# Finite-Length Analysis of a Capacity-Achieving Ensemble for the Binary Erasure Channel

H. D. Pfister Swiss Federal Institute of Technology, Lausanne (EPFL)

> Information Theory Workshop Rotorua, New Zealand September 1st, 2005

#### **Outline**

- Background
  - Codes on Graphs
  - Scaling Law for LDPC Codes
- Finite Length Analysis for IRA Codes
  - Scaling Law for IRA Codes
  - A Capacity Achieving Ensemble
- 3 Conclusions

#### **Outline**

- Background
  - Codes on Graphs
  - Scaling Law for LDPC Codes
- Finite Length Analysis for IRA Codes
  - Scaling Law for IRA Codes
  - A Capacity Achieving Ensemble
- 3 Conclusions

### Low Density Parity Check (LDPC) Codes



- Linear codes with sparse parity-check matrix H
  - Regular (j,k): H has j ones per column and k ones per row
  - Irregular  $(\lambda, \rho)$ : uses degree distributions for ones in H
- Bipartite Graph
  - An edge connects check node i to bit node j if  $H_{ii} = 1$
  - Used for message passing iterative (MPI) decoding

### Irregular Repeat-Accumulate (IRA) Codes



- Can be viewed either as a Turbo or LDPC variation
  - LDPC: Simply add zig-zag structured degree 2 bits
  - Turbo: Repeat info bits, parity-check, and accumulate
- Repeat-parity given by sparse generator matrix G
  - Information bit j included in parity check i if  $G_{ij} = 1$
  - Regular (j,k): G has j ones per column and k ones per row
  - Irregular  $(\lambda, \rho)$ : uses degree distributions for ones in G

#### Degree Distributions and Density Evolution

• Definition: degree distribution (d.d) function

$$\lambda(x) = \sum_{i \ge 1} \lambda_i x^{i-1} \qquad \rho(x) = \sum_{i \ge 1} \rho_i x^{i-1}$$

- $\lambda_i$  = Fraction of edges attached to bits of degree i
- $\rho_i$  = Fraction of edges attached to checks of degree i
- Density evolution (DE)
  - Tracks distribution of messages during iterative decoding
  - Long codes decode almost surely if DE converges
  - For BEC, let  $x_i$  = erasure rate of bit output messages

$$x_{i+1} = p\lambda \left(1 - \rho(1 - x_i)\right)$$

#### Outline

- Background
  - Codes on Graphs
  - Scaling Law for LDPC Codes
- Finite Length Analysis for IRA Codes
  - Scaling Law for IRA Codes
  - A Capacity Achieving Ensemble
- 3 Conclusions



3

3

(3)

3

(3

(3)

3

3

4

4

4

4

4

4

 $\{0, 0, 0, 24\}$ 

















4

4

4

4

4

4

 $\{0, 0, 0, 24\}$ 











$$\{0, 0, 9, 12\}$$















3

3

4

2

4

$$\{0, 4, 6, 8\}$$













2

3

2

3

 $\{0, 6, 9, 0\}$ 













3

2

1

2

 $\{2, 4, 3, 0\}$ 







2

$$\{1, 2, 3, 0\}$$





2



# **Decoding Successful**

### Mean Trajectory for the (3,6) LDPC Code



Critical point is where the fraction of deg. 1 edges is zero



### Finite Length Scaling for LDPC Codes

- Refined analysis of peeling style decoding (Amraoui et al.)
  - Number of bit and check edges asymptotically Gaussian
    - Use differential equations to track the mean and covariance
  - ullet Probability of block error versus block length n given by

$$P_B = Q\left(\frac{\sqrt{n}(p^* - \beta n^{-2/3} - p)}{\alpha}\right) + o(1)$$

- Exact in the limit as  $n \to \infty$  with  $\sqrt{n} (p^* p)$  held constant
- Parameters defined in the neighborhood of the critical point
  - ullet  $\alpha$  related to std. dev. of number of degree 1 edges
  - ullet related to width of parabola at the critical point

#### Scaling Results for (3,6) LDPC



- Parameters:  $p^* = 0.42944$ ,  $\alpha = 0.56036$ , and  $\beta = 0.61695$
- Block length: n = 1024, 2048, 4096, 16384, 131072
- Outer code assumed to eliminate small stopping sets



### Covariance Evolution for LDPC Decoding

- Bit Regular Decoding
  - Assume we start with n check edges
  - Let  $X_{n,i}^{(j)}$  be the number of deg. j check edges after i steps
  - Number check edges of each deg. is a Markov process
- Phase 1: Remove  $(1 p^*)n$  edges for known bits
  - Pick random edge  $\sim X_{n,i}^{(j)}/(n-i)$
  - If deg. k, replace k deg. k edges with k-1 deg. k-1 edges
  - Differential eq. for mean and covariance (Amraoui et al.)
- Phase 2: Remove  $(t_{crit} 1 + p^*)n$  edges for decoding
  - Remove a degree 1 edge
  - Repeat d-1 times: Remove random edge as above
  - Differential eqns for mean and covariance (Amraoui et al.)
- ullet Parameter lpha given by the variance of degree 1 edges



#### **Outline**

- Background
  - Codes on Graphs
  - Scaling Law for LDPC Codes
- Finite Length Analysis for IRA Codes
  - Scaling Law for IRA Codes
  - A Capacity Achieving Ensemble
- 3 Conclusions

### Graph Reduction For IRA Codes



- Graph reduction removes all code bits from the graph
  - Peeling style decoding removes all known code bits
  - Merging check nodes removes all erased code bits
    - Equivalent to summing check equations to remove bit
- After graph reduction we have
  - A standard LDPC code with a modified check d.d.
  - Check d.d. is random and depends on erased code bits
- Straightforward generalization of scaling also possible
  - A degree vector for each node, but complexity increased































3)



3



3











8











2

1



# **Decoding Successful**

### Rate 1/2 Systematic (3,3) IRA Code



- Parameters:  $p^* = 0.44478 \ \alpha = 0.59588 \ \beta = 0.83874$
- Block length: *n* = 1024, 2048, 4096, 16384, 131072
- Outer code assumed to eliminate small stopping sets



### Covariance Evolution for Graph Reduction

- Graph Reduction (starting with n checks)
  - Number check nodes of each deg. is a Markov process
  - State  $X_{n,i}^{(j)}$  is number of checks of degree j after i steps
  - $X_{n,0}^{(j)} = n R_j$  where  $R_j$  is the fraction of check nodes deg. j
  - For each erasure, pick two checks and combine

$$Pr(\deg j, \deg k \to \deg j + k) = \frac{X_{n,i}^{(j)} X_{n,i}^{(k)}}{(n-i)(n-i)} + O\left(\frac{1}{n}\right)$$

- This is sufficient to apply the theorem of Amraoui et al.
- Conversion to edge perspective (to continue decoding)
  - Number of edges deg. j after i steps:  $Y_{n,i}^{(j)} = \frac{j X_{n,i}^{(j)}}{\sum_k k R_k}$

### **Outline**

- Background
  - Codes on Graphs
  - Scaling Law for LDPC Codes
- Finite Length Analysis for IRA Codes
  - Scaling Law for IRA Codes
  - A Capacity Achieving Ensemble
- 3 Conclusions

## Approaching Capacity in Practice

- The biggest obstacle is the enormous block length required
  - Irregular LDPC codes limited by length, not complexity
  - Length 10<sup>7</sup> used for Chung's 0.04 dB from capacity result
- Block length vs. gap to capacity for iterative decoding?
  - First, need a capacity achieving sequence of ensembles
  - Second, need to pick a block length for each ensemble
  - Empirically: If length grows too slowly, performance is bad
- Two Approaches
  - Scaling law: Determine  $\{p^*, \alpha, \beta\}$  for c.a. sequence
  - Weight enumerator: Focus on low weight codewords

### Capacity-Achieving LDPC Codes for the BEC

- A seq. of codes is capacity-achieving (c.a.) on a channel
  - If DE converges for each code in the sequence
  - Sequence of code rates converges to channel capacity
- Complexity of iterative decoding
  - Proportional to number of edges in the graph
- Check regular c.a. sequence  $\left\{\lambda^{(k)}, \rho^{(k)}\right\}$  (Shokrollahi)
  - Let  $\rho^{(k)}(x) = x^k$  and  $\widetilde{\lambda}^{(k)}(x) = \frac{1}{p} \left(1 (1-x)^{1/k}\right)$
  - $\lambda^{(k)}(x)$  given by truncating series for  $\widetilde{\lambda}^{(k)}(x)$  so  $\lambda^{(k)}(1)=1$
  - Complexity grows like  $\ln \frac{1}{\varepsilon}$  for gap to capacity  $\varepsilon$

### Capacity-Achieving LDPC Codes for the BEC

- A seq. of codes is capacity-achieving (c.a.) on a channel
  - If DE converges for each code in the sequence
  - Sequence of code rates converges to channel capacity
- Complexity of iterative decoding
  - Proportional to number of edges in the graph
- Check regular c.a. sequence  $\left\{\lambda^{(k)}, \rho^{(k)}\right\}$  (Shokrollahi)
  - Let  $\rho^{(k)}(x) = x^k$  and  $\widetilde{\lambda}^{(k)}(x) = \frac{1}{p} \left( 1 (1-x)^{1/k} \right)$
  - $\lambda^{(k)}(x)$  given by truncating series for  $\widetilde{\lambda}^{(k)}(x)$  so  $\lambda^{(k)}(1)=1$
  - Complexity grows like  $\ln \frac{1}{\varepsilon}$  for gap to capacity  $\varepsilon$

### Capacity-Achieving LDPC Codes for the BEC

- A seq. of codes is capacity-achieving (c.a.) on a channel
  - If DE converges for each code in the sequence
  - Sequence of code rates converges to channel capacity
- Complexity of iterative decoding
  - Proportional to number of edges in the graph
- Check regular c.a. sequence  $\{\lambda^{(k)}, \rho^{(k)}\}$  (Shokrollahi)
  - Let  $\rho^{(k)}(x)=x^k$  and  $\widetilde{\lambda}^{(k)}(x)=rac{1}{p}\left(1-(1-x)^{1/k}
    ight)$
  - $\lambda^{(k)}(x)$  given by truncating series for  $\widetilde{\lambda}^{(k)}(x)$  so  $\lambda^{(k)}(1)=1$
  - Complexity grows like  $\ln \frac{1}{\varepsilon}$  for gap to capacity  $\varepsilon$

# Capacity-Achieving IRA Codes for the BEC

Density Evolution (Turbo style decoding):

$$x_{i+1} = \lambda \left( 1 - \left( \frac{1 - p}{1 - pR(1 - x_i)} \right)^2 \rho (1 - x_i) \right)$$

• Bit regular non-sys. IRA Ensemble  $\lambda(x) = x^2$  (deg. 3)

$$\rho(x) = \sum_{i \ge 1} \rho_i x^{i-1} = \frac{1 - (1 - x)^{1/2}}{\left(1 - p\left(1 - 3x + 2\left(1 - (1 - x)^{3/2}\right)\right)\right)^2}$$

- Sequence of ensembles  $\{\lambda, \rho^{(M)}\}$  by truncation of  $\rho(x)$ 
  - where  $\rho_M(x) = \sum_{i=2}^{M-1} \rho_i x^{i-1} + \sum_{i=M}^{\infty} \rho_i x^{M-1}$
  - Capacity achieving for  $p \le 1/13$
  - Complexity converges to  $3 + \frac{2}{1-p}$  and  $\varepsilon = O\left(M^{-1/2}\right)$

# Scaling for Capacity-Achieving IRA Sequence

| Code     | $\gamma$ | Rate  | $p^*$ | $\alpha$ | $\beta$ |
|----------|----------|-------|-------|----------|---------|
| IRA M=20 | .0019    | .9126 | .0754 | .4122    | 2.938   |
| IRA M=30 | .0021    | .9173 | .0754 | .4842    | 4.079   |
| IRA M=40 | .0020    | .9194 | .0754 | .5684    | 5.462   |
| IRA M=50 | .0019    | .9206 | .0753 | .6577    | 7.017   |
| IRA M=60 | .0017    | .9214 | .0753 | .7491    | 8.737   |

- Bit regular (degree 3) c.a. non-systematic IRA codes
- Design rate = 0.925,  $\gamma$  = fraction of sys. bits transmitted
- Parameter  $\alpha$  rising slowly, but  $\beta$  rising quickly
  - Need bounds  $\overline{\alpha}_M, \overline{\beta}_M$  on  $\alpha, \beta$  as a function of M
  - Then, choose  $n_M$  so  $\overline{\alpha}_M n_M^{-1/2}$  and  $\overline{\beta}_M n_M^{-2/3}$  are bounded

### Capacity-Achieving IRA Sequence M=40



- Parameters:  $p^* = 0.754 \ \alpha = 0.5684 \ \beta = 5.462$
- Block length: n = 1024, 2048, 4096, 16384, 131072
- Real problem: Scaling law convergence not uniform



# Weight Enumerator (WE) Analysis

- An IRA encoder is the serial concatenation of a
  - Repeat code IOWE:  $A_{p,s}^{(rep)} = \binom{nR'(1)/3}{p} \delta_{s,3p}$
  - Parity code IOWE:  $A_{s,q}^{(par)} \leq \binom{n}{q} (R'(1))^q \frac{\left(\frac{1}{2} n R''(1)\right)^k}{k!} \delta_{s-2k,q}$
  - Accumulate code CIOWE:  $A_{q,\leq w}^{(acc)} \leq {n \choose \lfloor q/2 \rfloor} \frac{w^{\lfloor q/2 \rfloor}}{\lceil q/2 \rceil!}$

$$\overline{A}_{p,\leq w}^{(IRA)} = \sum_{s,q} A_{p,s}^{(rep)} \frac{A_{s,q}^{(par)}}{\binom{nR'(1)}{s}} \frac{A_{q,\leq w}^{(acc)}}{\binom{n}{q}}$$

- Notice the R''(1) in  $A_{s,q}^{(par)}$ 
  - For this sequence, we find that  $R''(1) = \Theta(M^{1/2})$
  - For fixed n, we find  $d_{min} \rightarrow 0$  as M increases
  - For fixed M, we find  $d_{min} \ge n^{1/3-\varepsilon}$  as n increases
  - Fixed input wt.,  $n = \Omega(M^{3/2})$  sufficient for  $d_{min} \ge n^{1/3-\varepsilon}$

### Conclusions

- Block length vs. gap to capacity for iterative decoding
  - The real obstacle for capacity achieving codes
- Finite length scaling law
  - Has great potential for this problem
    - Problem A: Parameters require numerical methods
    - Problem B: Non-uniform convergence
    - Can we get upper/lower bounds on n instead?
- Weight Enumerator Analysis
  - Required to prove convergence to zero erasures
    - Gives lower bounds on n
    - Needs refinement to prove  $d_{min} = \Omega\left(n^{1/3-\varepsilon}\right)$