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Graphical Models

» A graphical model provides a graphical representation of the local
dependence structure for a set of random variables

> Examples: factor graphs, bayesian networks, etc...
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Graphical Models

» A graphical model provides a graphical representation of the local
dependence structure for a set of random variables

> Examples: factor graphs, bayesian networks, etc...

» Consider random variables (X1, Xo,...,X,) € X* and Y where:

P(z1,22,23,74) 2 P(X1=121, X2=22,..., X4=34]Y = y)
f($1,$2,$3,$4)

fi(zy, 22) f2(z2, 73) f3(3, 74)

> K
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Graphical Models

» A graphical model provides a graphical representation of the local
dependence structure for a set of random variables

> Examples: factor graphs, bayesian networks, etc...

» Consider random variables (X1, Xo,...,X,) € X* and Y where:

P(z1,22,23,74) 2 P(X1=121, X2=22,..., X4=34]Y = y)
(

131,3027333,964)

> K

fi(x1, 22) fa(w2, 23) f3(x3, 24)

» Given Y = y, this describes a Markov chain whose factor graph is

OT-eH-0-F-6
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Inference via Marginalization

» Marginalizing out all variables except X; gives

P(X1 = 21|V = y) o ga(21) = Z f(@1, 22, 3, 24)
(z2,...,x4)EX3

» Thus, the maximum a posteriori decision for X; given Y =y is

%1 = arg max E f(x1, 20,73, 24)
r1EX P
(z2,...,mq)EX3

> In general, this requires roughly |X'|* operations
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Inference via Marginalization

» Marginalizing out all variables except X; gives

P(X1 = 21|V = y) o ga(21) = Z f(@1, 22, 3, 24)
(z2,...,x4)EX3

» Thus, the maximum a posteriori decision for X; given Y =y is

%1 = arg max E f(x1, 20,73, 24)
r1EX P
(z2,...,mq)EX3

> In general, this requires roughly |X'|* operations

» Marginalization is efficient for tree-structured factor graphs

» For this Markov chain, roughly 5|X|* operations required

gi@) = > filzr,m2) Y falra,23) Y fs(ws,xa)

ToEX r3EX Tl EX
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Sudoku: A Well-Known Example

8 3 6
3 6 7
1 6
5|4 119
2 7
9 3 8
2 8 4 7

1 9 7 6

rows are permutations of {1,2,...,9}
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Sudoku: A Well-Known Example

2 5 1 9
8 2 3

3 6 7
5|4 1

9 3 8
2 8 4

1 9 7 6

rows are permutations of {1,2,...,9}

columns are permutations of {1,2,..
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Sudoku: A Well-Known Example

2 5 1 9
8 2 3 6
3 6 7
1 6
5|4 119
2 7
9 3 8
2 8 4 7
1 9 7 6

rows are permutations of {1,2,...,9}
columns are permutations of {1,2,...,9}
subblocks are permutations of {1,2,...,9}
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Sudoku: A Well-Known Example

2 5 1 9 x11 |12 |13 |T14 | T15 | T16| 217 |18 |19

8 2 3 6 To1 | T2 | o3 | Toq | Tas | Tag | To7 |Tog |29
3 6 7 31|32 | L33 | L34 |L35|L36|L37(L38|L39

1 6 X471 | a2 | a3 | Taq | Ta5 | Tae | Ta7 | Ta8 | Tag

514 119 T51 |T52 |53 | Ts4 | Ts5 | Ts6 | T57 | T58 | T59
2 7 T61 | T2 |L63 | L6d |L65|L66 | L6T |L68 [L69

9 3 8 71| T72 | T73 | T74 | T75 | 76 | T77 | T78 | T79

2 8 4 7 Tg1 | Tg2 | T3 | T84 |85 |Tge | Ty7 | Teg | T89
1 9 7 6 T91|T92|T93 | T4 | T95 |T96 | T97 | T98 | T99

rows are permutations of {1,2,...,9} implied factor graph has

columns are permutations of {1,2,...,9} 81 variable and 27 factor nodes
subblocks are permutations of {1,2,...,9}

f@) = T]f @) | [ TT @) | [T fo@nm) | T Ty = i)
i=1 j=1 k=1

(i,5)€0

Graphical Models and Inference: Breakthroughs and Insight from Spatial Coupling



Solving Sudoku via Marginalization

» Consider any constraint satisfaction problem with erased entries
> One can write f(z) as the product of indicator functions
> Some factors force x to be valid (i.e., satisfy constraints)
> Other factors force z to be compatible with observed values

> Summing over z counts the # of valid compatible sequences
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Solving Sudoku via Marginalization

» Consider any constraint satisfaction problem with erased entries
> One can write f(z) as the product of indicator functions
> Some factors force x to be valid (i.e., satisfy constraints)
> Other factors force z to be compatible with observed values

> Summing over z counts the # of valid compatible sequences

» Marginalization allows uniform sampling from valid compatible set
> Sample =} ~ g1(-), fix x1 = z1, sample z5 ~ ga2(-|z1), etc...
> For Sudoku, this always works because only one solution!
> Low complexity if factor graph forms a tree
> If not a tree, low-complexity approximation sometimes possible

» But, in general, marginalization is #P-complete
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Solving Sudoku via Marginalization

» Consider any constraint satisfaction problem with erased entries

> One can write f(z) as the product of indicator functions
> Some factors force x to be valid (i.e., satisfy constraints)
> Other factors force z to be compatible with observed values

> Summing over z counts the # of valid compatible sequences

» Marginalization allows uniform sampling from valid compatible set
> Sample =} ~ g1(-), fix x1 = z1, sample z5 ~ ga2(-|z1), etc...
> For Sudoku, this always works because only one solution!

> Low complexity if factor graph forms a tree
> If not a tree, low-complexity approximation sometimes possible

» But, in general, marginalization is #P-complete

» Enough fun and games, how about some engineering problems!
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Point-to-Point Communication

» Channel Model

> Transition probability: Py|x(y|z) forz € X andy € Y
> Transmit a length-n codeword z € C C X"

» Shannon Capacity
» Code rate: R £ Llog, |C| (bits per channel use)

> As n — oo, reliable transmission iff R < C' £ max,,) [(X;Y)

» Example: the binary erasure channel BEC(¢)

> Bits sent perfectly (with prob. 1 —€) or erased (with prob. €)
» Capacity: C' =1 — e = fraction unerased bits

> Roughly one info bit transmitted for each unerased reception
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Low-Density Parity-Check (LDPC) Codes

ARARARAAR =™

l:::::IZ:Z:::IIIIIZ:Z:I:IIIZIZ:Z:I:IIIZIZ:Z:I33IIZ:Z:Z:IIIIIZ:Z:Z:IIIIIZ:Z permutation
I
checks

» Linear codes defined by xH? =0 for all cw. 2 € C C {0,1}"
> H is an r X n sparse parity-check matrix for the code

> Code bits and parity checks associated with cols/rows of H
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Low-Density Parity-Check (LDPC) Codes

ARARARAAR =™

l:::::IZ:Z:::IIIZIZ:Z:::IIIZIZ:Z:I:IIIZIZ:Z:IIIIIZ:Z:Z:IIIIIZ:Z:Z:IIIIIZ:Z permutation
I
checks

» Linear codes defined by xH? =0 for all cw. 2 € C C {0,1}"
> H is an r X n sparse parity-check matrix for the code

> Code bits and parity checks associated with cols/rows of H

» Factor graph: H is the biadjacency matrix for variable/factor nodes
» Ensemble defined by configuration model for random graphs
» Checks define factors: foven () =T1(z1 @ --- @ x4 = 0)
> Let xp(q) be the x-subvector for the a-th check and

flze,...,z0) = (H fcvcn(évma))) <H PY|X(Z/1‘|17¢)>

1=1

1c(z7)
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Marginalization via Belief Propagation

x1
S &
Ny ©
fi
SIARNC
" -

variable-to-factor message: uga(m)

factor-to-variable message: ﬂgfl}i(z)

(w1, 22,23, 24, %5, 36) = f1(x1, T2, 23) f2(@1, 4, T6) f3(24) fa(@s, T5)
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Marginalization via Belief Propagation
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variable-to-factor message: uga(m)

factor-to-variable message: ﬂgfl}i(z)

(w1, 22,23, 24, %5, 36) = f1(x1, T2, 23) f2(@1, 4, T6) f3(24) fa(@s, T5)
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A Little History

Robert Gallager

introduced LDPC codes in 1962 paper

1962 IRE TRANSACTIONS ON INFORMATION THEORY 21

Low-Density Parity-Check Codes”

R. G. GALLAGER{

Summary—A low-density parity-check code is a code specified
by a parity-check matrix with the following properties: each column
contains a small fixed numberj > 3 of I's and each row contains
a small fixed number & > j of Is. The typical minimum distance of
these codes increases linearly with block length for a fixed rate and
fixed j. When used with mazimum likelihood decoding on a suffi-
tly quiet binary-input symmetric chamnel, the typical prob-
ability of decoding error decreases exponentially with block length
for a fixed rate and fixed j.
A simple but nonoptimum _decoding scheme operating directly
from the channel a posteriori probabilities is described. Both the

defined general belief-propagation in 1986 paper

equations. We call the set of digits contained in o parity-
check equation o parity-check sct. For example, the
first parity-check set in Fig. 1 is the set of digits (1, 2, 3, 5).

The use of parity-check codes makes coding (as dis-
tinguished from decoding) relatively simple to implement.
Also, as Tlias [3] has shown, if o typical parity-check
code of long block length is used on a binary symmetric
channel, and if the code rate is between critical rate and
channel capacity, then the probability of decoding error

Fusion, Propagation, and Structuring in

Belief Networks*

Judea Pearl

Cognitive Systems Laboratory, Computer Science Department,
University of California, Los Angeles. CA 90024, U.S.A.

Recommended by Patrick Hayes

ABSTRACT

Belief networks are directed acyclic graphs in which the nodes represent propositions (or variables),
the arcs signify direct dependencies between the linked propositions, and the strengihs of these
dependencies are quaniified by conditional probabilites. A network of this sort can be used to
represent the generic knowledge of a domain expert, and it turns into a computational architecture if
the links are used not merely for storing facual knowledge but also for directing and activating the
data flow in the computaiions which manipulate this knowledge.
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Simple Message-Passing Decoding for the BEC

» Constraint nodes define the valid patterns
» Circles represent a single value shared by factors

» Squares assert attached variables sum to 0 mod 2

» lIterative decoding on the binary erasure channel (BEC)

> Messages passed in phases: bit-to-check and check-to-bit
» Each output message depends on other input messages
» Each message is either the correct value or an erasure

» Message passing rules for the BEC

> Bits pass an erasure only if all other inputs are erased
> Checks pass the correct value only if all other inputs are correct

? 1
? 1
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Simple Message-Passing Decoding for the BEC

» Constraint nodes define the valid patterns
» Circles represent a single value shared by factors

> Squares assert attached variables sum to 0 mod 2

> lterative decoding on the binary erasure channel (BEC)

> Messages passed in phases: bit-to-check and check-to-bit
> Each output message depends on other input messages
> Each message is either the correct value or an erasure

> Message passing rules for the BEC

> Bits pass an erasure only if all other inputs are erased
> Checks pass the correct value only if all other inputs are correct

1 1
7>Q—>1 O>D_m
? ?
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Computation Graph and Density Evolution

T3 =cys
O
Yo = 1—(1—x9)*
] [] [ ] 2
T = &Yy
@, @, @, @, @) @) @), @, @, E
Yy = 1*(1*{E1)3
[] [] [] [] [] [ ] (] [] (] [] (] [] (] [] (] [] (] []
Ty =€

» Computation graph for a (3,4)-regular LDPC code

Illustrates decoding from the perspective of a single bit-node

v

v

For long random LDPC codes, the graph is typically a tree

v

Allows density evolution to track message erasure probability

v

If z/y are erasure prob. of bit/check output messages, then
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Computation Graph and Density Evolution
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v

v

For long random LDPC codes, the graph is typically a tree

v

Allows density evolution to track message erasure probability

v

If z/y are erasure prob. of bit/check output messages, then
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Computation Graph and Density Evolution

Ty = syg
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» Computation graph for a (3,4)-regular LDPC code

Illustrates decoding from the perspective of a single bit-node

v

v

For long random LDPC codes, the graph is typically a tree

v

Allows density evolution to track message erasure probability

v

If z/y are erasure prob. of bit/check output messages, then
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Computation Graph and Density Evolution

T3 = €Yy
Q Y2 = 1—(1—12)2
- T - z9 = 0.526
@) @) @) @) @) @) @) @) @) y1:0936
[] [] [] [] [] [] [] L] [] L] [] L] [] L] [] L] (] L]
x, = 0.600

» Computation graph for a (3,4)-regular LDPC code

v

Illustrates decoding from the perspective of a single bit-node

v

For long random LDPC codes, the graph is typically a tree

v

Allows density evolution to track message erasure probability

v

If z/y are erasure prob. of bit/check output messages, then
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Computation Graph and Density Evolution
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» Computation graph for a (3,4)-regular LDPC code

v

Illustrates decoding from the perspective of a single bit-node

v

For long random LDPC codes, the graph is typically a tree
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Allows density evolution to track message erasure probability

v

If z/y are erasure prob. of bit/check output messages, then
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» Computation graph for a (3,4)-regular LDPC code

Illustrates decoding from the perspective of a single bit-node

v

v

For long random LDPC codes, the graph is typically a tree

v

Allows density evolution to track message erasure probability

v

If z/y are erasure prob. of bit/check output messages, then
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Density Evolution (DE) for LDPC Codes

(3,4) LDPC Code with e = 0.6

0.6 ‘ ‘ ‘ ‘ ‘ Density evolution for a
051 1 (3,4)-regular LDPC code:
2
0.4+ 4 XTyy1 =€ (1 - (1 — xg)?’)
.§ 0.3 8 Decoding Thresholds:
0.2F . eBP ~ 0.647
01l i eMAP ~ 0.746
et = 0.750
O | | | |

|
0 01 02 03 04 05 06
Ty

> Binary erasure channel (BEC) with erasure prob. ¢
» DE tracks bit-to-check msg erasure rate z, after £ iterations
» Defines noise threshold eB¥ for the large system limit

» Easily computed numerically for given code ensemble
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Quick Review

» Factor Graphs
> Represent a combination of constraints and observations
» Marginalization enables inference

» Efficient approximate marginalization via belief propagation
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Quick Review

» Factor Graphs
> Represent a combination of constraints and observations
» Marginalization enables inference

» Efficient approximate marginalization via belief propagation

» Low-Density Parity-Check Codes
> Low-complexity decoding via belief-propagation (BP)

> Density evolution computes noise threshold for BP decoding
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Quick Review

» Factor Graphs
> Represent a combination of constraints and observations
» Marginalization enables inference

» Efficient approximate marginalization via belief propagation

» Low-Density Parity-Check Codes
> Low-complexity decoding via belief-propagation (BP)

> Density evolution computes noise threshold for BP decoding

» Historical Notes
» DE for LDPC on BEC introduced by LMSSS in 1997
» Extended to general channels by RU in 2001
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Graphical Models and LDPC Codes
Spatially-Coupled Graphical Models
Universality for Multiuser Scenarios

General Formulation of Threshold Saturation
Wyner-Ziv and Gelfand-Pinsker

Conclusions
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What is Spatial Coupling?

2 5 1 9
8 2 3 6
3 6 7
1 6
514 119
2 7
9 3 8
2 8 4 7
1 7 6
Graphical Models and Inference
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What is Spatial Coupling?

615
7139
8l1]2
2 5 1 9 135 4 8
8 2 3 6 209 3] |6 7
3 6 4 sl7]e|1] [5]9
1 6 >
54 1]9 5 613
2 7 2 3 8
9 3 8 7 38
2 8| |4 7 6 712 T9
1 7l 16 1 4le] |2
9] |2
3]1
» Spatially-Coupled Factor Graphs 407

> Variable nodes have a natural global orientation

» Boundaries help variables to be recovered in an ordered fashion
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Spatially-Coupled LDPC Codes
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Spatially-Coupled LDPC Codes
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Spatially-Coupled LDPC Codes

» Historical Notes
» LDPC convolutional codes introduced by FZ in 1999
» Shown to have near optimal noise thresholds by LSZC in 2005

> (I,r, L, w) ensemble proven to achieve capacity by KRU in 2011

Graphical Models and Inference: Breakthroughs and Insight from Spatial Coupling




The Spatial Coupling KRU

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 2, FEBRUARY 2011 803

Threshold Saturation via Spatial Coupling: Why
Convolutional LDPC Ensembles Perform
So Well over the BEC

Shrinivas Kudekar, Member, IEEE, Thomas J. Richardson, Fellow, IEEE, and Riidiger L. Urbanke

[
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Density Evolution for the (I, r, L,w)-SC LDPC Ensemble

0.75
0.70
0.65
0.60
0.55
0.50
0.45
0.40
0.35
0.30
0.25
0.20
0.15
0.10
0.05

Message Erasure Probability

(3,4,16,3)-SC Ensemble with ¢ = 0.70

—1f —-10 —5 0 5 10 15
Spatial Position
1 w—1 w—1 r—1
1-=> " (1-=3" 20
i+j—k
w w
§=0 k=0
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r Iteration 1
|
—1 —10 -5 0 5 10 15
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Density Evolution for the (I, r, L,w)-SC LDPC Ensemble
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Density Evolution for the (I, r, L,w)-SC LDPC Ensemble
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r Iteration
—1 —10 -5 0 5 10 15
Spatial Position
1 w—1 w—1 r—1
4
1_*2: 1— E:Zi(-i-)j—k'
w w
§=0 k=0

Graphical Models and Inference: Breakthroughs and Insight from Spatial Coupling

20 / 4



Density Evolution for the (I, r, L,w)-SC LDPC Ensemble

(3,4,16,3)-SC Ensemble with ¢ = 0.70

0.75 ‘ ‘ ‘ ‘

070} Iteration 10 |
0.65| .
0.60|- .
0.55| .
0.50|- .
0.45| .
0.40| .
0.35| .
0.30| .
0.25| 9
0.20| .
0.15| .
0.10| .
0.05) .

Message Erasure Probability
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Density Evolution for the (I, r, L,w)-SC LDPC Ensemble

(3,4,16,3)-SC Ensemble with ¢ = 0.70

0.75 ‘ ‘ ‘ ‘

070} Iteration 50
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Density Evolution for the (I, r, L,w)-SC LDPC Ensemble

(3,4,16,3)-SC Ensemble with ¢ = 0.70
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Density Evolution for the (I, r, L,w)-SC LDPC Ensemble

(3,4,16,3)-SC Ensemble with ¢ = 0.70
0.75 ‘ ‘ ‘ ‘
070} Iteration 150
0.65| .
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Threshold Saturation via Spatial Coupling

» General Phenomenon (observed by Kudekar, Richardson, Urbanke)

> BP threshold of the spatially-coupled system converges to the MAP
threshold of the uncoupled system

» Can be proven rigorously in many cases!
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Graphical Models and Inference: Breakthroughs and Insight from Spatial Coupling

21 / 4


http://www.youtube.com/watch?v=Xe8vJrIvDQM

Threshold Saturation via Spatial Coupling

» General Phenomenon (observed by Kudekar, Richardson, Urbanke)

> BP threshold of the spatially-coupled system converges to the MAP
threshold of the uncoupled system

» Can be proven rigorously in many cases!

» Connection to statistical physics

> Factor graph defines system of coupled particles

» Valid sequences are ordered crystalline structures

> Between BP and MAP threshold, system acts as supercooled liquid

» Correct answer (crystalline state) has minimum energy.

> Spontaneous crystallization (i.e., decoding) does not occur

http://www.youtube.com/watch?v=Xe8vJrivDQM
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Why is Spatial Coupling Important?

» Breakthroughs: first practical constructions of

>

>

>

universal codes for binary-input memoryless channels [KRU12]
information-theoretically optimal compressive sensing [DJM11]
universal codes for Slepian-Wolf and MAC problems [YJNP11]
codes — capacity with iterative hard-decision decoding [JNP12]
codes — rate-distortion limit with iterative decoding [AMUV12]
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>
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>

universal codes for binary-input memoryless channels [KRU12]
information-theoretically optimal compressive sensing [DJM11]
universal codes for Slepian-Wolf and MAC problems [YJNP11]
codes — capacity with iterative hard-decision decoding [JNP12]
codes — rate-distortion limit with iterative decoding [AMUV12]

» It allows rigorous proof in many cases

>

>

Original proofs [KRU11/12] quite specific to LDPC codes

Our proof is for increasing scalar/vector recursions [YJNP12/13]
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Why is Spatial Coupling Important?

» Breakthroughs: first practical constructions of

>

>

>

>

>

universal codes for binary-input memoryless channels [KRU12]
information-theoretically optimal compressive sensing [DJM11]
universal codes for Slepian-Wolf and MAC problems [YJNP11]
codes — capacity with iterative hard-decision decoding [JNP12]
codes — rate-distortion limit with iterative decoding [AMUV12]

» It allows rigorous proof in many cases

>

>

Original proofs [KRU11/12] quite specific to LDPC codes

Our proof is for increasing scalar/vector recursions [YJNP12/13]

» Spatial coupling as a proof technique [GMU13]

>

>

>

For a large random factor graph, construct a coupled version
Use DE to analyze BP decoding of coupled system
Compare uncoupled MAP with coupled BP via interpolation
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Universality over Unknown Parameters

» The Achievable Channel Parameter Region (ACPR)

» For a sequence of coding schemes involving one or more parameters,
the parameter region where decoding succeeds in the limit

> In contrast, a capacity region is a rate region for fixed channels

2.2

1.8

1.6 -

(%]

141

1+ MAC-ACPR boundary B
for rate 1/2

0.8 | | | | | |
0.8 1 1.2 1.4 1.6 1.8 2 2.2

aq
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Universality over Unknown Parameters

» The Achievable Channel Parameter Region (ACPR)

» For a sequence of coding schemes involving one or more parameters,
the parameter region where decoding succeeds in the limit

> In contrast, a capacity region is a rate region for fixed channels

» Properties

» For fixed encoders, the ACPR depends on the decoders
> For example, one has BP-ACPR C MAP-ACPR
» Often, 3 unique maximal ACPR given by information theory
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Universality over Unknown Parameters

» The Achievable Channel Parameter Region (ACPR)

» For a sequence of coding schemes involving one or more parameters,
the parameter region where decoding succeeds in the limit

> In contrast, a capacity region is a rate region for fixed channels

» Properties

» For fixed encoders, the ACPR depends on the decoders
> For example, one has BP-ACPR C MAP-ACPR
» Often, 3 unique maximal ACPR given by information theory

» Universality

> A sequence of encoding/decoding schemes is called universal if:
its ACPR equals the optimal ACPR

> Channel parameters are assumed unknown at the transmitter

> At the receiver, the channel parameters are easily estimated
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2-User Binary-Input Gaussian Multiple Access Channel

Z ~N(0,1)
hy
X1

X
2 I

v

Fixed noise variance

v

Real channel gains hy and ho not known at transmitter
Each code has rate R

v

v

MAC-ACPR denotes the information-theoretic optimal region
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A Little History: SC for Multiple-Access (MAC) Channels

» KK consider a binary-adder erasure channel (ISIT 2011)

» SC exhibits threshold saturation for the joint decoder

» YNPN consider the Gaussian MAC (ISIT/Allerton 2011)

> SC exhibits threshold saturation for the joint decoder

> For channel gains hi, ho unknown at transmitter,
SC provides universality

» Others consider CDMA systems without coding

» TTK show SC improves BP demod of standard CDMA
> ST prove saturation for a SC protograph-style CDMA
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Spatially-Coupled Factor Graph for Joint Decoder
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Spatially-Coupled Factor Graph for Joint Decoder
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Spatially-Coupled Factor Graph for Joint Decoder
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ay = |hyl?

2.2

2.1

. MAC-ACPR
boundary for rate
0.9 1/
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DE Performance of the Joint Decoder

|hal?®
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DE Performance of the Joint Decoder

Lof BP-ACPR, LDPC(4,8)
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DE Performance of the Joint Decoder

Lof BP-ACPR, LDPC(4,8)
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Proving Threshold Saturation: General Approach

Let f: X =X and g: X — X be strictly increasing C? functions on
X =10,1]. The scalar recursion (from 2(®) =1)

Y+ — g (Zm)

2D = f (y<e+1))
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Proving Threshold Saturation: General Approach

Let f: X =X and g: X — X be strictly increasing C? functions on
X =10,1]. The scalar recursion (from 2(®) =1)

Y+ — g (I(z)> —1-(1—2)?

Ex. (3,4) LDPC
ZC(Z+1) = f (y(e+1)) = 51‘2

Graphical Models and Inference: Breakthroughs and Insight from Spatial Coupling



Proving Threshold Saturation: General Approach

Let f: X =X and g: X — X be strictly increasing C? functions on
X =10,1]. The scalar recursion (from 2(®) =1)

Y+ — g (I(z)> —1-(1—2)?

Ex. (3,4) LDPC
ZC(Z+1) = f (y(e+1)) = 51‘2

characterizes fixed point of the coupled recursion (xl(-o) =1,i € [N+w-1])

y(z+1) —g (:U(e))
N+w—1

/+1) Z Ay f (ZA (/+1)>

11 1 0 0 0

1for 1 " 1 00

Al =A4=010 0 - 0
00 0 1 1 1
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Proving Threshold Saturation: General Approach

Let f: X =X and g: X — X be strictly increasing C? functions on
X =10,1]. The scalar recursion (from 2(®) =1)

Y+ — g (I(z)> —1-(1—2)?

Ex. (3,4) LDPC
ZC(Z+1) = f (y(e+1)) = 51‘2

characterizes fixed point of the coupled recursion (2(®) =1)

YD) — g (m(a)

2D — AT f (A y(e+1))

11 1 0 0 0
1101 1 . 1 0 0
A‘@oo 0
00 0 1 1 1
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The Potential Function of the Scalar Recursion

(3,4) LDPC Ensemble
5 . T T T

4l o
—¢e = 0.600

Us(z;€)

0 | | | | | | | | |
01 02 03 04 05 06 07 08 09 1

x

Let the potential function Us: X — R of the scalar recursion be

i) 2 | (2 F(9(2)) g ()=,
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The Potential Function of the Scalar Recursion

(3,4) LDPC Ensemble
5 . T T T

— e =0.600
— e =0.625

Us(z;€)

0 | | | | | | | | |
01 02 03 04 05 06 07 08 09 1

x

Let the potential function Us: X — R of the scalar recursion be

o) 2 [ (= o) (e
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The Potential Function of the Scalar Recursion

(3,4) LDPC Ensemble

— & =10.600
—e=0.625
| |—e=0647

1072
5 T
e
© 30
5
SEPYS
1l
0 |
0.1

0.2

03 04 05 06 07 08 09 1
x

Let the potential function Us: X — R of the scalar recursion be

o) 2 [ (= o) (e
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The Potential Function of the Scalar Recursion

(3,4) LDPC Ensemble

1072
5 T T T
4l =
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—e=10625
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1] |
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T

Let the potential function Us: X — R of the scalar recursion be

o) 2 [ (= o) (e
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The Potential Function of the Scalar Recursion

(3,4) LDPC Ensemble

1072
5 T T T
4l -
—— & =0.600
——e=0.625
o 3 | |—e=0647
£ ——e=0.675
S o2 1 |—e=0.700
1L J
0 | | | | | | | | |

0.1 0.2 0.3 04 05 06 07 08 09 1
x

Let the potential function Us: X — R of the scalar recursion be
Uo) 2 [ (= L))o/ (0
0

Theorem (YJNP13) (arXiv:1309.7910)

lim lim max zgoo) < max (arg min US(T)>
w—00 M—o0ie{l,...,M} TeEX
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The Potential Function of the Scalar Recursion

(3,4) LDPC Ensemble
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Let the potential function Us: X — R of the scalar recursion be
Uo) 2 [ (= L))o/ ()
0

Theorem (YJNP13) (arXiv:1309.7910)
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The Potential Function of the Scalar Recursion

(3,4) LDPC Ensemble

1072
5 T T
4l
— e =0.600
—e=10.625
v 3 — = 0647
% —— e =0.675
5 ol ——&=0.700
e=0.725
1+ ---¢=0.746
0| I I | R SN D
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x

Let the potential function Us: X — R of the scalar recursion be
Uo) 2 [ (= L))o/ ()
0

Theorem (YJNP13) (arXiv:1309.7910)

lim lim max zgoo) < max (arg min US(T)>
w—00 M—o0ie{l,...,M} TeEX
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Compressive Sensing (CS)

» Basic ldea
> For a signal vector in u € R"
> Let ® € R™*™ be an m X n measurement matrix

» Reconstruct u from the sample vector v = ®u of length m < n
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Compressive Sensing (CS)

» Basic ldea

>

>

>

For a signal vector in u € R"
Let ® € R™*™ be an m X m measurement matrix

Reconstruct u from the sample vector v = ®u of length m < n

» Details are skipped as people here are quite familiar with CS!

>

>

>

Brady et al. applied CS to spectral imaging and holography
Calderbank et al. designed fast deterministic measurement matrices
Carin et al. built Bayesian models for wavelet-sparse signals

Gehm et al. applied to CS tracking problems

Reeves et al. studied the limits of sparse support recovery

Sapiro et al. considered CS of Gaussian mixture models
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Compressive Sensing (CS)

» Basic ldea

>

>

>

For a signal vector in u € R"
Let ® € R™*™ be an m X m measurement matrix

Reconstruct u from the sample vector v = ®u of length m < n

» Details are skipped as people here are quite familiar with CS!

>

>

>

Brady et al. applied CS to spectral imaging and holography
Calderbank et al. designed fast deterministic measurement matrices
Carin et al. built Bayesian models for wavelet-sparse signals

Gehm et al. applied to CS tracking problems

Reeves et al. studied the limits of sparse support recovery

Sapiro et al. considered CS of Gaussian mixture models

» My interest in CS is related to coding theory and factor graphs

>

>

>

Introduced (with Kudekar) first application of spatial-coupling to CS
The suboptimal decoders we analyzed showed moderate gains
Under GABP decoding, spatial coupling is nearly optimal
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Spatially-Coupled (SC) Compressed Sensing

» Consider the compressive sensing reconstruction of a length-n signal

> whose entries are i.i.d. copies of a r.v. X with E[X?] < oo
> from dn linear measurements with i.i.d. noise Z ~ N (0, %)

> Assume SC measurements with chain length N and width w

» The MSE z* for SC measurements with BP reconstruction
[DIM11][KMSSZ11] satisfies (asymptotically for M > w — o)

* < i x +61 ( )
T max < argmin| — ———— n
- .’IJgEX O'2+ do?

(o) (5 )

» RHS equals the replica method prediction for the optimal MSE
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History of Threshold Saturation Proofs

» the BEC by KRU in 2010
» Established many properties and tools used by later approaches
> the Curie-Weiss model in physics by HMU in 2010
» CDMA using a GA by TTK in 2011
» CDMA with outer code via GA by Truhachev in 2011
» compressive sensing using a GA by DJM in 2011
> regular codes on BMS channels by KRU in 2012
> increasing scalar and vector recursions by YJNP in 2012
» irregular LDPC codes on BMS channels by KYMP in 2012

» non-decreasing scalar recursions by KRU in 2012
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Rate-Distortion, Wyner-Ziv, and Gelfand-Pinsker

» Rate Distortion (RD) Problem

» What is the minimum data rate to transmit a source with
average distortion less than D?
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Rate-Distortion, Wyner-Ziv, and Gelfand-Pinsker

» Rate Distortion (RD) Problem

» What is the minimum data rate to transmit a source with
average distortion less than D?

> Wyner-Ziv (WZ) Problem

» WZ extends RD to the case of side-information at the decoder
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average distortion less than D?

> Wyner-Ziv (WZ) Problem

» WZ extends RD to the case of side-information at the decoder

» Gelfand-Pinsker (GP) Problem

> Channel coding with non-causal side-information at transmitter
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Rate-Distortion, Wyner-Ziv, and Gelfand-Pinsker

» Rate Distortion (RD) Problem

> What is the minimum data rate to transmit a source with

average distortion less than D?

> Wyner-Ziv (WZ) Problem

» WZ extends RD to the case of side-information at the decoder
» Gelfand-Pinsker (GP) Problem

> Channel coding with non-causal side-information at transmitter
» WZ and GP problems arise naturally in network information theory
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Belief-Propagation Guided Decimation (BPGD)

» RD-type problems are challenging for graph codes with BP decoding

> They require quantization of an arbitrary sequence to a codebook
» BP converges only if received sequence is “close” to a codeword

» But, vanishing fraction of total space is “close” to codewords
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Belief-Propagation Guided Decimation (BPGD)

» RD-type problems are challenging for graph codes with BP decoding
> They require quantization of an arbitrary sequence to a codebook
» BP converges only if received sequence is “close” to a codeword

» But, vanishing fraction of total space is “close” to codewords

» When the received vector is not “close” to a codeword
» BP decoder typically converges to a non-informative fixed point
> There are exponentially many codewords with low distortion
> But, the decoder just cannot pick one

> The bias of a bit is defined to be [LLR| = )m =
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Belief-Propagation Guided Decimation (BPGD)

» RD-type problems are challenging for graph codes with BP decoding
> They require quantization of an arbitrary sequence to a codebook
» BP converges only if received sequence is “close” to a codeword

» But, vanishing fraction of total space is “close” to codewords

» When the received vector is not “close” to a codeword
» BP decoder typically converges to a non-informative fixed point
> There are exponentially many codewords with low distortion
> But, the decoder just cannot pick one

> The bias of a bit is defined to be [LLR| = )m =

» To force convergence, bits are sequentially “decimated”:
1. The BP decoder is run for a fixed number of iterations

2. A bit with large bias is sampled and “decimated”
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Once Again, Spatial-Coupling Comes to the Rescue

N+w-—1

> Rate Distortion
» SC low-density generator matrix (LDGM) codes can
approach the RD limit with BPGD [AMUV12]
» Wyner-Ziv and Gelfand-Pinsker

» SC compound LDGM/LDPC codes can
approach the WZ/GP limits with BPGD [KVNP14]
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Summary

» Spatial coupling

> Powerful technique for designing and understanding factor graphs

v

Related to the statistical physics of supercooled liquids

v

General proof of threshold saturation for scalar recursions

> For many multiuser problems, it provides universality

v

For RD/WZ/GP problems, it gives the only LDPC-based solutions
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Thanks for your attention
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