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Graphical Models

I A graphical model provides a graphical representation of the local
dependence structure for a set of random variables

I Examples: factor graphs, bayesian networks, etc...

I Consider random variables (X1, X2, . . . , X4) ∈ X 4 and Y where:

P (x1, x2, x3, x4) , P(X1=x1, X2=x2, . . . , X4=x4|Y = y)

∝ f(x1, x2, x3, x4)
, f1(x1, x2)f2(x2, x3)f3(x3, x4)

I Given Y = y, this describes a Markov chain whose factor graph is

x1 f1 x2 f2 x3 f3 x4
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Inference via Marginalization

I Marginalizing out all variables except X1 gives

P(X1 = x1|Y = y) ∝ g1(x1) ,
∑

(x2,...,x4)∈X 3

f(x1, x2, x3, x4)

I Thus, the maximum a posteriori decision for X1 given Y = y is

x̂1 = arg max
x1∈X

∑
(x2,...,x4)∈X 3

f(x1, x2, x3, x4)

I In general, this requires roughly |X |4 operations

I Marginalization is efficient for tree-structured factor graphs

I For this Markov chain, roughly 5 |X |2 operations required

g1(x1) =
∑
x2∈X

f1(x1, x2)
∑
x3∈X

f2(x2, x3)
∑
x4∈X

f3(x3, x4)
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Sudoku: A Well-Known Example

2 5 1 9

8 2 3 6

3 6 7

1 6

5 4 1 9

2 7

9 3 8

2 8 4 7

1 9 7 6

rows are permutations of {1, 2, . . . , 9}

columns are permutations of {1, 2, . . . , 9}
subblocks are permutations of {1, 2, . . . , 9}

x11 x12 x13 x14 x15 x16 x17 x18 x19

x21 x22 x23 x24 x25 x26 x27 x28 x29

x31 x32 x33 x34 x35 x36 x37 x38 x39

x41 x42 x43 x44 x45 x46 x47 x48 x49

x51 x52 x53 x54 x55 x56 x57 x58 x59

x61 x62 x63 x64 x65 x66 x67 x68 x69

x71 x72 x73 x74 x75 x76 x77 x78 x79

x81 x82 x83 x84 x85 x86 x87 x88 x89

x91 x92 x93 x94 x95 x96 x97 x98 x99

implied factor graph has
81 variable and 27 factor nodes

f(x) =

(
9∏
i=1

fσ(xi∗)

) 9∏
j=1

fσ(x∗j)

( 9∏
k=1

fσ(xB(k))

) ∏
(i,j)∈O

I(xij = yij)
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Solving Sudoku via Marginalization

I Consider any constraint satisfaction problem with erased entries

I One can write f(x) as the product of indicator functions

I Some factors force x to be valid (i.e., satisfy constraints)

I Other factors force x to be compatible with observed values

I Summing over x counts the # of valid compatible sequences

I Marginalization allows uniform sampling from valid compatible set

I Sample x′1 ∼ g1(·), fix x1 = x′1, sample x′2 ∼ g2(·|x1), etc...

I For Sudoku, this always works because only one solution!

I Low complexity if factor graph forms a tree

I If not a tree, low-complexity approximation sometimes possible

I But, in general, marginalization is #P-complete

I Enough fun and games, how about some engineering problems!
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Point-to-Point Communication

I Channel Model

I Transition probability: PY |X(y|x) for x ∈ X and y ∈ Y
I Transmit a length-n codeword x ∈ C ⊂ Xn

I Shannon Capacity

I Code rate: R , 1
n

log2 |C| (bits per channel use)

I As n→∞, reliable transmission iff R < C , maxp(x) I(X;Y )

I Example: the binary erasure channel BEC(ε)

I Bits sent perfectly (with prob. 1− ε) or erased (with prob. ε)

I Capacity: C = 1− ε = fraction unerased bits

I Roughly one info bit transmitted for each unerased reception
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Low-Density Parity-Check (LDPC) Codes

parity
checks

permutation

code bits

I Linear codes defined by xHT = 0 for all c.w. x ∈ C ⊂ {0, 1}n
I H is an r × n sparse parity-check matrix for the code

I Code bits and parity checks associated with cols/rows of H

I Factor graph: H is the biadjacency matrix for variable/factor nodes

I Ensemble defined by configuration model for random graphs

I Checks define factors: feven(xd1) = I(x1 ⊕ · · · ⊕ xd = 0)

I Let xF (a) be the x-subvector for the a-th check and

f(x1, . . . , xn) =

(
r∏

a=1

feven(xF (a))

)
︸ ︷︷ ︸

1C(xn
1 )

(
n∏

i=1

PY |X(yi|xi)

)
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Marginalization via Belief Propagation

x1

f1 f2

x2 x3 x4 x6

f3 f4

x5

µ
(1
)

1→
1

µ (1)1→
2

µ
(1
)

2
→

1

µ (1
)3→

1 µ
(1
)

4
→

2

µ (1
)6→

2

µ
(1
)

4
→

3

µ (1
)4→

4

µ
(1

)
5→

4

variable-to-factor message: µ
(`)
i→a(x)

factor-to-variable message: µ̂
(`)
a→i(x)

f(x1, x2, x3, x4, x5, x6) = f1(x1, x2, x3)f2(x1, x4, x6)f3(x4)f4(x4, x5)
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A Little History

Robert Gallager introduced LDPC codes in 1962 paper

Judea Pearl defined general belief-propagation in 1986 paper
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Simple Message-Passing Decoding for the BEC

I Constraint nodes define the valid patterns

I Circles represent a single value shared by factors

I Squares assert attached variables sum to 0 mod 2

I Iterative decoding on the binary erasure channel (BEC)
I Messages passed in phases: bit-to-check and check-to-bit
I Each output message depends on other input messages
I Each message is either the correct value or an erasure

I Message passing rules for the BEC
I Bits pass an erasure only if all other inputs are erased
I Checks pass the correct value only if all other inputs are correct

?

?

?

?

1

0

1

0



Graphical Models and Inference: Breakthroughs and Insight from Spatial Coupling 12 / 41

Simple Message-Passing Decoding for the BEC

I Constraint nodes define the valid patterns

I Circles represent a single value shared by factors

I Squares assert attached variables sum to 0 mod 2

I Iterative decoding on the binary erasure channel (BEC)
I Messages passed in phases: bit-to-check and check-to-bit
I Each output message depends on other input messages
I Each message is either the correct value or an erasure

I Message passing rules for the BEC
I Bits pass an erasure only if all other inputs are erased
I Checks pass the correct value only if all other inputs are correct

1

?

?

1

1

0

?

?



Graphical Models and Inference: Breakthroughs and Insight from Spatial Coupling 13 / 41

Computation Graph and Density Evolution

x1 = ε

y1 = 1−(1−x1)3
x2 = εy21

y2 = 1−(1−x2)3
x̃3 = εy32

I Computation graph for a (3,4)-regular LDPC code
I Illustrates decoding from the perspective of a single bit-node

I For long random LDPC codes, the graph is typically a tree

I Allows density evolution to track message erasure probability

I If x/y are erasure prob. of bit/check output messages, then

εy

y

y

εy3

x

x

x

1− (1− x)3
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Density Evolution (DE) for LDPC Codes

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

x`

x
`+

1
(3,4) LDPC Code with ε = 0.6

Density evolution for a
(3, 4)-regular LDPC code:

x`+1 = ε
(
1− (1− x`)3

)2
Decoding Thresholds:

εBP ≈ 0.647

εMAP ≈ 0.746

εSh = 0.750

I Binary erasure channel (BEC) with erasure prob. ε

I DE tracks bit-to-check msg erasure rate x` after ` iterations

I Defines noise threshold εBP for the large system limit

I Easily computed numerically for given code ensemble
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Quick Review

I Factor Graphs

I Represent a combination of constraints and observations

I Marginalization enables inference

I Efficient approximate marginalization via belief propagation

I Low-Density Parity-Check Codes

I Low-complexity decoding via belief-propagation (BP)

I Density evolution computes noise threshold for BP decoding

I Historical Notes

I DE for LDPC on BEC introduced by LMSSS in 1997

I Extended to general channels by RU in 2001
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I Extended to general channels by RU in 2001



Graphical Models and Inference: Breakthroughs and Insight from Spatial Coupling 16 / 41

Outline

Graphical Models and LDPC Codes

Spatially-Coupled Graphical Models

Universality for Multiuser Scenarios

General Formulation of Threshold Saturation

Wyner-Ziv and Gelfand-Pinsker

Conclusions



Graphical Models and Inference: Breakthroughs and Insight from Spatial Coupling 17 / 41

What is Spatial Coupling?

2 5 1 9

8 2 3 6

3 6 7

1 6

5 4 1 9

2 7

9 3 8

2 8 4 7

1 9 7 6

.

1 3 5

2 9 4

8 7 6

6

7

8

5

3

1

4

9

2

4

6

5

3

1

8

7

9

2

2

3

5

8

6 3

1

6

4

7

4

3 8

4 9

6 2

9

4

3

7

2

1

I Spatially-Coupled Factor Graphs
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I Boundaries help variables to be recovered in an ordered fashion



Graphical Models and Inference: Breakthroughs and Insight from Spatial Coupling 17 / 41

What is Spatial Coupling?

2 5 1 9

8 2 3 6

3 6 7

1 6

5 4 1 9

2 7

9 3 8

2 8 4 7

1 9 7 6

.

1 3 5

2 9 4

8 7 6

6

7

8

5

3

1

4

9

2

4

6

5

3

1

8

7

9

2

2

3

5

8

6 3

1

6

4

7

4

3 8

4 9

6 2

9

4

3

7

2

1

I Spatially-Coupled Factor Graphs

I Variable nodes have a natural global orientation

I Boundaries help variables to be recovered in an ordered fashion



Graphical Models and Inference: Breakthroughs and Insight from Spatial Coupling 18 / 41

Spatially-Coupled LDPC Codes
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The Spatial Coupling KRU
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Density Evolution for the (l, r, L, w)-SC LDPC Ensemble
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Threshold Saturation via Spatial Coupling

I General Phenomenon (observed by Kudekar, Richardson, Urbanke)

I BP threshold of the spatially-coupled system converges to the MAP
threshold of the uncoupled system

I Can be proven rigorously in many cases!

I Connection to statistical physics

I Factor graph defines system of coupled particles

I Valid sequences are ordered crystalline structures

I Between BP and MAP threshold, system acts as supercooled liquid

I Correct answer (crystalline state) has minimum energy.

I Spontaneous crystallization (i.e., decoding) does not occur

http://www.youtube.com/watch?v=Xe8vJrIvDQM

http://www.youtube.com/watch?v=Xe8vJrIvDQM


Graphical Models and Inference: Breakthroughs and Insight from Spatial Coupling 21 / 41

Threshold Saturation via Spatial Coupling

I General Phenomenon (observed by Kudekar, Richardson, Urbanke)

I BP threshold of the spatially-coupled system converges to the MAP
threshold of the uncoupled system

I Can be proven rigorously in many cases!

I Connection to statistical physics

I Factor graph defines system of coupled particles

I Valid sequences are ordered crystalline structures

I Between BP and MAP threshold, system acts as supercooled liquid

I Correct answer (crystalline state) has minimum energy.

I Spontaneous crystallization (i.e., decoding) does not occur

http://www.youtube.com/watch?v=Xe8vJrIvDQM

http://www.youtube.com/watch?v=Xe8vJrIvDQM


Graphical Models and Inference: Breakthroughs and Insight from Spatial Coupling 21 / 41

Threshold Saturation via Spatial Coupling

I General Phenomenon (observed by Kudekar, Richardson, Urbanke)

I BP threshold of the spatially-coupled system converges to the MAP
threshold of the uncoupled system

I Can be proven rigorously in many cases!

I Connection to statistical physics

I Factor graph defines system of coupled particles

I Valid sequences are ordered crystalline structures

I Between BP and MAP threshold, system acts as supercooled liquid

I Correct answer (crystalline state) has minimum energy.

I Spontaneous crystallization (i.e., decoding) does not occur

http://www.youtube.com/watch?v=Xe8vJrIvDQM

http://www.youtube.com/watch?v=Xe8vJrIvDQM


Graphical Models and Inference: Breakthroughs and Insight from Spatial Coupling 22 / 41

Why is Spatial Coupling Important?

I Breakthroughs: first practical constructions of

I universal codes for binary-input memoryless channels [KRU12]

I information-theoretically optimal compressive sensing [DJM11]

I universal codes for Slepian-Wolf and MAC problems [YJNP11]

I codes → capacity with iterative hard-decision decoding [JNP12]

I codes → rate-distortion limit with iterative decoding [AMUV12]

I It allows rigorous proof in many cases

I Original proofs [KRU11/12] quite specific to LDPC codes

I Our proof is for increasing scalar/vector recursions [YJNP12/13]

I Spatial coupling as a proof technique [GMU13]

I For a large random factor graph, construct a coupled version

I Use DE to analyze BP decoding of coupled system

I Compare uncoupled MAP with coupled BP via interpolation
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Universality over Unknown Parameters

I The Achievable Channel Parameter Region (ACPR)

I For a sequence of coding schemes involving one or more parameters,
the parameter region where decoding succeeds in the limit

I In contrast, a capacity region is a rate region for fixed channels

I Properties

I For fixed encoders, the ACPR depends on the decoders

I For example, one has BP-ACPR ⊆ MAP-ACPR

I Often, ∃ unique maximal ACPR given by information theory

I Universality

I A sequence of encoding/decoding schemes is called universal if:
its ACPR equals the optimal ACPR

I Channel parameters are assumed unknown at the transmitter

I At the receiver, the channel parameters are easily estimated
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2-User Binary-Input Gaussian Multiple Access Channel

X1

X2

+

h1

h2

Z ∼ N (0, 1)

Y

I Fixed noise variance

I Real channel gains h1 and h2 not known at transmitter

I Each code has rate R

I MAC-ACPR denotes the information-theoretic optimal region
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A Little History: SC for Multiple-Access (MAC) Channels

I KK consider a binary-adder erasure channel (ISIT 2011)

I SC exhibits threshold saturation for the joint decoder

I YNPN consider the Gaussian MAC (ISIT/Allerton 2011)

I SC exhibits threshold saturation for the joint decoder

I For channel gains h1, h2 unknown at transmitter,
SC provides universality

I Others consider CDMA systems without coding

I TTK show SC improves BP demod of standard CDMA

I ST prove saturation for a SC protograph-style CDMA
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Spatially-Coupled Factor Graph for Joint Decoder

2L+ 1
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DE Performance of the Joint Decoder
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Proving Threshold Saturation: General Approach

Let f : X →X and g : X →X be strictly increasing C2 functions on
X = [0, 1]. The scalar recursion (from x(0)=1)

y(`+1) = g
(
x(`)
)

= 1− (1− x)3

x(`+1) = f
(
y(`+1)

)

= εx2
Ex. (3,4) LDPC

characterizes fixed point of the coupled recursion
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y(`+1) = g
(
x(`)
)
= 1− (1− x)3

x(`+1) = f
(
y(`+1)

)
= εx2

Ex. (3,4) LDPC

characterizes fixed point of the coupled recursion (x
(0)
i =1, i ∈ [N+w−1])

y
(`+1)
i = g

(
x
(`)
i

)
x
(`+1)
i =

N+w−1∑
j=1

Aj,i f

(
N∑
k=1

Aj,k y
(`+1)
k

)

[Aj,k] = A =
1

w


1 1 · · · 1 0 0 0
0 1 1

. . . 1 0 0
0 0

. . .
. . .

. . .
. . . 0

0 0 0 1 1 · · · 1
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The Potential Function of the Scalar Recursion
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(3,4) LDPC Ensemble

ε = 0.600

Let the potential function Us : X → R of the scalar recursion be

Us(x) ,
∫ x

0

(
z − f (g(z))

)
g′(z)dz.

Theorem (YJNP13) (arXiv:1309.7910)

lim
w→∞

lim
M→∞

max
i∈{1,...,M}

x
(∞)
i ≤ max

(
argmin

x∈X
Us(x)

)
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Compressive Sensing (CS)

I Basic Idea
I For a signal vector in u ∈ Rn

I Let Φ ∈ Rm×n be an m× n measurement matrix

I Reconstruct u from the sample vector v = Φu of length m < n

I Details are skipped as people here are quite familiar with CS!

I Brady et al. applied CS to spectral imaging and holography

I Calderbank et al. designed fast deterministic measurement matrices

I Carin et al. built Bayesian models for wavelet-sparse signals

I Gehm et al. applied to CS tracking problems

I Reeves et al. studied the limits of sparse support recovery

I Sapiro et al. considered CS of Gaussian mixture models

I My interest in CS is related to coding theory and factor graphs

I Introduced (with Kudekar) first application of spatial-coupling to CS

I The suboptimal decoders we analyzed showed moderate gains

I Under GABP decoding, spatial coupling is nearly optimal
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Spatially-Coupled (SC) Compressed Sensing

I Consider the compressive sensing reconstruction of a length-n signal

I whose entries are i.i.d. copies of a r.v. X with E[X2] <∞
I from δn linear measurements with i.i.d. noise Z ∼ N (0, σ2)

I Assume SC measurements with chain length N and width w

I The MSE x∗ for SC measurements with BP reconstruction

[DJM11][KMSSZ11] satisfies (asymptotically for M � w →∞)

x∗ ≤ max

{
argmin
x∈X

(
− x

σ2 + 1
δx

+ δ ln
(
1 +

x

δσ2

)
−2I

(
X;

√
1

σ2
X+Z

)
+2I

(
X;

√
1

σ2+x/δ
X+Z

))}

I RHS equals the replica method prediction for the optimal MSE
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History of Threshold Saturation Proofs

I the BEC by KRU in 2010

I Established many properties and tools used by later approaches

I the Curie-Weiss model in physics by HMU in 2010

I CDMA using a GA by TTK in 2011

I CDMA with outer code via GA by Truhachev in 2011

I compressive sensing using a GA by DJM in 2011

I regular codes on BMS channels by KRU in 2012

I increasing scalar and vector recursions by YJNP in 2012

I irregular LDPC codes on BMS channels by KYMP in 2012

I non-decreasing scalar recursions by KRU in 2012
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Rate-Distortion, Wyner-Ziv, and Gelfand-Pinsker

I Rate Distortion (RD) Problem

I What is the minimum data rate to transmit a source with
average distortion less than D?

I Wyner-Ziv (WZ) Problem

I WZ extends RD to the case of side-information at the decoder

I Gelfand-Pinsker (GP) Problem

I Channel coding with non-causal side-information at transmitter

I WZ and GP problems arise naturally in network information theory
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Belief-Propagation Guided Decimation (BPGD)

I RD-type problems are challenging for graph codes with BP decoding

I They require quantization of an arbitrary sequence to a codebook

I BP converges only if received sequence is “close” to a codeword

I But, vanishing fraction of total space is “close” to codewords

I When the received vector is not “close” to a codeword

I BP decoder typically converges to a non-informative fixed point

I There are exponentially many codewords with low distortion

I But, the decoder just cannot pick one

I The bias of a bit is defined to be |LLR| =
∣∣∣ln P (X=0)

P (X=1)

∣∣∣
I To force convergence, bits are sequentially “decimated”:

1. The BP decoder is run for a fixed number of iterations

2. A bit with large bias is sampled and “decimated”
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Once Again, Spatial-Coupling Comes to the Rescue

0 0

w − 1

N
N + w − 1

I Rate Distortion
I SC low-density generator matrix (LDGM) codes can

approach the RD limit with BPGD [AMUV12]

I Wyner-Ziv and Gelfand-Pinsker
I SC compound LDGM/LDPC codes can

approach the WZ/GP limits with BPGD [KVNP14]
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Summary

I Spatial coupling

I Powerful technique for designing and understanding factor graphs

I Related to the statistical physics of supercooled liquids

I General proof of threshold saturation for scalar recursions

I For many multiuser problems, it provides universality

I For RD/WZ/GP problems, it gives the only LDPC-based solutions
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Thanks for your attention
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