On the Achievable Rates of Finite State ISI Channels

Henry D. Pfister, Joseph B. Soriaga, and Paul H. Siegel
Signal Transmission and Recording (STAR) Group
University of California, San Diego

{hpfister,jsoriaga,psiegel}@ucsd.edu

GLOBECOM 2001
November 27th, 2001
Overview

Motivation

- Turbo/LDPC codes nearly achieve capacity in AWGN
- The Capacity of most ISI channels is unknown

Estimating achievable information rates

- A Simple Monte Carlo Algorithm for Finite State Channels
 - Also reported by Arnold & Loeliger (ICC 2001) and Sharma & Singh (ISIT 2001)
- A Constructive Lower Bound based on multistage encoding/decoding
 - Achievable rate approaches the Symmetric Information Rate (SIR)

Maximizing over Markov input distributions gives tighter lower bounds on capacity
On the Achievable Rates of Finite State ISI Channels

Achievable Information Rates

- Mutual Information Rate, $I(\mathcal{X}; \mathcal{Y})$, between channel input \mathcal{X} and output \mathcal{Y}
 - At rates less than $I(\mathcal{X}; \mathcal{Y})$, there exist coding systems which have vanishing word error probability as $n \to \infty$
 - Channel Capacity is the supremum of $I(\mathcal{X}; \mathcal{Y})$ over all input distributions
 - Symmetric Information Rate (SIR) is $I(\mathcal{X}; \mathcal{Y})$ when all inputs are equiprobable

- Finite State (FS) Channels
 - FS Fading channels (Ex. Gilbert-Elliot channel)
 - State transitions are independent of the channel inputs
 - FS Intersymbol Interference (FSISI) channels
 - State transitions are a deterministic function of the inputs
 - Discrete-input linear ISI channels with AWGN (Ex. idealized PR)
On the Achievable Rates of Finite State ISI Channels

Finite State Channels with Markov Inputs

Input Process

\[Pr(T_{i+1}, X_i | T_i) \]

\[T_i \]

\[T_{i+1} \]

\[X_i \]

\[D \]

Channel

\[Pr(S_{i+1}, Y_i | S_i, X_i) \]

\[S_i \]

\[S_{i+1} \]

\[Y_i \]

\[D \]

❖ Here is the mathematical system model: (note: \(X_1^n = (X_1, \ldots, X_n) \))

❖ Input process generates \(X_1^n \) from state sequence \(T_1^{n+1} \) \((T_i = X_{i-1}^i) \)

❖ FS Channel has input \(X_1^n \), state sequence \(S_1^{n+1} \), and output \(Y_1^n \)

⇒ It is causal and Markov: \(Pr(Y_i, S_{i+1} | Y_1^{i-1}, S_1^i, X_1^n) = Pr(Y_i, S_{i+1} | S_i, X_i) \)

❖ We can join the two FS machines, \(Q_i = (T_i, S_i) \), into a single FS machine
Example State Diagrams

- State diagram of input and FSISI channel
 - Memory 1 channel ⇒ channel state is equal to the last input
 - Markov memory 1 input ⇒ channel state is equal to the last output
 \((p, q \text{ completely define the distribution of } X) \)

(a) Input process

(b) Standard Dicode Trellis
On the Achievable Rates of Finite State ISI Channels

Mutual Information Rates

- The mutual information rate for this system can be written as

\[
I(\mathcal{X}; \mathcal{Y}) = H(\mathcal{X}) + H(\mathcal{Y}) - H(\mathcal{X}, \mathcal{Y}) = H(\mathcal{Y}) - H(\mathcal{Y}|\mathcal{X})
\]

- Markov inputs \(\Rightarrow H(\mathcal{X})\) easily computed in closed form

- FSISI channel in AWGN \(\Rightarrow H(\mathcal{Y}|\mathcal{X}) = \frac{1}{2} \log(2\pi e \sigma^2)\)

 \(\Rightarrow H(\mathcal{Y}|\mathcal{X})\) is in closed form \(\Rightarrow\) All we need for \(I(\mathcal{X}; \mathcal{Y})\) is \(H(\mathcal{Y})\)

- The **Shannon-McMillan-Breiman Theorem** says (for almost all \(\mathcal{Y}_1^n\))

\[
\lim_{n \to \infty} -\frac{1}{n} \log P_r(Y_1, \ldots, Y_n) = H(\mathcal{Y})
\]

- So we define the **sample entropy rate**, for a realization \(y_1, \ldots, y_n\) of \(\mathcal{Y}_1^n\), as

\[
\hat{H}_n(\mathcal{Y}) = -\frac{1}{n} \log P_r(y_1, \ldots, y_n) = -\frac{1}{n} \sum_{i=1}^{n} \log P_r(y_i|y_1, \ldots, y_{i-1})
\]
On the Achievable Rates of Finite State ISI Channels

A Simple Monte Carlo Method

▫ Recall that the forward APP recursion, with $\alpha_i(q) = Pr(Q_i = q | y_1^{i-1})$, is

$$\alpha_{i+1}(q) = \frac{1}{A_{i+1}} \sum_{q' \in Q} \alpha_i(q') Pr(Y_i = y_i, Q_{i+1} = q | Q_i = q')$$

▫ A_{i+1} is the normalization coefficient which forces $\sum_{q \in Q} \alpha_{i+1}(q) = 1$

▫ But $A_{i+1} = Pr(y_i | y_1, \ldots, y_{i-1})$ is exactly what we need!

$$\hat{H}_n(\mathcal{Y}) = -\frac{1}{n} \sum_{i=1}^{n} \log Pr(y_i | y_1, \ldots, y_{i-1}) = -\frac{1}{n} \sum_{i=2}^{n+1} \log A_i$$

▫ Initialization: $\hat{H}_0(\mathcal{Y}) = 0$, $\alpha_1(\cdot)$ given, and q_1 chosen randomly $\sim \alpha_1(\cdot)$

▫ In many cases, a CLT holds $\Rightarrow \hat{H}_n(\mathcal{Y})$ is asymptotically Gaussian
On the Achievable Rates of Finite State ISI Channels

Results

The Symmetric Information Rate (SIR) for various PR channels

![Diagram showing the symmetric information rate (SIR) for various PR channels.](image)

- No ISI
- Dicode
- EPR4
- E^2PR4

Achievable Rate vs. SNR Per Information Bit, E_b/N_0 (dB)

- 3.19
- 3.93
- 4.32
- 4.79

Signal Transmission and Recording Group, University of California, San Diego
Let M_κ be the set of Markov input distributions with memory κ.

We define the sequence $\{C'_\kappa\}$ with

$$C'_\kappa = \max_{Pr(X) \in M_\kappa} \lim_{n \to \infty} \frac{1}{n} I(X^n_1; Y^n_1)$$

This gives a sequence of non-decreasing lower bounds on channel capacity.

Numerical optimization of $I(X; Y)$

- Monte Carlo method used to estimate $I(X; Y)$ for any $Pr(X) \in M_\kappa$.
- Gradient ascent finds the maximum (because $I(X; Y)$ concave in $Pr(X)$).
- Elegant and efficient Arimoto-Blahut type algorithm by Kavcic (Globecom 2001).
Results

 Bounds on the capacity of the dicode channel

![Graph showing achievable rates vs. SNR for different channel conditions and code rates.]

- No ISI
- Dicode SIR
- Dicode $\kappa = 1$
- Dicode $\kappa = 2$
- Capacity UB

Achievable Rate vs. SNR Per Information Bit, E_b/N_0 (dB)
On the Achievable Rates of Finite State ISI Channels

A Constructive Lower Bound

- Approaching the Symmetric Information Rate
 - Encoder: Interleaves multiple independent codes of varying rates
 - Decoder: Multistage decoding using decisions from previous stages

- Practical Advantages
 - Only uses a channel \textit{a posteriori} probability detector (APP) and binary codes (no joint decoding components).
 - Uses channel APP detector a fixed number of times, and quantifies the gain from additional uses.
On the Achievable Rates of Finite State ISI Channels

Multistage Encoding

- **Block interleave** m independent codes
 (in above example, $X = (A_1, B_1, \ldots, A_n, B_n)$).

- Design codes such that $R_1 \leq R_2 \leq \cdots \leq R_m$
 ($R_A \leq R_B$).

- Overall code rate is $R_{av} = \frac{1}{m} \sum_{i=1}^{m} R_i$.
1. Y is decoded with Channel APP 1
2. Channel input estimates L_A are fed into Code A MLD to recover \hat{a}
3. Y is decoded again with additional a priori info \hat{A}.
4. Code B MLD recovers remaining information bits \hat{b} from L_B

Generalization to m interleaved codes is straightforward.
Calculating Achievable Rates of Codes A and B

- Find largest rate R_A^*, such that if $R_A < R_A^*$, we have reliable communication
 - Consider the channel/detector subchannel: $A_k \rightarrow L_{A,k}$
 - Lower bound $R_A^* \geq I(A_k; L_{A,k})$ by ignoring correlation in $L_{A,k}$
 - Assume that A_k i.i.d. $B(1/2)$, so computing $I(A_k; L_{A,k})$ requires only
 \[f(l|\alpha) \overset{def}{=} f(L_{A,k} = l | A_k = \alpha) \]
 - Difficult to solve ⇒ approximate $f(l|\alpha)$ with a histogram
- Similarly, we have $R_B^* \geq I(B_k; L_{B,k})$ with code bits B_k drawn i.i.d. $B(1/2)$
 - Approximate $f(l|\beta)$ with histogram of odd time outputs:
 - Use channel APP with perfect *apriori* info at even times ⇒ $R_B^* \geq R_A^*$
- We believe $I(A_k; L_{A,k})$ is the max rate for single channel APP and a linear code
On the Achievable Rates of Finite State ISI Channels

Simulation Results on Dicode Channel for $m = 2$

- Monte Carlo evaluation of rate distribution and achievable R_{av}.

![Graph showing achievable rate vs. SNR for different conditions](image)
Optimized LDPC Codes for the Dicode Channel with $m = 2$

![Graph showing the bit error probability vs. SNR per information bit, E_b/N_0 (dB) for various thresholds: SIR Threshold, 2-Level Threshold, DE Threshold. The graph includes data points for codes optimized for $R=0.7$ ($0.63, 0.77, d_l = 50$).]
On the Achievable Rates of Finite State ISI Channels

Summary

- The Capacity of most ISI channels is (was?) unknown
 - The development of very powerful codes makes it interesting

- Introduced a simple method to estimate $I(\mathcal{X}; \mathcal{Y})$ for FSISI channels
 - Requires only the ability to run an APP/BCJR decoder on long sequences
 - Efficient enough to allow optimization over Markov input distributions

- Introduced a constructive lower bound on $I(\mathcal{X}; \mathcal{Y})$
 - Based on multistage coding and histograms of APP/BCJR output statistics
 - Actual coding on the Dicode channel is $0.2 - 0.5 \text{ dB}$ from SIR

 - EPR4 Channel: $m = 3$ threshold $\sim 0.2 \text{ dB}$ from the SIR