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Capacity-Achieving Codes and Complexity

Low-Density Parity-Check (LDPC) Codes (1)
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Irregular ensembles defined by (λ, ρ) or degree distribution (d.d.)
I where λ(x) =

∑

i≥2

λix
i−1 and ρ(x) =

∑

i≥2

ρix
i−1

I λi and ρi are the fraction of edges attached to bit and parity-check
nodes of degree i

Capacity-achieving (c.a.) sequences of LDPC codes for the BEC
were introduced by Luby et al. and Shokrollahi.
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Capacity-Achieving Codes and Complexity

Low-Density Parity-Check (LDPC) Codes (2)

Consider any sequence {(n, λ, ρ)} of ensembles of LDPC codes

Let transmission occur over a binary erasure channel (BEC)

Assume the sequence achieves asymptotically (i.e., as the block
length n tends to infinity) a fraction 1 − ε of the channel capacity
with vanishing bit erasure probability

Theorem (1)
Under iterative message-passing decoding, the decoding complexity
per information bit of LDPC codes, without puncturing, grows at least
like log 1

ε
(i.e., the log of the inverse of the gap to capacity).

⇒ Decoding complexity is unbounded as the gap to capacity vanishes !
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Capacity-Achieving Codes and Complexity

Irregular Repeat-Accumulate (IRA) Codes
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Theorem (2)
Under iterative message-passing decoding, the decoding complexity
per information bit of systematic IRA (SIRA) codes grows at least like
log 1

ε
(i.e., the log of the inverse of the gap to capacity).

⇒ Decoding complexity is unbounded as the gap to capacity vanishes !
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Capacity-Achieving Codes and Complexity

Can These Results Be Improved ?

Question
What about non-systematic IRA codes whose information bits are
punctured before transmission ?

Henry Pfister and Igal Sason September 28, 2005 5 / 31



Capacity-Achieving Codes and Complexity

C.A. Codes for the BEC with Bounded Complexity (1)

Two sequences of non-systematic IRA (NSIRA) codes
which asymptotically achieve capacity on the BEC with bounded
complexity per information bit. [PSU, IEEE Trans. on IT, July 2005]

This new result was achieved by puncturing bits and thereby allowing a
sufficient number of state nodes in the Tanner graph.

Drawback
The convergence speed to the ultimate performance limit happens to
be quite slow in terms of the block length, so for small to moderate
block lengths, the new codes are not record breaking.
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Capacity-Achieving Codes and Complexity

C.A. Codes for the BEC with Bounded Complexity (2)

We are interested in new code constructions which are better than
the previous constructions in terms of convergence speed to
capacity as a function of the block length

From a practical point of view, it would also be nice to have
systematic codes

Goal
Construct systematic codes which approach capacity for moderate
block lengths and have bounded complexity per information bit
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Accumulate-Repeat-Accumulate Codes

Accumulate-Repeat-Accumulate (ARA) Codes

These codes are a generalization of the IRA codes which were
introduced by Abbasfar, Divsalar and Yao (ISIT 2004)

They have outstanding performance and simple linear-time
encoding

Capacity-Achieving Ensembles of ARA Codes?
We consider the suitability of systematic irregular ARA codes for the
construction of capacity-achieving ensembles for the BEC with
bounded complexity.

We also examine by computer simulations their performance for
moderate to large block length.
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Accumulate-Repeat-Accumulate Codes

Systematic ARA Codes: Encoder

R’(1)

k

Π
kL’(1)kL’(1)kk

Irr. Repeat
EncoderEncoder

Accumulate
Encoder
Irr. SPC

Encoder
Accumulate

kL’(1)
R’(1)

kL’(1)

Encoder diagram for the systematic ARA ensemble
I ”Accumulate" block is the standard rate-1 1

1+D encoder
I “Irr. Repeat" block repeats each bit a different number of times
I “Irr. SPC" block groups bit in different size blocks and outputs a

single parity bit for each block
I Block sizes are shown on each arrow for k information bits
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Accumulate-Repeat-Accumulate Codes

Systematic ARA Codes: Tanner Graph
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Shading is used to denote punctured or erased bits
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Accumulate-Repeat-Accumulate Codes

Graph Reduction for Code Bits

Any “code bit" node whose value is not erased by the BEC can be
removed from the graph by absorbing its value into its two
“parity-check 2" nodes.

When the value of a “code bit" node is erased, one can merge the
two “parity-check 2" nodes which are connected to it (by summing
the equations) and this removes the “code bit" from the graph.

Merging two “parity-check 2" nodes causes their degrees to be
summed.
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Accumulate-Repeat-Accumulate Codes

Graph Reduction for Systematic Bits

The “systematic bit" nodes in the Tanner graph of the systematic
ARA codes only provide channel information. Erasures make
them worthless, and they can be removed along with their
“parity-check 1" nodes without affecting the decoder.

When the value of a “systematic bit" node is observed (assume
the value is zero w.o.l.o.g.), it can be removed leaving a degree 2
parity-check.

Degree 2 parity-checks imply equality, and allow the connected
“punctured bit" nodes to be merged (summing their degrees).
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Accumulate-Repeat-Accumulate Codes

Example of Graph Reduction

Original Tanner graph
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Accumulate-Repeat-Accumulate Codes

Example of Graph Reduction

Add erasures from channel
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Accumulate-Repeat-Accumulate Codes

Example of Graph Reduction

Mark known code bits
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Accumulate-Repeat-Accumulate Codes

Example of Graph Reduction

Merge values into checks
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Accumulate-Repeat-Accumulate Codes

Example of Graph Reduction

Mark unknown code bits
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Accumulate-Repeat-Accumulate Codes

Example of Graph Reduction

Sum check equations to remove
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Accumulate-Repeat-Accumulate Codes

Example of Graph Reduction

Tanner graph after check node graph reduction
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Accumulate-Repeat-Accumulate Codes

Example of Graph Reduction

Mark known systematic bits
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Accumulate-Repeat-Accumulate Codes

Example of Graph Reduction

Merge values into checks
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Accumulate-Repeat-Accumulate Codes

Example of Graph Reduction

Mark unknown systematic bits
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Accumulate-Repeat-Accumulate Codes

Example of Graph Reduction

Remove unknown systematic bits
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Accumulate-Repeat-Accumulate Codes

Example of Graph Reduction

Mark degree 2 check nodes
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Accumulate-Repeat-Accumulate Codes

Example of Graph Reduction

Combine bit nodes to remove
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Accumulate-Repeat-Accumulate Codes

Example of Graph Reduction

Tanner graph of residual LDPC
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Accumulate-Repeat-Accumulate Codes

Density Evolution via Graph Reduction (1)

After the graph reduction, we are left with a standard LDPC ensemble
whose new edge-perspective degree distributions are given by

λ̃(x) =
L̃′(x)

L̃′(1)
=

p2λ(x)
(
1 − (1 − p)L(x)

)2

ρ̃(x) =
R̃′(x)

R̃′(1)
=

(1 − p)2ρ(x)
(
1 − pR(x)

)2
.

Swapping p with 1 − p exposes a nice symmetry between the
information and parity bits
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Accumulate-Repeat-Accumulate Codes

Density Evolution via Graph Reduction (2)

After the graph reduction, all the “systematic bit" nodes and “code bit"
nodes are removed.

The residual LDPC code effectively sees a BEC whose erasure
probability is 1

Therefore, the DE fixed point equation is given by

λ̃1−p

(
1 − ρ̃p(1 − x)

)
= x,

where

f̃p(x) ,
(1 − p)2 f (x)

(
1 −

p
∫ x

0 f (t)dt
∫ 1

0 f (t)dt

)2
.
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Symmetry Properties of Capacity-Achieving Codes

Symmetry Properties of Capacity-Achieving Codes

In the following, we discuss the symmetry between the bit and
check degree distributions of c.a. ensembles for the BEC.

First, we describe this relationship for LDPC codes, and then we
extend it to ARA codes.

The extension is based on combining the DE analysis of LDPC
codes with graph reduction analysis of ARA codes.
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Symmetry Properties of Capacity-Achieving Codes

Symmetry Properties of C.A. LDPC Codes (1)

The relationship between the bit d.d. and check d.d. of c.a. ensembles
of LDPC codes can be expressed in a number of ways. Starting with
the DE fixed point equation

pλ
(
1 − ρ(1 − x)

)
= x (1)

where p designates the erasure probability of the BEC, we see that
picking either the d.d. λ or ρ determines the other d.d. exactly.
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Symmetry Properties of Capacity-Achieving Codes

Symmetry Properties of C.A. LDPC Codes (2)

A few definitions are needed to discuss things properly. Following the
notation by Oswald and Shokrollahi (IT, Dec. 2002), let

P ,

{
f : f (x) =

∞∑

k=1

fkxk, x ∈ [0, 1], fk ≥ 0, f (0) = 0, f (1) = 1

}
.

Let the operator T transform invertible functions f : [0, 1] → [0, 1] to

T f (x) , 1 − f−1(1 − x)

Let A be the set of all functions f ∈ P such that T f ∈ P, i.e.,

A ,

{
f : f ∈ P , T f ∈ P

}
.
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Symmetry Properties of Capacity-Achieving Codes

Symmetry Properties of C.A. LDPC Codes (3)

The set of capacity-achieving LDPC codes for p = 1

The first step towards proving (λ, ρ) is a c.a. d.d. pair is showing that
λ ∈ A. For p = 1, this is almost the only step. So, we define the set of
d.d. pairs which satisfy the DE fixed point equation by

CLDPC ,

{
(λ, ρ) ∈ P × P | λ

(
1 − ρ(1 − x)

)
= x

}

=
{

(λ, ρ) | λ ∈ A, ρ = T λ
}

.

The symmetry property of c.a. LDPC codes with rate 0

(λ, ρ) ∈ CLDPC
¾symmetry- (ρ, λ) ∈ CLDPC

Henry Pfister and Igal Sason September 28, 2005 19 / 31



Symmetry Properties of Capacity-Achieving Codes

Symmetry Properties of C.A. ARA Codes

The set of capacity-achieving ARA degree distributions

CARA(p) ,

{
(λ, ρ) ∈ P × P | λ̃1−p

(
1 − ρ̃p(1 − x)

)
= x

}

Symmetry diagram for LDPC and ARA codes

(λ, ρ) ∈ CARA(p) ¾ ARA symmetry- (ρ, λ) ∈ CARA(1 − p)

(λ̃1−p, ρ̃p) ∈ CLDPC

GARA

?

6

¾LDPC symmetry - (ρ̃p, λ̃1−p) ∈ CLDPC

6

GARA

?

GARA is the graph reduction mapping from (λ, ρ) to (λ̃1−p, ρ̃p)
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Constructing Capacity-Achieving ARA Codes

Matched Functions

Definition
The functions f and g are said to be matched if

T f = g.

Note that T 2f = f for any function f , so

T f = g ⇐⇒ T g = f .

Example (Self-Matched Function)

f (x) =
(1 − b)x

1 − bx
0 < b < 1

is a function matched to itself (i.e., T f = f ), and it also has a
non-negative power series expansion around zero.
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Constructing Capacity-Achieving ARA Codes

Construction of C.A. ARA codes for the BEC (1)

The algorithm proceeds as follows:

Choose a function f ∈ A, and set the pair of tilted d.d. from the
edge perspective (after graph reduction) to

λ̃ = f , ρ̃ = T f .

Calculate the pair of tilted d.d. from the node perspective

L̃(x) =

∫ x
0 λ̃(t) dt

∫ 1
0 λ̃(t) dt

, R̃(x) =

∫ x
0 ρ̃(t) dt

∫ 1
0 ρ̃(t) dt

.
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Constructing Capacity-Achieving ARA Codes

Construction of C.A. ARA codes for the BEC (2)

Calculate the original d.d. pair w.r.t. the nodes (i.e., the original
d.d. pair before the graph reduction) by the equations

L(x) =
L̃(x)

p + (1 − p)L̃(x)
, R(x) =

R̃(x)

1 − p + pR̃(x)

Critical Point: Check if L and R have non-negative power series
expansions around zero.

If this is indeed the case, calculate d.d. pair w.r.t. the edges

λ(x) =
L′(x)

L′(1)
, ρ(x) =

R′(x)

R′(1)
.
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Constructing Capacity-Achieving ARA Codes

Construction of C.A. ARA codes for the BEC (3)

Construction of a capacity-achieving systematic ARA codes for the
BEC with bounded complexity per information bit

Recall the self-matched function, and let

λ̃(x) = ρ̃(x) =
(1 − b)x

1 − bx
0 < b < 1.

According to the algorithm, this gives

L(x) =
bx + ln(1 − bx)

p [b + ln(1 − b)] + (1 − p) [bx + ln(1 − bx)]

R(x) =
bx + ln(1 − bx)

(1 − p) [b + ln(1 − b)] + p [bx + ln(1 − bx)]
.
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Constructing Capacity-Achieving ARA Codes

Construction of C.A. ARA codes for the BEC (4)

Condition for power series expansions to be non-negative
It has been observed empirically, that the expansions of both L and R
are non-negative if and only if p satisfies

1

1 − 13−
√

61
9

(
b + ln(1 − b)

) ≤ p ≤ 1 −
1

1 − 13−
√

61
9

(
b + ln(1 − b)

)

and
b ∈ [b∗, 1), b∗ , W(−e−

25+
√

61
12 ) + 1 ≈ 0.9304

where W designates the Lambert W-function.
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Constructing Capacity-Achieving ARA Codes

Construction of C.A. ARA codes for the BEC (5)

Asymptotic behavior of the d.d. coefficients

Lk, Rk = O

(
bk

k ln2(k)

)
, λk, ρk = O

(
bk

ln2(k)

)
.

Advantage of this ensemble
We believe the performance advantage of this ensemble over other
c.a. ensembles is due to the exponential decay of the d.d. coefficients.

Encoding and decoding complexity per information bit
The number of edges in the Tanner graph is given by

χE, χD =
3 − p

1 − p
−

b2p

(1 − b)[b + ln(1 − b)]
.
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Constructing Capacity-Achieving NSIRA Codes

Construction of C.A. NSIRA codes for the BEC (1)

By graph reduction for NSIRA codes, the same algorithm for ARA
codes applies, except that for NSIRA codes λ̃ = λ.

Starting with the self-matched function, we find the fraction of
“information bit" nodes with degree i is given by

Li = −
bi

i

1

b + ln(1 − b)
, i = 2, 3, . . .

The non-negativity of the sequence {Li} holds when 0 < b < 1
(so b + ln(1 − b) < 0). Notice there is no constraint on p.

The d.d. R is the same as for the ARA ensemble
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Constructing Capacity-Achieving NSIRA Codes

Construction of C.A. NSIRA codes for the BEC (2)

Condition for non-negative power series expansions
Since L is always non-negative, only one condition must be satisfied. It
has been empirically observed that the expansion of R is non-negative
if and only if p satisfes

p ≤ 1 −
1

1 − 13−
√

61
9 [b + ln(1 − b)]

.

We note this is a strictly weaker condition than for the ARA ensemble.

Encoding and decoding complexity per information bit

χE = χD =
2

1 − p
−

b2

(1 − b) [b + ln(1 − b)]

Henry Pfister and Igal Sason September 28, 2005 28 / 31



Simulations

Computer Simulations (1)
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Simulations

Computer Simulations (2)
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Summary

Introduced capacity-achieving ARA codes for the BEC
I Systematic codes whose decoding complexity per information bit is

bounded as the gap to capacity vanishes
I Simulations show improved performance over other c.a. ensembles

Introduced density evolution via graph reduction
I Exposes natural symmetry between LDPC, ARA and NSIRA codes
I Allows c.a. LDPC codes to be mapped onto other code structures
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