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Reed-Muller (RM) Codes

Codes by Muller, efficient suboptimal decoder by Reed, both in 1954

[N,K,D] binary code RM(r,m) is indexed by integers 0 ≤ r ≤ m with

N = 2m, K =

r∑
i=0

(
m

i

)
, D = 2m−r

RM(r,m) is a multivariate polynomial evaluation code. defined by{
c ∈ FN2

∣∣cτ(v) = f(v),v ∈ Fm2 , f ∈ Fr,m
}
,

where Fr,m is the set of multilinear polynomials in m vars (v0, . . . , vm−1)
with binary coefs and degree ≤ r, and τ : Fm2 → [N ] defines the bit order
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Conjectured to Achieve Capacity...

I First discussed in 1990s by Lin, 1993 and Dumer, Farrell, 1994

I Stated explicitly for Gaussian noise by Costello, Forney, 2007

I Discussed further following polar codes Arikan, 2010

I Proved for BEC/BSC if rate → 0/1 by Abbe, Shpilka, Widgerson, 2014

I Open problem at 2015 Simons Institute Program on Information Theory

I Proved for BEC by Kudekar, Kumar, Mondelli, Pfister, Şaşoğlu, Urbanke, 2016

I RM codes polarize and “Twin RM” codes achieve capacity Abbe, Ye, 2020

I Reliable on BSC but gap to capacity by Hąz la, Samorodnitsky, Sberlo, 2021

This list is not exhaustive and we apologize for any neglected references
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Binary Memoryless Symmetric (BMS) Channels

message encoder channel decoder message?
X Y

I Binary input, real output:

X = (X0, . . . , XN−1) ∈ {±1}N , Y = (Y0, . . . , YN−1) ∈ RN

I Memoryless:
p(y0, . . . , yN−1 | x0, . . . , xN−1) =

N−1∏
i=0

w(yi | xi)

I Symmetric:
w(y | +1) = w(−y | −1)

I Generated by IID multiplicative noise Z = (Z0, . . . , ZN−1) ∈ RN :

Yi = XiZi ⇔ Y = X �Z,

BSC(p): p = Pr(Zi = −1) = 1− Pr(Zi = 1)
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Capacity of Binary Memoryless Symmetric (BMS) Channels

I Defined by single channel use with uniform input X ∈ {±1} and output Y

C = 1−H(X | Y )

I Consider a family of BMS channels {Wt : 0 ≤ t ≤ 1} with capacity C(t)

I Ordered by degradation from perfect (t = 0) to uninformative (t = 1)
I Examples include BEC(t), BSC(t/2), and BIAWGN with σ2 = t

1−t

I Shannon’s theorem: Random codes have sharp threshold for block error at t∗R:

0 t∗R 1
0

1

C(t∗R) = R

t

block error
probability
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Main Result

Theorem
Consider a BMS channel with capacity C ∈ (0, 1). For every RM(r,m)
code with rate R < C, the bit-error rate under bit-MAP decoding satisfies

BER(Xi | Y ) ≤ 3 ln(m) + 17

5
√
m
(
C −R

)
for all i ∈ [N ] := {0, 1, . . . , N − 1}. Thus, there exists a sequence of RM
codes with increasing blocklength N = 2m and rate converging to C such
that the BER under bit-MAP decoding converges to zero.

This is proved in arXiv:2110.14631 and these slides outline some of the key steps.
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Group Symmetry Refresher

The Permutation Automorphism Group G of code C is defined to be

G = {π ∈ SN | ∀ c ∈ C, (cπ(0), cπ(1), . . . , cπ(N−1)) ∈ C}

Transitive Permutation Groups
I G is transitive if, for all i, j ∈ [N ], there exists π ∈ G such that π(i) = j

0 1 · · · i · · · N−1 π(0) π(1) · · · j · · · π(N−1)

π

I G is doubly transitive if, for all distinct i, j, k ∈ [N ], there exists π ∈ G
such that π(i) = i and π(j) = k

0 · · · i · · · j · · · N−1 π(0) · · · i · · · k · · · π(N−1)

π
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Extrinsic Information Idea and Analysis
I Used to describe turbo decoding by Berrou, Glavieux, and Thitimajshima, 1993

I Focuses on recovering a single input Xi from all other outputs Y∼i
I Independent of i for codes with transitive symmetry
I Related to bit-error probability rather than block-error probability

I Analysis by ten Brink, 1999 and Ashikhmin, Kramer, ten Brink, 2004
I The key idea is the Area Theorem for the BEC(t):

d

dt

1

N
H(X|Y (t)) =

1

N

N∑
i=1

H(Xi |Y∼i(t))︸ ︷︷ ︸
EXIT function

I Prove capacity via sharp threshold with jump localized by Area Theorem∫ 1

0

H
(
X0 |Y∼0(t)

)
dt =

1

N
H(X) = code rate.
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Proof for Binary Erasure Channel [KKMPSU16]

I Let E ∈ {0, 1}N be the erasure indicator vector (i.e., Ei = 1 iff Yi =?)

I Linear code + BEC(t) ⇒ Conditioned on Y∼i there are only two cases:

Xi can be decoded or Xi is uniform (no information)

I “Xi is uniform” iff g(E∼i) = 1 for a monotone Boolean function g

I E[g(E∼i)] = hi(t) := H(Xi|Y∼i)
I Area Theorem:

∫ 1

0
hi(t) dt = R by transitive symmetry

I All symmetric monotone Boolean functions have a sharp threshold!

I Stated by Friedgut, Kalai 1996 for monotone graph properties

I Thus, sequences of doubly transitive codes achieve capacity on BEC!
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A Few Open Questions related to the BEC Result

I For RM codes on BEC, this proof fails for rate 1−N−α with α ∈ (0, 1).
Can one extend boolean function argument to a wider range?

I For RM codes, does the EXIT function have transition width Õ(N−1/2)?

I No known counterexamples for transitive codes with Dmin, D
⊥
min→∞.

Do all reasonable transitive code sequences achieve capacity?
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Area Theorem for Generalized EXIT Function
I Integral of derivative def by Méasson, Montanari, Richardson, Urbanke, 2009

NR = H(X | Y (t = 1))︸ ︷︷ ︸
log2 #messages

−H(X | Y (t = 0))︸ ︷︷ ︸
=0

=

∫ 1

0

d

dt
H(X | Y (t)) dt

I Total derivative + chain rule for entropy + transitive symmetry gives
d

dt
H(X | Y (t)) = N × ∂

∂ti
H(Xi | Y (t))

∣∣∣
ti=t︸ ︷︷ ︸

Generalized EXIT function

0 t∗R 1
0

1

C(t∗R) = R

t

GEXIT function
for Xi given Y
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Going Beyond the Erasure Channel

What measure of uncertainty to analyze?
I The “GEXIT function” satisfies the area theorem but lacks interpretability
I Standard generalizations of hypercontractivity do not imply a sharp threshold

Key observation:
I Nesting property: RM codes contain shorter RM codes of nearly the same rate

Our approach:
I Minimum mean-square error (MMSE) has almost all the right properties

mmse(Xi|O) := E
[(
Xi − E[Xi|O]

)2]
I Use variance decomposition, generalized influence and estimation inequalities

to analyze difference between short and long RM codes with similar rates
I New information inequalities connect the MMSE to entropy and code rate
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Nested Structure of Reed–Muller Codes

RM(r,m)

RM(r,m+k)

B{0}∪A
C

I This diagram illustrates a copy of RM(r,m) inside RM(r,m+ k) for k = 2.
It is generated by degree-≤r monomials in variables v0, . . . , vm−1.

I A={1, . . . , 2m−k − 1} and B={2m−k, . . . , 2m − 1} index bits in RM(r,m+k)
I A second copy is generated by degree-≤r monomials in variables v0, . . . , vm−k−1,
vm, . . . , vm+k−1 and supported on {0} ∪A ∪ C with

C =

2k−1⋃
j=1

(
{0, 1, . . . , 2m−k − 1}+ j2m

)
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Rate Difference for Nearby Reed–Muller Codes
I The rate of RM(r,m) is given by

R(r,m) :=
1

2m

r∑
i=0

(
m

i

)
I If Qm ∼ Binomial(m, 12 ), then R(r,m) = Pr(Qm ≤ r)
I By the CLT, (Qm − m

2 )/
√

m
4

w−→ N (0, 1)

I For k ≥ 1, improved CLT for symmetric binomial shows that

R(r,m)−R(r,m+ k) ≤ 3k + 4

5
√
m

I Thus, the rate difference vanishes for sequences where k = o(
√
m).

I This is quite surprising because it means that there is a puncturing
pattern for RM(r,m+ k), keeping only a fraction 2−k of the code bits,
that does not appreciably change the code rate.
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The Extrinsic MMSE – Definition and Properties

I Define the extrinsic MMSE as a function of channel parameter t:

M(t) := mmse(Xi | Y∼i) = 1−
∥∥E[Xi|Y∼i]

∥∥2
2
,

where ‖ · ‖p := E[( · )p]1/p and i can be dropped by transitive symmetry

I For a seq. of codes, the extrinsic MMSE has a sharp threshold if and only if

lim
N→∞

∫ 1

0

M(t)(1−M(t)) dt = 0

i.e., M(t) converges to a 0/1 step function
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Extrinsic MMSE Analysis
I Input X = (X0 . . . X2m−1) is an RM(r,m) codeword

I Output Y (t) = (Y0(1) . . . Y2m−1(t)) is from a family of BMS channels,
ordered from perfect (t = 0) to uninformative (t = 1)

I Extrinsic MMSE

M(t) := mmse(Xi | Y∼i) = 1−
∥∥E[Xi|Y∼i]

∥∥2
2

I Goal is to show sharp threshold and then localize jump via “area theorem”

0 t∗R 1
0

1

C(t∗R) = R

t

M(t)
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Visualizing a Sharp Threshold

0 t∗R 1
0

1

M(t)

0 t∗R 1
0

0.25

M(t)(1−M(t))

M(t)→ 0/1 step function ⇔
∫ 1

0

M(t)
(
1−M(t)

)
dt→ 0
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Preliminary Intuition for Sharp Threshold Argument

I For k ≥ 1, RM(r,m+k) can be punctured in multiple ways to get RM(r,m)

I Consider estimation of X0 using either the long code or two short codes

I Hand Waving Argument

I Choose t so that R(r,m+k) < C(t) < R(r,m)

I C(t) < R(r,m) implies RM(r,m) estimate is imperfect (i.e., M(t) > 0)

I For RM(r,m+k), combine two RM(r,m) estimates to reduce MMSE

I For the code sequence RM(rm,m), we either have:
(A) the liminf of the mmse(X0|YA, YB , YC) for RM(rm,m+k) will be

strictly lower than the liminf of mmse(X0|YA, YB) for RM(rm,m)
(B) OR the two RM(rm,m) estimates will be equal in the limit. More

specifically, we will have ‖E[X0|YA, YB ]− E[X0|YA, YC ]‖ → 0.

I Our current proof is quite different but comes from this rough intuition

21 / 33



Decomposition of Variance

I BMS + linear code gives the variance identity

M(t)(1−M(t)) =
1

2

∥∥E[Xi|Y∼i]− E[Xi|Y ′∼i]
∥∥2
2

where Y ′ = (Y ′1 , . . . , Y
′
N ) is resampled output with the same input.

I Resampling Y should only change estimate only if M(t) ∈ [δ, 1− δ] for δ > 0

I Efron-Stein Inequality: For any partition {A,B} of {1, . . . , N}\i, the above
term is bounded from above by

1

2

∥∥E[Xi|YA, YB ]− E[Xi|Y ′A, YB ]
∥∥2
2︸ ︷︷ ︸

InfA:= influence of A

+
1

2

∥∥E[Xi|YA, YB ]− E[Xi|YA, Y ′B ]
∥∥2
2︸ ︷︷ ︸

InfB := influence of B

.

I Can be seen as generalized influence functions for sets (See O’Donnell, 2014)
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Proof of Sharp Threshold

For A = {1, . . . , 2m−k − 1} and B = {2m−k, . . . , 2m − 1} we show that∫ 1

0

InfA dt . 2−k︸ ︷︷ ︸
double transitivity

and
∫ 1

0

InfB dt .
k√
m︸ ︷︷ ︸

RM nesting property

Choosing k = d 12 log2me yields∫ 1

0

M(t)(1−M(t)) .
logm√
m
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From Influence to Difference in MMSE

Lemma
The influence of set B = {2m−k, . . . , 2m − 1} satisfies

InfB ≤ 2
(

mmse(X0 | Y1 . . . Y2m−1)︸ ︷︷ ︸
M(t)

−mmse(X0 | Y1 . . . Y2m+k−1)︸ ︷︷ ︸
M+(t)

)
(ª)

where Y0 . . . Y2m+k−1 are the outputs for the RM(r,m+ k) codeword.
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How Much Better is the Longer Code?

0 1
0

1

M(t) M+(t) (for extended code)

t
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Proof of (ª) via Nesting Property

RM(r,m)

C
B{0}∪A

√
2 InfB =

∥∥E[X0 | YA, YB ]− E[X0 | YA, Y ′B ]
∥∥
2

=
∥∥E[X0 | YA, YB ]− E[X0 | YA, YC ]

∥∥
2

nesting property

= ‖E[X0 | YA, YB ]− X̂0 − E[X0 | YA, YC ] + X̂0‖2 X̂0 := E[X0 | Y1 . . . Y2m+k−1]

≤ ‖E[X0 |YA, YB ]− X̂0‖2 + ‖E[X0 | YA, YC ]− X̂0‖2 triangle inequality

= 2
∥∥E[X0 | Y1 . . . Y2m−1]− E[X0 | Y1 . . . Y2m+k−1]

∥∥
2

equal in distribution

= 2
√
‖E[X0 | Y1 . . . Y2m+k−1]‖22 − ‖E[X0 | Y1 . . . Y2m−1]‖22 nested expectation

= 2
√

mmse(X0 | Y1 . . . Y2m−1)−mmse(X0 | Y1 . . . Y L−1) definition of mmse
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From Difference in MMSE to Difference in Entropy

Lemma
Consider a family of BMS channels {Wt : 0 ≤ t ≤ 1}:
I Ordered by degradation from perfect (t = 0) to uninformative (t = 1)
I d

dt mmse(X0 | Y0(t)) ≥ constant

Then

M(t)−M+(t) .
d

dt

(
H(X | Y (t))

2m
− H(X+ | Y +(t))

2m+k

)
(«)

where (X+,Y +(t)) is input-output pair for RM(r,m+ k) code.
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Extrinsic Series Expansion of GEXIT Function

I Law of total derivative + chain rule + transitive symmetry

d

dt

H(X | Y (t))

2m
=

∂

∂s
H
(
X0 | Y0(s), Y∼0(t)

)∣∣∣∣
s=t︸ ︷︷ ︸

GEXIT function

I Series expansion of entropy with positive coefficients cn > 0.

H
(
X0 |Y0(s), Y∼0(t)

)
=

∞∑
n=1

cn

(
1−

∥∥E[X0 |Y0(s)]
∥∥2n
2n︸ ︷︷ ︸

direct

)(
1−

∥∥E[X0 |Y∼0(t)]
∥∥2n
2n︸ ︷︷ ︸

extrinsic

)
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Proof of («) via Series Expansion + Channel Ordering

d

dt

(
H(X | Y (t))

2m
− H(X+ | Y +(t))

2m+k

)

=

∞∑
n=1

cn

(
− d

ds

∥∥E[X0 |Y0(s)]
∥∥2n
2n

∣∣∣
s=t︸ ︷︷ ︸

≥ 0 by channel ordering

)( RM(r,m+ k)︷ ︸︸ ︷∥∥E[X0 |Y +
∼0(t)

]∥∥2n
2n
−

RM(m, k)︷ ︸︸ ︷∥∥E[X0 |Y∼0(t)]
∥∥2n
2n︸ ︷︷ ︸

≥ 0 by data processing inq.

)

≥ c1
(
− d

ds

∥∥E[X0 |Y0(s)]
∥∥2
2

∣∣∣
s=t︸ ︷︷ ︸

d
dt mmse(X0 | Y0(t))

)(∥∥E[X0 |Y +
∼0(t)

]∥∥2
2
−
∥∥E[X0 |Y∼0(t)]

∥∥2
2︸ ︷︷ ︸

M(t)−M+(t)

)
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Putting the Pieces Together

∫ 1

0

InfB dt .
∫ 1

0

(
M(t)−M+(t)

)
dt (ª)

.
∫ 1

0

d

dt

(H(X | Y (t))

2m
− H(X+ | Y +(t))

2m+k

)
dt («)

=
H(X)

2m
− H(X+)

2m+k
t=0 perfect, t=1 useless

= R(r,m)−R(r,m+ k) uniform codewords

≤ 3k + 4

5
√
m

rate difference lemma

Average influence of large set vanishes if k = o(
√
m)
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Summary

I This talk outlined some key steps to prove a sharp threshold for M(t)

I What parts did we skip?

I Going from extrinsic MMSE to entropy requires the channel with
t = mmse(Xi|Yi) and we skipped argument that extends to all channels.

I Localizing the M(t) jump to the capacity limit. For this, we derive a few
simple bounds connecting M(t) and the GEXIT function. The GEXIT
area theorem allows one to localize the jump similar to the BEC case.

I Bounding the contribution of each term in A set to the quantity∫
M(t)(1−M(t)) dt. This uses an extra look argument and bounds the

GEXIT (with an extra look) using an entropy series expansion. The final
bound uses the GEXIT area theorem via symmetrization.
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Conclusions and Open Questions

Summary of main results:

I Proof that RM codes achieve capacity on BMS channels
i.e., vanishing fraction of incorrectly decoded inputs

I Approach based on analyzing extrinsic information

I Unlike previous result for erasure channel, does not rely on hypercontractivity

I Proof combines a nesting property of RM codes with new information
inequalities for GEXIT functions and the extrinsic MMSE

Open Questions:

I Does the block error probability goes to zero? Prove it.
I Can we extend this to code families beyond Reed–Muller?
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