that for all $k \ge K$ all q-SC error patterns of size $n\delta$ for $\delta < e(k-1)^{-j/(j-2)}$ can be recovered by LM1 (w.h.p as $n \to \infty$).

• Idea of the proof:

- Combinatorial analysis
- Handle small stopping sets separately

Example

CS with LM1 achieves uniform-in-probability reconstruction by using a (j, k) code with an oversampling ratio of $je^{-(j-2)/j}\delta^{-2/j}$.

Zhang and Pfister (Texas A&M)

・ロト ・ 厚 ト ・ ヨ ト ・ ヨ

Summary and Open Problems

- Connections between coding and compressed sensing
 - Apply verification based decoding alg's to compressed sensing.
- Analyze the scaling law of the MP decoding in the high rate regime for both the BEC and *q*-SC with LM1/2 decoding)
 - LM2 achieves a constant oversampling ratio for randomized reconstruction
- Stopping set analysis for the BEC and *q*-SC (with LM1)
- Open Questions
 - Extension of this analysis to stopping set analysis with LM2 (Does it achieve linear scaling?)

イロト 不得 トイヨト イヨト 三日

Summary

Thank you

Thank you

Zhang and Pfister (Texas A&M) High Rate Analysis of Iterative Decoding

< ∃⇒ Allerton 2008

э

< • • • • • •

26/26