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Low Density Parity Check (LDPC) Codes
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@ Linear codes with sparse parity-check matrix H

@ Regular (j,k): H has j ones per column and k ones per row
@ lIrregular (A, p): uses degree distributions for ones in H

@ Bipartite Graph

@ An edge connects check node i to bit node j if H;j = 1
o Used for message passing iterative (MPI) decoding
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Irregular Repeat-Accumulate (IRA) Codes
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@ Can be viewed either as a Turbo or LDPC variation

o LDPC: Simply add zig-zag structured degree 2 bits
@ Turbo: Repeat info bits, parity-check, and accumulate

@ Repeat-parity given by sparse generator matrix G

@ Information bit j included in parity check i if G;; = 1
@ Regular (j,k): G has j ones per column and k ones per row
@ Irregular (), p): uses degree distributions for ones in G
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Degree Distributions and Density Evolution

@ Definition: degree distribution (d.d) function
A(x) = Z Axi ! plx) = Z pix' !
i>1 i>1

@ )\; = Fraction of edges attached to bits of degree i
@ p; = Fraction of edges attached to checks of degree i

@ Density evolution (DE)

o Tracks distribution of messages during iterative decoding
@ Long codes decode almost surely if DE converges
@ For BEC, let x; = erasure rate of bit output messages

Xip1 = pA (1= p(1 —x7))
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Peeling Style Analysis of LDPC Codes (Luby et al.)
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Peeling Style Analysis of LDPC Codes (Luby et al.)
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Peeling Style Analysis of LDPC Codes (Luby et al.)
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Peeling Style Analysis of LDPC Codes (Luby et al.)
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Peeling Style Analysis of LDPC Codes (Luby et al.)

{2,4,6,0}
Number of Edges by Degree



Background
(o] lelele]e]
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Peeling Style Analysis of LDPC Codes (Luby et al.)
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Peeling Style Analysis of LDPC Codes (Luby et al.)
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Peeling Style Analysis of LDPC Codes (Luby et al.)
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Peeling Style Analysis of LDPC Codes (Luby et al.)
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Peeling Style Analysis of LDPC Codes (Luby et al.)
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Peeling Style Analysis of LDPC Codes (Luby et al.)

Decoding Successful
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Mean Trajectory for the (3,6) LDPC Code
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@ Critical pointis where the fraction of deg. 1 edges is zero

0.2 0.4 0.6
Fraction of Edges Removed
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Finite Length Scaling for LDPC Codes

@ Refined analysis of peeling style decoding (Amraoui et al.)
@ Number of bit and check edges asymptotically Gaussian
@ Use differential equations to track the mean and covariance
@ Probability of block error versus block length »n given by

Va(p = B2 —p)

«

PB:Q( >+0(1)

@ Exact in the limit as n — oo with \/n (p* — p) held constant
@ Parameters defined in the neighborhood of the critical point

@ « related to std. dev. of number of degree 1 edges
o [ related to width of parabola at the critical point
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Scaling Results for (3,6) LDPC

Word Erasure Probability
>

4 I I I I I I
0.36 0.37 0.38 0.39 0.4 041 042 043 044 045
Channel Erasure Probability

@ Parameters: p* = 0.42944, a = 0.56036, and § = 0.61695
@ Block length: n = 1024, 2048, 4096, 16384, 131072
@ Outer code assumed to eliminate small stopping sets

10
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Covariance Evolution for LDPC Decoding

@ Bit Regular Decoding

@ Assume we start with n check edges

o Let X(’ be the number of deg. j check edges after i steps
° Number check edges of each deg. is a Markov process

@ Phase 1: Remove (1 — p*)n edges for known bits

@ Pick random edge ~ X(’)/(n —1)
o If deg. k, replace k deg. k edges with k — 1 deg. k — 1 edges
o Differential eq. for mean and covariance (Amraoui et al.)

@ Phase 2: Remove (t.; — 1+ p*)n edges for decoding

@ Remove a degree 1 edge
@ Repeat d — 1 times: Remove random edge as above
o Differential eqns for mean and covariance (Amraoui et al.)

@ Parameter « given by the variance of degree 1 edges
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Graph Reduction For IRA Codes

@ Graph reduction removes all code bits from the graph

@ Peeling style decoding removes all known code bits
@ Merging check nodes removes all erased code bits

@ Equivalent to summing check equations to remove bit
@ After graph reduction we have

@ A standard LDPC code with a modified check d.d.
@ Check d.d. is random and depends on erased code bits

@ Straightforward generalization of scaling also possible
@ A degree vector for each node, but complexity increased
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Peeling Style Analysis for IRA Codes
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Peeling Style Analysis for IRA Codes
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Peeling Style Analysis for IRA Codes
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Peeling Style Analysis for IRA Codes
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Peeling Style Analysis for IRA Codes

Decoding Successful
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Rate 1/2 Systematic (3,3) IRA Code

Word Erasure Probability

0.38 0.39 0.4 0.41 0.42 0.43 0.44 0.45
Channel Erasure Probability

@ Parameters: p* = 0.44478 o = 0.59588 (3 = 0.83874
@ Block length: n = 1024, 2048, 4096, 16384, 131072
@ Outer code assumed to eliminate small stopping sets
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Covariance Evolution for Graph Reduction

@ Graph Reduction (starting with n checks)
@ Number check nodes of each deg. is a Markov process
State X(’) is number of checks of degree j after i steps

o
° X(’0 = nR; where R; is the fraction of check nodes deg. j
e For each erasure plck two checks and combine

xx® 1
Pr(degj, degk — degj+k) = m +0 (Z)

@ This is sufficient to apply the theorem of Amraoui et al.

@ Conversion to edge perspective (to continue decoding)

x0
o Number of edges deg. j after i steps: Y(] Z/}éz'zk
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Approaching Capacity in Practice

@ The biggest obstacle is the enormous block length required

@ Irregular LDPC codes limited by length, not complexity
@ Length 107 used for Chung’s 0.04 dB from capacity result

@ Block length vs. gap to capacity for iterative decoding?

@ First, need a capacity achieving sequence of ensembles
@ Second, need to pick a block length for each ensemble
@ Empirically: If length grows too slowly, performance is bad

@ Two Approaches

@ Scaling law: Determine {p*, «, 8} for c.a. sequence
@ Weight enumerator: Focus on low weight codewords
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Capacity-Achieving LDPC Codes for the BEC

@ A seq. of codes is capacity-achieving (c.a.) on a channel

o If DE converges for each code in the sequence
@ Sequence of code rates converges to channel capacity
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Capacity-Achieving LDPC Codes for the BEC

@ A seq. of codes is capacity-achieving (c.a.) on a channel

o If DE converges for each code in the sequence
@ Sequence of code rates converges to channel capacity

@ Complexity of iterative decoding

@ Proportional to number of edges in the graph
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Capacity-Achieving LDPC Codes for the BEC

@ A seq. of codes is capacity-achieving (c.a.) on a channel

o If DE converges for each code in the sequence
@ Sequence of code rates converges to channel capacity

@ Complexity of iterative decoding

@ Proportional to number of edges in the graph

@ Check regular c.a. sequence {\®, p®} (Shokrollahi)
o Let p®(x) = x* and A (x) = 1 (1 - (1 —x)/¥)

o A®(x) given by truncating series for A®) (x) so A® (1) = 1
o Complexity grows like In 1 for gap to capacity ¢
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Capacity-Achieving IRA Codes for the BEC

@ Density Evolution (Turbo style decoding):

2
=2 (1= (gt 40

@ Bit regular non-sys. IRA Ensemble \(x) = x? (deg. 3)

_ i1 1-(1-x)'2
p(X)_;:plx C(1-p(1-3x+2(1-(1-x72)))

@ Sequence of ensembles {\, p™} by truncation of p(x)

o where py(x) = 330, pr ™! 4 3000 pi !
o Capacity achieving for p < 1/13
@ Complexity converges to 3 + 1%}, ande = O (M~1/2)
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Scaling for Capacity-Achieving IRA Sequence

| Code | v [Rae| p* | o« | B |
IRA M=20 | .0019 | .9126 | .0754 | .4122 | 2.938
IRA M=30 | .0021 | .9173 | .0754 | .4842 | 4.079
IRA M=40 | .0020 | .9194 | .0754 | .5684 | 5.462
IRA M=50 | .0019 | .9206 | .0753 | .6577 | 7.017
IRA M=60 | .0017 | .9214 | .0753 | .7491 | 8.737

@ Bit regular (degree 3) c.a. non-systematic IRA codes
@ Design rate = 0.925, « = fraction of sys. bits transmitted
@ Parameter « rising slowly, but 3 rising quickly

@ Need bounds @y, 3, on a, 3 as a function of M

— —-1/2 a -2
@ Then, choose ny1 SO amny, /2 and Bt 73 are bounded
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Capacity-Achieving IRA Sequence M=40

Word Erasure Probability

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
Channel Erasure Probability

@ Parameters: p* = 0.754 a = 0.5684 (3 = 5.462
@ Block length: n = 1024, 2048, 4096, 16384, 131072
@ Real problem: Scaling law convergence not uniform
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Weight Enumerator (WE) Analysis

@ An IRA encoder is the serial concatenation of a
o Repeat code IOWE: A% = ("R'(l)/3)5s,3p

o Parity code IOWE: A; ’”‘" < ( J(R'(1
o Accumulate code CIOWE Al (Lq /ZJ) Wi

q,<w

(pgr) A(ﬂCC)
—(IRA) As
Ap,gw _ ZA(”P)

= ("R;“’) »

@ Notice the R”(1) in A%

For this sequence, we find that R”(1) = © (M'/?)

For fixed n, we find d,,,;,, — 0 as M increases

For fixed M, we find d,,;, > n'/3~¢ as n increases

Fixed input wt., n = Q (M%/2) sufficient for d,, > n'/3-¢

e © ¢ ¢
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@ Block length vs. gap to capacity for iterative decoding
@ The real obstacle for capacity achieving codes

@ Finite length scaling law
@ Has great potential for this problem

@ Problem A: Parameters require numerical methods
@ Problem B: Non-uniform convergence
@ Can we get upper/lower bounds on n instead?

@ Weight Enumerator Analysis

@ Required to prove convergence to zero erasures

@ Gives lower bounds on n
@ Needs refinement to prove dui, = Q (n1/3‘6)
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