Chapter 2

The Serial Concatenation of Rate-1
Codes Through Uniform Interleavers

2.1 Introduction

Since the introduction of turbo codes by Berrou, Glavieux, and Thitimajshima [3],
iterative decoding has made it practical to consider a myriad of different concatenated codes,
and the use of “random” interleavers and recursive convolutional encoders has provided a good
starting point for the design of new code structures. Many of these concatenated code structures
fitinto a class that Divsalar, Jin, and McEliece call “turbo-like” codes [4]. Perhaps the simplest
codes in this class are Repeat Accumulate (RA) codes, which consist only of a repetition code, an
interleaver, and an accumulator. Yet, Divsatal. prove that the maximum likelihood decoding
(MLD) of RA codes has vanishing word error probability, for sufficiently low rates and any fixed
signal to noise ratio (SNR) greater than a threshold, as the block length goes to infinity. This
demonstrates that powerful error-correcting codes may be constructed from extremely simple
components.

In this chapter we consider the serial concatenation of an arbitrary binary linear outer
code of rater < 1 with m identical rate-1 binary linear inner codes where, following the con-
vention of the turbo-coding literature, we use the term serial concatenation to mean serial con-
catenation through a “random” interleaver. Any real system must, of course, choose a particular
interleaver. Our analysis, however, will make use of sihéform random interleave(URI) [2]
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Figure 2.1.1: Our system consists of any rate 1 code followed bym rate-1 codes.

which is equivalent to averaging over all possible interleavers. We analyze this system using a
probabilistic bound on the minimum distance and show that, for any fixed block length and large
enoughm, the ensemble contains some codes whose minimum distance achieves the Gilbert-
Varshamov Bound (GVB) [6].

Our work is largely motivated by [4] and by the results of Oberg and Siegel [12]. Both
papers consider the effect of a simple rate-1 “accumulate” code in a serially concatenated system.
In [4] a coding theorem is proved for RA codes, while in [12] the “accumulate” code is analyzed
as a precoder for the dicode magnetic recording channel. Benedettoalso investigated the
design and performance of Double Serially Concatenated Codes in [1].

We also discuss a specific class of codes in this family, known as Convolutional
Accumulatemn (CA™) codes, which were introduced as Generalized Repeat Accumulate Codes
in [15] and [16]. A CA™ code is a serially concatenated code where the outer code is a termi-
nated convolutional code (CC) and the inner code is a cascadeimferleaved “accumulate”
codes. These codes were studied in some deptimfer 1 by Jin in [10]. This chapter focuses
on the case ofn > 1, and gives a straightforward Markov chain based analysis of the distance
properties and MLD performance.

The outline of the chapter is as follows. In Section 2.2, we reviewbight enumer-
ator (WE) of linear block codes and the union bound on the probability of error for maximum
likelihood decoding. We also review the average weight enumerator for the serial concatenation
of two linear block codes through a URI, and relate serial concatenation to matrix multiplication
using a normalized form of each codéeiput output weight enumeratgfOWE). In Section 2.3,
we introduce our system, shown in Fig. 2.1.1, compute its average output WE, and compare
this WE to that of random codes. In Section 2.4, we consider some properties of rate-1 codes
which affect the performance of our system. In Section 2.5, we discuss a probabilistic bound on
the minimum distance of any code, taken from an ensemble, in terms of the ensemble averaged
WE. Applying this bound to the WE from Section 2.3 gives an expression that is very similar
to the Gilbert-Varshamov Bound (GVB) and that is asymptotically equal to the GVB for large



block lengths. We also evaluate this bound numerically for variou® €édes and observe that

3 or 4 “accumulate” codes seem to be sufficient to achieve the bound derived for asymptotically
largem. In Section 2.6, we evaluate the performance of those sanié é8les using bounds

on the MLD error probability and simulations for iterative decoding error probability. Finally, in
Section 2.7, we share some conclusions and discuss the direction of our future work.

2.2 Weight Enumerators and Serial Concatenation

2.2.1 The Union Bound

In this section, we review the weight enumerator of a linear block code and the union
bound on error probability for MLD. The IOWR,, ;, of an(n, k) block encoder is the number
of codewords with input Hamming weight and output Hamming weigtit, and the WEA;, is
the number of codewords with any input weight and output welghtysing these definitions,
the MLD probability of word error is upper bounded by

k
PW < i Z Aw,hzhu
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and the MLD probability of bit error is upper bounded by

n k
PB S Z Z %Amhzh.
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The parametet is known as the Bhattacharyya parameter, ghtepresents an upper bound on
the pairwise error probability between any two codewords differing positions [21, p. 88].

It can be computed for any memoryless channel, and for the binary-input AWGN channel it is
z = e~ Fs/No whereE, /N, is the SNR of the decision statistic.

2.2.2 Serial Concatenation through a Uniform Interleaver

We now briefly review the serial concatenation of codes through a URI. The introduc-
tion of the URI in the analysis of turbo codes, by Benedetto and Montorsi [2], has made the
analysis of complex concatenated coding systems relatively straightforward; using the URI for
analysis is equivalent to averaging over all possible interleavers. The important property of the

URI is that the output sequence distribution is a function only of the input weight distribution.



More precisely, given that the input to a URI has weighteach output sequence of weight
will be observed with equal probability and all other output sequences will have zero probability.
Consider any(n, k) block encoder with IOWH,, ;, preceded by a URI. We will refer
to such a code as aniformly interleaved cod¢UIC). The probability, Pr (w — h), of the
combined system mapping an input sequence of weigiotan output sequence of weighis
Pr(w — h) def %

Now we can consider the ensemble (ef, k&) block codes formed by first encoding

(2.2.1)

with an (nq, k) outer code with IOWE4£U°7),I, permuting the output bits with a URI, and finally
encoding again with afn,n;) inner code with IOWEAg)h. The ensemble averaged IOWE

Ay p is given by
ni
Apn = Z AS,)hl Pr(hy — h)
h1=0
n 40
_ (0) Thih
= > AL (ni) : (2.2.2)

h1=0 hi

The average IOWE for the serial concatenation of two codes may also be written as
the matrix product of the IOWE for the outer code and a normalized version of the IOWE for the
inner code. Let us define, for any code, thput output weight transition probabilitdOWTP)

P, , as the probability that an input sequence of weigtis mapped to an output sequence of
weighth. From (2.2.1), we can see thAy}, , = Pr (w — h). Substituting (2.2.1) into (2.2.2),

we have

ni ) ‘
A= > A9 PV = ALPO).
h1=0
where AP is a matrix product and the matrix representations are defindd\by] =
Aij)h and[P®)] = qff)h Using induction, it is easy to verify that matrix multiplication by
an arbitrary number of IOWTP matrices results in the average IOMVE,, of the overall serial

concatenation. Itis also easy to verify, using (2.2.1), that all IOWTP matrices are stochastic.

2.2.3 A Simple Example - The Accumulate Inner Code

We compute the IOWE and IOWTP of the rate-1 “accumulate” code [4]. The “accu-

mulate” code is a block code formed by truncating, afteymbols, the recursive rate-1 CC with
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Input Sequence| 000 | 001 | 010 | 100 | 011 | 101 | 110 111
Input Weight 0 1 1 1 2 2 2 3
Output Sequence 000 | 001 | 011 | 111 | 010 | 110 | 100 | 101
Output Weight | 0 1 2 3 1 2 1 2

Table 2.1: Input-output sequences and weight mappings fer3 “accumulate” code.
generator matrixG(D) = 1/(1+4 D). The generator matrix for this block code isiar n matrix

with all ones in the upper triangle and all zeros elsewhere. For thencase, the generator

matrix is

11
C=1]101
0 0

—_ = =

Using Table 2.1, we see that the uniformly interleaved “accumulate” code maps an input of
weight 1 to an output of weight 1, 2, or 3, each with probability 1/3. Sauthe 1 row of the
IOWTP matrixis| 0 1/3 1/3 1/3 ] The matrix representations of the IOWE and IOWTP

are given by
(10 0 0] (1 0 o0 o0 |
01 1 1 0 1/3 1/3 1/3
A— p_ /3 1/3 1/
0210 0 2/3 1/3 0
(0010 (000 1 0 |

2.3 Multiple Rate-1 Serial Concatenations

2.3.1 The Input Output Weight Enumerator

Now, we consider the average IOWE,J,h, of the(n, k) linear block encoder formed
by first encoding with anyn, k) linear block encoder and then encoding with a cascade of
m identical interleaved rate-1 block encoders. Let the outer encoder be defined bythe
generator matrixC(©) and the inner code be defined by thex n generator matrixC(®. The

serial concatenation of linear block codes is achieved by multiplying their generator matrices, so



11

the generator matrix of any code in this ensemble can be written as
Cc = ct,c911,c® ... 11,,C®, (2.3.1)

where eachll; is ann x n permutation matrix. Our ensemble of encoders, denoted by
Qm(C("), C®), can be defined succinctly by a probability distribution overkal n gener-

ator matrices. In theory, this distribution can be computed by counting the number of distinct
ways each generator matrix can be written in the form of (2.3.1), but the large number of gener-
ator matrices makes this infeasible. Instead, we focus on computing the average IOWE of this
ensemble. Leﬂiuofh be the IOWE associated with the generator mait& and IetAg?h be the

IOWE associated with the generator mat€ix”). Let P be the IOWTP matrix associated with
Ag?h, then the average IOWESZ”,B of this ensemble is

A= >0 A [P (232)
h1=0

The linearity of the code guarantees that inputs of weight zero will always be mapped
to outputs of weight zero and inputs of weight greater than zero will always be mapped to outputs
of weight greater than zero, so the mathwill be block diagonal with two blocks. Let the first
block be thel x 1 submatrix associated witth = » = 0 and the second block be thex n
submatrix formed by deleting the first row and columnif In general, we will refer to the
second block as th@ submatrix of the IOWTP matrix, and we write

10
P-
0 Q
Multiplication acts independently on the components of a block diagonal matrix, so we can also
write
pm _ 1 0
0 Q™

If P is a finite dimensional stochastic matrix, then we can associate it with a finite-
state Markov Chain (MC) with state transition matix In this case, botl andQ are finite
dimensional stochastic matrices and the association matches states in the MC with input/output
weights of the rate-1 UIC. Using some well-known definitions from the theory of MCs, we say
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thatw = [m,... ,m,] iS a stationary state distribution of the MC with transition probability
matrix P if #P = 7w and)_ m; = 1. This allows us to associate a stationary state distribution,

7, of the MC with a stationary weight distribution of the rate-1 UIC. If the average WE of

a code ensemble is not changed by encoding every code in the ensemble with the same rate-1
UIC, then Ay, is a stationary WE of that rate-1 UIC. Using (2.2.2), it is easy to verify that this

occurs when
[A1,...,4,) Q= [A,... 4],

which makes[4,... ,4,] /(2" — 1) a stationary state distribution of the MC associated with
state transition matrix). Recall also that a MC, with state transition maix is irreducible if
and only if, for allé, j, there exists a positivg ; such that[QtM]Z.j > 0[19, p. 18].

Definition 2.3.1. A rate-1 UIC isirreducible if the Q submatrix of its IOWTP matrixP, can
be associated with an irreducible MC.

We now draw upon some well-known theorems from the theory of non-negative ma-
trices and MCs [19, p. 119].

Theorem 2.3.2 (Perron-Frobenius).An irreducible Markov Chain has a unique positive sta-
tionary state distribution. O

Proposition 2.3.3. LetP be the IOWTP matrix of an irreducible rate-1 UIC with block length

The infinite family of stationary state distributions(«) = [mo(«), ... ,m,(a)], of P is defined
by
() « h=0
7Th Q) = n .
1-a)l 1<h<n

Finally, the unique stationary distribution for inputs of non-zero weight is given (oy.

Proof. The(n+1) x (n+ 1) matrix, P, is block diagonal with the first block equal to the scalar,

1, and the second block equal to thex n matrix Q. It is easy to verify thaP has exactly two
irreducible components because a scalar is irreducibleaigdirreducible by Definition 2.3.1.

The stationary distribution of the scalar component is the unit vector associated with inputs of

weight zero because a linear code always maps the all zero input to the all zero output.
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Now, we consider the stationary distribution of teirreducible component. The
matrix Q represents the action of a rate-1 linear code on the set of all non-zero sequences, which
is simply a permutation of these sequences. Therefore, a uniform distribution on the set of non-
zero sequences will be stationary under this mapping. Now, we can simply calculate the weight
distribution associated with a uniform distribution on the set of non-zero sequences. Simple
combinatorics gives the answer

(2)

2 —1

T =

forl1 <h<n.

Any stationary distribution oP can be written as the convex combination of these two
unique stationary distributions (one for each irreducible component). Restricting our attention to
inputs of non-zero weight has the effect of making the stationary distribution unique and equal

to the stationary distribution of th@ component. O

Example 2.3.4. The rate-1 code from Section 2.2.3 is irreducible, and applying Proposition

2.3.3 gives
_ -T -~ - - - T
0 1 0 0 0 0
3/7 0 1/3 1/3 1/3 | | 3/7
3/7 023 1/3 0 | |37
7] o oo 10 | | yT

An MC with state transition matriQ is primitive if and only if there exists a positive
t such that[Qt]ij > 0 for all 4, j. This is equivalent to the state transition mati@, having
a unique eigenvalue of maximum modulus. The following theorem from the theory of MCs

characterizes the asymptotic behavior of a primitive matrix taken to a large power [19, p.119].

Theorem 2.3.5 (Perron-Frobenius).If Q is the state transition matrix of a primitive Markov
Chain, with unique stationary distribution, then

lim Q™ =

m—00
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Moreover, the convergence is uniform and geometric. Specifically, if we le¢ the eigenvalue
with second largest magnitude, th%{Qm]ij — wj‘ = O(q¢™), for anyq satisfying| | < ¢ <
1. O

Definition 2.3.6. An irreducible rate-1 UIC igprimitive if the MC associated with th€ sub-

matrix of its IOWTP matrix is primitive.

Corollary 2.3.7. If P is the IOWTP matrix of a primitive rate-1 UIC with block lengththen

im P"l;=4 (j)/(2"-1) ifi>0andj>0 . (2.3.3)
0 otherwise

Example 2.3.8. The rate-1 code from Section 2.2.3 is also primitive, and applying Theorem

2.3.5 confirms that

1 0 0 0

0 3/7 3/T 1/7
lim P™ = /731 1
=00 0 3/7 3/T 1/7
0 3/7 3/7 17

2.3.2 A Large Number of Concatenations

We now use (2.3.2) and Theorem 2.3.5 to compute the average WE of amy<ate
outer code serially concatenated withprimitive rate-1 UICs, in the limit ag: goes to infinity.
The intriguing part of this result is that this average WE is independent of the particular outer
encoder and inner encoder chosen. Using the notation from Section 2.3.1, @¥)&e the
k x n generator matrix of the invertible outer code afti) be then x n generator matrix of
the primitive rate-1 inner code, and we f&f,(C(?), C()) denote the ensemble of codes with
serial concatenations. Since this sequence of ensembles may not approach a well-defined limit
asm goes to infinity, we avoid discussing properties of the infinitensemble. Instead, we say
that a property holds fcﬂ*(C(O), C) if there exists a finiten, such that the property holds
for all ©2,,,(C©), C®), for m > my.

Remark 2.3.9An interesting open question is whether the enserfib)gC(®), C(")) contains
all invertible linear codes, for sufficiently large. Using the generator matrix definition, (2.3.1),

it is possible to give a sufficient condition for this. L&tbe the set of alh x n permutation
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matrices and defin@ = {TIC®|II € S}. SinceC® is invertible by assumption and all per-
mutation matrices are invertible, it is clear tiats a subset of the multiplicative group ofx n
invertible binary matrices denote@L,,(F2). LetT™ = {V1V2...V,,|V,; € T} and assume

that there exists am such thatl™® = G L, (F,). In this case(,,(C(, C®) will contain all
invertible linear codes for allh > mg. Furthermore, the limitlim,,,— o Qm(C(O), C(i)), exists

and is equal to the ensemble of all invertible linear codes under the uniform distribution. For
example, wherC () is the “accumulate” code, we have verified that this occursifer 2,3,4

with mg=n-+ 1.

Theorem 2.3.10.Let 4™ (n, k) be the average output WE of the ensemBlg(C(©), C®),
whereC( s the k x n generator matrix of the outer code a@® is then x n generator
matrix of the primitive rate-1 inner code. If we deflﬁé o) (n, k) to belim,, o A(m) (n, k),
then we have

2 —1) 0 a1

T =" (2.3.4)
1 if h=0

A (n, k) =

Furthermore, for anyy > 0, there exists amny such that‘Zgoo)(n, k) — ng) (n,k)| < ~ for

all m > my.

Proof. Starting with (2.3.2) gives

A(Oo) (n, k) —nlgnooz Z Aghl mh1h’

w=1h;=1

Applying (2.3.3) gives

(3 )5

w=1h1=1

and the double sum is independent of the outer code and equal to the number of codewords

(excluding the all zeros codeword), so

A by = (25 1)

For the second statement, we start with
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‘Zgz Ah ‘— Z ZAq(jhl 7Th_ m]hlh)

w=1 hl 1
and then we separate the terms and apply Theorem 2.3.5 to get

Z Z Ai;o,)hl |mh — P, 1]

w=1 h1=1

= (2" =1)0(¢").

IN

A

Although the(2* — 1) term is possibly quite large, it is a constant with respectito
so this expression is stilD(¢"). Sinceq < 1, it follows that, for anyy > 0, there exists amy

such that, for alin > my, the inequality‘Zg’O) (n, k) — A (n, k)| < ~ holds. O

Let us define the uniform ensemble of linear codes as the ensemble generated by the
set of allk x n generator binary matrices. This is equivalent to the ensemble formed by letting
each entry of a random generator matrix be chosen independently and equiprobably from the
set{0,1}. For non-zero input weights, the average WE is computed by simply noting there are
2% — 1 input sequences, each of which will be mapped to a weligtddeword with probability
(Z) /2™. Of course, the all zero input is always mapped to the all zero output. Therefore, the

average WE of the uniform ensemble is given by

(2’6—1)%) forl1>h>n

—U
2=l forh=0

(2.3.5)

Since the average number of weight zero codewords is larger than one, there will always be some
codes in this ensemble which are not invertible.

It turns out that the WEE%OO) (n, k), is almost identical to the average WE of the
uniform ensemble of random linear codes. The main difference between these two ensembles
is that all of the codes if2,,(C(?), C(") are invertible, while the uniform ensemble contains a
small percentage of non-invertible codes. The foIIowing Corollary of Theorem 2.3.10 explicitly
compares the average WE of the ensemilg(C(®), C(®)), with the average WE of the uniform
ensemble of random codes.
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Corollary 2.3.11. Let A\"™ (n, k) be the average WE of the ensemflig (C(?, C(®)), as de-
fined in Theorem 2.3.10. For arly< » < 1 ande > 0, there exist integeray andmg such
that

A5, (no, [rno]) — Ay™ (no, [rno])| < e
for all m > mg.

Proof. Using the fact that < 1, it is easy to verify that, for any > 0, there exists any such
that

[ (. Trn]) = A (n, )| <

9

DO ™

for all n > ngy. Using Theorem 2.3.10, it is also easy to verify that, for any 0, there exists an
mg such that

)

A o, [rnol) = A4 (mo, [ro])| <

N

for all m > mg. Combining these two bounds completes the proof. O

2.4 Properties of Rate-1 Codes

2.4.1 Conditions for Primitivity

In this section, we consider the conditions under which a rate-1 linear code is primitive.
Theorem 2.4.1 gives a sufficient condition by showing that the rate-1 block code formed by
truncating any rate-1/1 CC is primitive. Surprisingly, this also includes non-recursive CCs, which

are seldom considered in practical turbo coding systems.

Theorem 2.4.1.Leth = hg, hq, hs ... be the semi-infinite impulse response of a nontrivial,
causal, rate-1/1 convolutional code. To avoid degenerate cases, assunig thatl . Define
[ to be the smallest positive integer such that= 1. Then, the rate-1 block code formed by

truncating this convolutional code, to any length> [ + 1, is primitive.

Proof. This proof is given in the Appendix. O

Proposition 2.4.2 establishes a simple necessary condition for primitivity. In fact, we

conjecture that this condition is also sufficient.
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Proposition 2.4.2. A primitive rate-1 linear code must have at least one row of even weight in

its generator matrix.

Proof. Assume that all rows of the generator matrix have odd weight. It is easy to see that any
linear combination of an even (odd) number of rows will have even (odd) weight. So even (odd)
weight inputs will map only to even (odd) weight outputs and there will be no weight paths from
odd weights to even weights and vice-versa. Therefore, the MC associated with this code is
reducible into at least two components and the rate-1 code is not primitive. O

Now, we discuss two exceptional classes of rate-1 codes which are not primitive. Re-
member that a rate-1 code cannot be primitive if its associated MC is reducible. First, consider
any rate-1 code whose generator matrix isras n permutation matrix. All of these codes
map inputs of weight to outputs of weight. and therefore their associated MCs are reducible
into n + 1 components. Next, for evem consider any rate-1 code whose generator matrix is
the complement of an x n permutation matrix. For inputs of even weight, this maps inputs
of weighth to outputs of weight.. For inputs of odd weight, this maps inputs of weighto
outputs of weights — h. Therefore, the MC associated with any of these codes is reducible into
roughly 3n/4 components.

In fact, we have been unable to construct a rate-1 code that is not primitive and that
still has at least one row of even weight. This leads us to conjecture that the necessary condition

implied by Proposition 2.4.2 is also sufficient.

Remark 2.4.3.Suppose the MC associated with a rate-1 code breaks into exactly two compo-
nents based on parity (cf. the proof of Proposition 2.4.2). In this case, a variant of Theorem
2.3.10 will still apply. This is because the code will preserve the odd or even parity of its inputs.
Since the outer code is linear, either none of the codewords will have odd weight or exactly half
of the codewords will have odd weight. If exactly half have odd weight, then the average WE
will be identical to (2.3.4). If none have odd weight, then the even weight terms of the overall
code will be roughly doubled while the odd weight terms will be exactly zero. For this reason,
this type of reducibility based on parity is essentially irrelevant in terms of minimum distance

and performance.
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2.4.2 Recursive vs. Non-Recursive Rate-1/1 CCs

If we consider the average WE of the ensem}z»l,e(c(o), C(i)), for finite m, then there
is a distinct difference between using a generator mattik,, derived from a recursive rate-1/1
CC and one derived from a non-recursive rate-1/1 CC. This difference manifests itself in the
convergence rate of the matrix prod®¥* to its limiting value for largen. This is very much
related to the convergence rateyin of the average WE of the ensemlflg, (C(?), C() to the
value predicted by Theorem 2.3.10. Since the WE predicted by Theorem 2.3.10 has almost no
codewords of small output weight, we compare these two ensembles by considering the number
of cascaded rate-1 UICs required to map an input of small weight to an output whose weight
grows linearly with the block length.

Consider the non-recursive CC with generatfD) = 1 + D. It is easy to verify
that the output weight of this code will be at most twice the input weight. If the desired output
weight is pn and the input weight is 1, then the minimum number of encodings required is
log, pn. More generally, for any non-recursive CC with an impulse response of weighe
minimum number of encodings lsg,; pn. Therefore, for fixedn and asymptotically large,
there will be no mappings from input weight 1 to output weight So, for any finitem, we
expect this ensemble to have low weight codewords.

Now consider the recursive CC with generad&D) = 1/(1+ D). Itis easy to verify
that this encoder maps an input of weight 1 at positiog 1,... ,n to an output weight of
n — i + 1. Moreover, most inputs of small weight are mapped to outputs of large weight. If
we view this code simply as the inverse of the previous code, then it is clear that if one code
maps A, input sequences from weight to weight 2 then the other code maps the same
number of sequences from weighto weightw. So, for fixedm and asymptotically large,
the interleaved cascade of recursive rate-1/1 CCs has no paths from wejghto weight1.
In practice, recursive CCs are preferred because this is a much more desirable property for error
correcting codes. In fact, the results of Section 2.5.2 imply that many codes with relatively small

m still have large minimum distance.

Remark 2.4.4 Another way to see the difference between recursive and non-recursive rate-1
CCsisinthe second largest eigenvaldg,of theQ submatrix of the IOWTP matrix. Numerical
observations suggest that the magnitude of this eigenvalue fa@¥({thbe = 1/(1 + D) code is

|A2| = O(n~1) while for theG(D) = 1 + D code, itis|\2| = O(1). Itis well known that the
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Outer I—I 1/(1+D) rl 1/(1+D)
CcC 1 Encoder T m Encoder

‘ inner code ‘

Figure 2.5.1: Encoder for a CACode with the block size indicated at each stage.

convergence of the matrix produBt™ to its limiting value is very sensitive to the magnitude of
Ao (cf. Theorem 2.3.5). Moreover, we believe this behavior may be characteristic of all recursive
and non-recursive codes, and if this is true, then it is another factor which favors recursive CCs

over non-recursive CCs.

2.5 Bounds on the Minimum Distance

2.5.1 The Minimum Distance Distribution

In this section, we examine minimum distance properties of the ensemble
Q,,(C),C®). We make use of a general upper bound on the probability that any code in
some ensemble has minimum distangg;,, less thani. The key property of this bound is that
it can be computed using only the average WE of the ensemble. The bound, a simple corollary
of the Markov inequality [13, p. 114], has been used previously by Gallager [7]and by Kahale
and Urbanke [11]. For convenience and completeness, we now explicitly state and prove this
bound.

Lemma 2.5.1. The probability that a code, randomly chosen from an ensemble of linear codes
with average WEA,, hasd,,;, < d is bounded by

d—1
Pr(dmin < d) < (Ag = 1)+ > _ Ay, (2.5.1)
h=1

Proof. Let A;, be a random variable equal to the number of codewords with wgight code
randomly chosen from an ensemble of codes with averagelyVEVe can bound the probability
that a code in the ensemble has minimum distance lessitigih

d—1
P’I”(dmm < d) = Pr ((A() > 1) U U(AZ > 0) ) .
=1
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Since Ay, takes only positive integer values, we can apply the union bound and then the Markov
inequality to get

d—1
Pr(dmin<d) < Pr(Ag—1>1)+ Y Pr(A, >1)
h=1

-1
<(Ag—1)+ Zzh-
h=1
|

Now, we use Lemma 2.5.1 to compare the minimum distance distribution of the uni-
form ensemble with that d®,,,(C(?), C()). Both of these are also compared to the well-known
Gilbert-Varshamov Bound (GVB).

Using the counting argument of Gilbert [9], it is easy show that there exists at least
one code with code bits 4 information bits, and minimum distanckf

d—1

2 -1y <Z> <om, (2.5.2)

h=0
Varshamov derives a slightly better bound by considering only linear codes, and the similarity
between the two permits one to refer to them jointly as the GVB [6]. degtp(n, k) be the
largestd which satisfies (2.5.2) for a particularandk. This is the largest minimum distance
which is guaranteed to be achievable by the GVB.

Consider the bound which results from applying Lemma 2.5.1 to the average WE of
the uniform ensemble of linear codes, given in (2.3.5). For this ensemble, we find

Pr(dmin < d) < S(n,k,d),

where

¥

1
S(n,k,d) = (Zg(n,k)—1)+ A7 (n, k)

1
ok 14
- 52 (3)

h=0

>
Il

Let dy(n, k, €) be the largestl such thatS(n, k,d) < e. Notice that the inequality, (2.5.2), is
actually equivalent to the inequality,(n, k, d) < 1. Therefore, this bound contains the GVB as
a special case anfi; (n, k, 1) = dgy p(n, k).
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Now, we apply Lemma 2.5.1 to the average \Mﬁo) (n, k), given in (2.3.4). In this
case, we get

Pr(dmin < d) <T(n,k,d),
where
T(n,k,d) = (Ag@(n, k) — 1) + 3 (n, k)
h=1
d—1

2k 1 n
B 2”—1Z<h>'
h=1

Proposition 2.5.2. The inequality?’(n, k,d) < S(n, k,d) holds for alln > 2,0 < k < n, and
0<d<n.

Proof. Notice that the difference'(n, k, d) — S(n, k, d), is given by the expression,

ok 1 2’f—1dz1 n
o _ 1 h on n)
h=1 h=0

ok 1 ([ ok 1
m(2n — 1) <h§(h>>_ om

Notice that this expression is negative &b 0, strictly increasing withi, and equal to zero for

which can be simplified to

d = n+1. Therefore, this expression is negativeor d < nandT'(n,k,d) < S(n,k,d). O

Let dq(n, k, €) be the largestl such thatl'(n, k,d) < e and notice that Proposition
2.5.2 implies thatlg(n, k, €) > dy(n, k, €). Recall that the WE of the ensemifhg, (C(?), C1))
can be made arbitrarily close %ﬁlm)(n, k) by increasingm. SinceT'(n,k,d) < S(n,k,d),
this shows that there exists aty, such that, for alin > mg, the minimum distance guaranteed
by Lemma 2.5.1 fof),,(C(?), C(") is greater than or equal i@ (n, k,¢). Qualitatively, it is
interesting to note that this proves (independently of the GVB) that there exists at least one code
satisfyingd,in, > davp(n, k).

The asymptotic form of the GVB says that, in the limitagoes to infinity, there

exists a code with rate = k/n and normalized minimum distanée= d,,;, /n if

H(E) <1-—r (2.5.3)
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whereH (z) = —xlogy x — (1 — ) logy (1 — z) is the binary entropy function [6]. L&, 5(r)

be the largest < 1/2 which satisfies (2.5.3) for a particular block length and rate. This is the
largest normalized minimum distance which is guaranteed to be achievable by the GVB.

Now, we can define similar normalized distance bounds for the uniform ensemble and

for the ensembleQ), (C(9), C¥). Letdy (r, €) be the largesi such thatim,, .o, S(n, [rn] ,6n)

< € and letdq(r, €) be the largest such thatlim,, ., T'(n, [rn],0n) < e. Following the
approach taken by Pierce in [17], it is easy to verify thatr, ¢) = oy (r, €) = dgvp(r) for any

e < 1.

2.5.2 Convolutional Accumulatesmn (CA™) Codes

Now, we apply Lemma 2.5.1 to get some numerical results for the minimum distance
of specific CA™ codes. Recall that CA codes are the serial concatenation of a terminated CC
andm interleaved rate-1 “accumulate” codes. The encoder fof*@aAdes is shown in Fig.
2.5.1. We note that the MLD performance of RA codes and some oth&rc@ées withm = 1
was reported in [10]. Generalizationsso > 1 were introduced in [15] and a coding theorem
for these codes was given in [16]. Now, we give results pertaining to the minimum distance of
CA™ codes using a few examples. For simplicity, our examples use CCs with memory 0, which
may also be viewed as repeated block codes [15].

In order to apply Lemma 2.5.1 to a specific ensemble, we must compute the ensemble
averaged WE and choose arlLet C; be a sequence of code ensembles wjtimformation bits
andn; code bits such that the rate= k;/n;, is fixed. We definel,(n;, €) as the largest min-
imum distance guaranteed, with probability- ¢, by applying Corollary 2.5.1 to the ensemble
averaged WE o€’;. In the following results, we look at the sequemken;, 1/2) using numeri-
cally averaged WEs for various code ensembles. This means that at least half of the codes in each
ensemble have a minimum distance of at le&stn;, 1/2). We consider 16 ensembles formed
by choosing one of four outer codes and the number of “accumulate” eoded, ... ,4. Each
outer code is referred to in shorthand: repeat by 2 (R2), repeat by 4 (R4), rate 8/9 single parity
check (P9), and thés, 4) extended Hamming code (H8). The results, over a range of codeword
lengths, are shown in Fig. 2.5.2.

We compare these code ensembles to the uniform ensemble by focusing on the rate
at which the minimum distance grows with the block length. It is important to note that, at a
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Figure 2.5.2: Probabilistic bound on the minimum distance of various Cédes.

fixed rate, a “good” code is defined by a minimum distance which grows linearly with the block
length. When examining these results, we will focus on whether or not the minimum distance
appears to be growing linearly with block length and on how closéiite;, 1/2) is to the GVB.

For ensembles of CA codes withm = 1, it is known that the minimum distance of almost all

of the codes grows lik&(n(*°~2/4") whered® is the free distance of the outer terminated CC
[11]. Examining Fig. 2.5.2 forn = 1, we see that the minimum distance grows slowly for R4
and H8 (which havel® > 3) and not at all for R2 and P9 (which hadeé = 2). Form = 2, the

growth rate of the minimum distance for R4, H8, and R2 appears distinctly linear. It is difficult
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to determine the growth rate of P9 with = 2 from these results. Withh = 3, all of the codes
appear to have a minimum distance growing linearly with the block length. In fact, the apparent
growth rates are very close 8., ;(r). Finally, withm = 4, the bounds on minimum distance
anddg,, g (n,r) are almost indistinguishable. These results are very encouraging and suggest
that, over a range of rates, even a few “accumulate” codes are sufficient to approach the behavior
of an asymptotically large number.

2.5.3 Expurgated Ensembles

One of the problems with average WEs is that some terms may be dominated by the
probability of choosing very bad codes. For example, at large enough SNR, the ensemble aver-
aged probability of error will always be dominated by the code with smallest minimum distance
even if the probability of choosing that code is extremely small. Now, suppose we could remove
all of the codes with minimum distanek,;,, < d from a particular ensemble. Then, every code
in the newexpurgated ensembhaust have minimum distanaé,,;, > d. Note that we must
choosed carefully, otherwise there may be no codes left in the new ensemble. Suppose that we
choosed ande together such that the total probability of picking a code with,, > d from the
original ensemble is exactly — e.

We can bound the ensemble averaged IOWE of the expurgated ensemble, which only
contains codes witl,,,;;, > d, by dividing the original ensemble into two disjoint sets. Bt ,
be the average IOWE for the ensemble with,, < d, which has probability, and Iet@w,h be
the average IOWE for the ensemble with;,, > d, which has probability — ¢. We can write

the original average IOWE as
Zw,h = 6Ew,h + (1 - e)aw,ha

and solving forC,, , gives

— Apn—€B
Cw,h _ w,hl — w,h )

Dropping theeB,, ;, term gives the upper bound

— 1 —

Cw,h < 1_ eAw,h-
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Up to this point, we have assumed thas known exactly. It is sufficient, however, to have an

upper bound om which is less thari. Applying Lemma 2.5.1 to this end gives
_ 1 _
Cw,h < — — Aw,h-
Dt Dy VY

Itis also clear, from the definition &, ,, thatC,, , = 0 for all h < d andw > 0.

It is important to note that this result allows one to derive performance bounds which
can be much tighter for typical codes in the ensemble. For example, suppose that all of the
codes in the ensemble with small minimum distance have a small total probadil#ty, that
the rest of the codes, which have very good minimum distance, have a large total probability.
Performance bounds based on the average WE will always have an error floor basedngon
the small minimum distance, while bounds based on the expurgated ensemble will represent the
performance of the typical codes, which have large minimum distance.

2.6 Performance

2.6.1 The Error Exponent

In this section, we draw on a generalization of Gallager’s derivation of the error ex-
ponent [8] due to Shulman and Feder [20]. This generalization allows one to upper bound the
probability of MLD error, using Gallager’s random coding error exponent, for any binary lin-
ear code. Applying Theorem 1 from [20] to (2.3.4) shows that, for any symmetric memoryless
channel with binary inputs and discrete outputs, the ensefpl€(©), C()) has nearly the
same error exponent as the Shannon ensemble of random codes. A Shannon random code is
generated by picking th&¥™ codewords uniformly from th@™ possible binary sequences with
replacement, and the Shannon ensemble is the set of possible codes chosen in this manner with
their associated probabilities. Since the Shannon ensemble achieves the capacity of any sym-
metric discrete memoryless channel, this proves that the ens€m&®), C(*)) can operate at

rates arbitrarily close to capacity.

Theorem 2.6.1 (Shulman-Feder).The probability of word errorPy; for a family of (n, [rn])
linear codes, transmitted over a symmetric memoryless channel with binary inputs and discrete
outputs, is upper bounded by

—nkE (r+logT2a)

Py <2 (2.6.1)
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whereE(-) is the error exponent of the channel and
A, 2"

" BT T

O

Corollary 2.6.2. Consider the ensembf@,,(C©), C*)) with n code bits andrn] information
for0 < r < 1. Let Py be the average probability of word error when a code is randomly chosen
from the ensemble and used on some channel with MLD. There existg anch that, for all

m > mg, We have

Py < 2—nE(7’+O(1/n)) ’

whereE(-) is the error exponent of the channel.

Proof. Using Theorem 2.6.1, we must simply show that the constaribr the ensemble
Q,,(C), C¥) remains essentially constantaincreases. Using the formula ferand Theo-
rem 2.3.10, we find that

A on

T S o ()

< ; + max 7—271

T 142 i<k (21— 1)(7)
Since~ can be made arbitrarily small by increasing(from Theorem 2.3.10), we choose,
such that

max 2 < !

1<h<n (201 —1)(7) — (1—277)

for all m > mg. This gives the upper bound < 2/(1 — 27™), and now we can estimate
(logy @) /n using

1 1 1 1
—logga < — — —logy(1 —27") =0 (—) .
n n n n
This completes the proof. O

Remark 2.6.3Since the constant is proportional tog™ for somegq < 1, this proof actually
requires the value ofrg to grow linearly withn. This is because the probability that a poor
code is chosen from the ensemble decays very slowly. Nonetheless, we believe that almost all
of the codes in the ensemble will achieve the error exponent as long, @gows faster than
logarithmically inn.
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2.6.2 Maximum Likelihood Decoding Performance

In Section 2.5.2, we applied (2.3.2) to compute the averaged WEs for sevetal CA
code ensembles. Using the WESs and the Viterbi-Viterbi Bound [22], we calculated upper bounds
on the probability of MLD error for some of these ensembles. The results for the R2, R4, and P9
ensembles are given in Figs. 2.7.1, 2.7.2, and 2.7.3, respectively. These figures also show the re-
sults of iterative decoding simulations which will be discussed in the next section. At high SNR,
these bounds are dominated by the probability of picking a code with small minimum distance,
as reflected in the pronounced error floors of the non-expurgated ensembles in Figs. 2.7.1, 2.7.2,
and 2.7.3. For this reason, we also considered the expurgated ensembles, as described in Section
2.5.3, withe = 1/2.

The results of applying the Viterbi-Viterbi bound to these ensembles have some char-
acteristics worth mentioning. In all cases, increasingthe number of “accumulate” codes,
seems to improve the performance both by shifting the cliff region to the left and by lowering
the error floor. We also see that, in some cases, the effect of expurgation is negligible, which
implies that almost all of the codes in the ensemble have small minimum distance. As we saw
in Section 2.5.2, the minimum distance of the expurgated ensemble depends on the outer code
and the number of “accumulate” codes. The minimum distance of the outer code does not seem
to completely explain the behavior though, because the P9 ensemble requires one more “accu-
mulate” code than the R2 ensemble in order for expurgation to make a significant difference. Of
course, at longer block lengths this may change.

The axes of the figures were chosen to show details of the performance curves, but in
many cases the error floor of the expurgated ensemble is too low to be shown. Consider the R2
ensemble withn = 2; the WER of the expurgated ensemble remains steep until arcamrd
where it flattens somewhat. The expurgated R2 ensemblemwith3 has a WER which remains
steep until well below the numerical accuracy of our computations. The expurgated P9 ensemble
with m = 3 also shows no error-floor region, but the curve loses some steepness at a WER of
108, These error floors are interesting because understanding the performance of these codes
at high SNR, where simulation is infeasible, is important for applications where very low error

rates are required.
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2.6.3 lterative Decoding Performance

In this section, we use computer simulation to evaluate the performance of iterative
decoding for these codes. A single decoding iteration correspors to 1 APP decoding op-
erations of an “accumulate” code (a backward/forward pass through all “accumulate” encoders)
and a single APP decoding operation of the outer code. It is worth noting that the complexity
of iterative decoding is linear in botth andn, making it quite feasible to implement. All sim-
ulation results were obtained using between 20 and 50 decoding iterations, depending on the
particular code, and modest gains are observed (but not shown) when the number of iterations is
increased to 200. These results are compared with analytical bounds in Figs. 2.7.1, 2.7.2, and
2.7.3 and shown by themselves in Figs. 2.7.4 and 2.7.5.

The discrepancies between the simulation results and MLD bounds in Figs. 2.7.1,
2.7.2, and 2.7.3 are very pronounced. While the MLD bounds predict uniformly improving
performance with increasing., it is clear that the performance of iterative decoding does not
behave in this manner. The optimum depends on the desired error rate and the minimum
distance of the outer code. In general, it appears that increasimgves the the cliff region of
the error curve to the right and makes the floor region steeper. This seems reasonable because
more rate-1 decoders (which have no coding gain) are applied before the outer code (with all
of the coding gain) is decoded. This results in a phenomenon where the iterative decoder often
does not converge, but rarely makes a mistake when it does converge.

The expurgated WE can also be used to detect the presence of bad codes which are
chosen with low probability. If the MLD expurgated bound is better than the non-expurgated
bound, then the effect of these bad codes has been reduced. The MLD expurgated bound is
not shown when it coincides with the non-expurgated bound. In some cases, iterative decoding
is performing better than the MLD expurgated bound (e.g., the R4 ensemblenwith 1).

This may occur because the use of well designed (e.g., S-random [5]) interleavers can provide a
minimum distance which is better than that guaranteed by Lemma 2.5.1.

The Interleaver Gain Exponent (IGE) conjecture is based on the observations of
Benedetto and Montorsi [2] and is stated rigorously in [4]. It states that the probability of MLD
decoding error for turbo-like codes will decay@$n—"), wherer depends on the details of the
coding system. If the IGE conjecture predicts that the BER (resp. WER) will decay with the
block length, then we say that the system has BER (resp. WER) interleaver gain. It is easy to
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verify that WER interleaver gain implies BER interleaver gain. The IGE and the MLD expur-
gated bound are quite closely connected. If a system has WER interleaver gain, the probability
of picking a code with codewords of fixed weight must decay to zero as the block length in-
creases. Therefore, one would expect the MLD expurgated bound to beat the non-expurgated
bound. On the other hand, if a system has only BER interleaver gain, then it is likely that the
MLD expurgated bound will equal the non-expurgated bound.

Finally, the IGE Conjecture predicts that the R2 code will have no WER interleaver
gain (i.e. Py = O(n~1)) for m = 1, but that it will have WER interleaver gain (i.€?, =
O(n=1)) for m = 2. In Fig. 2.7.4, the WER of the R2 code with = 1 does indeed appear to
be independent of block length and the WER of the R2 code wmith 2 is clearly decreasing
with block length. In Fig. 2.7.5, we see similar behavior for the interleaver gain of the P9 codes.

2.7 Conclusions and Future Work

In this chapter, we introduce a new ensemble of binary linear codes consisting of
any rater < 1 outer code followed by a large number of uniformly interleaved rate-1 codes.
We show that this ensemble is very similar to the ensemble of uniform random linear codes in
terms of minimum distance and error exponent characteristics. A key tool in the analysis of
these codes is a correspondence between input output weight transition probability matrices and
Markov Chains (MC), which allows us to draw on some well-known limit theorems from MC
theory. We derive a probabilistic bound on the minimum distance of codes from this ensemble,
and show it to be almost identical to the Gilbert-Varshamov Bound (GVB). In particular, our
analysis implies that almost all long codes in the ensemble have a normalized minimum distance
meeting the GVB.

Next, we consider a particular class of these codes, which we refer to as Convolutional
Accumulatern (CA™) codes. These codes consist of an outer terminated convolutional code
followed by m uniformly interleaved “accumulate” codes. We evaluate the minimum distance
bound for a few specific CA codes form = 1, ... ,4 and observe that these relatively small
values may be sufficient to approach the GVB. Finally, we use computer simulation to evaluate
the bit error rate and word error rate performance of thes& €ddes with iterative decoding and
compare this to the performance predicted by union bounds for maximum likelihood decoding
(MLD).
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Remark 2.7.1An MLD coding theorem for CA' codes can be found in [16], with numerical
estimates of the corresponding noise thresholds. Also given there are the thresholds which re-
sult from applying density evolution to the iterative decoding of these codes [18]. Finally, a

comprehensive treatment of both of these subjects can be found in [14].
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Figure 2.7.1: Analytical and simulation results for a rate 1/2"Réode withk = 1024 and

m = 1,2, 3. Simulations are completed using 50 decoding iterations and the top plot shows the
word error rate (WER) while the bottom plot shows the bit error rate (BER). The label XVV

signifies the Viterbi-Viterbi (VV) Bound applied to the expurgated ensembles.
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WER Simulation and Analysis for rate 1/4 RA™ Codes with K=1024 (50 iterations)
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Figure 2.7.2: Analytical and simulation results for a rate 1/4"Réode withk = 1024 and

m = 1,2, 3. Simulations are completed using 50 decoding iterations and the top plot shows the
word error rate (WER) while the bottom plot shows the bit error rate (BER). The label XVV
signifies the Viterbi-Viterbi (VV) Bound applied to the expurgated ensembles.



34

WER Simulation and Analysis for rate 8/9 PA" Codes with K=1024 (50 iterations)
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Figure 2.7.3: Analytical and simulation results for a rate 8/9'Ba&ith £k = 1024 andm =
1,2, 3. Simulations are completed using 50 decoding iterations and the top plot shows the word
error rate (WER) while the bottom plot shows the bit error rate (BER). The label XVV signifies
the Viterbi-Viterbi (VV) Bound applied to the expurgated ensembles.
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Figure 2.7.4: Simulation results for rate 1/2 RA&odes for 30 decoding iterations withh = 1, 2

andk = 1024, 2048, 4096, 8192, 16384. The top plot shows the word error rate (WER) while

the bottom plot shows the bit error rate (BER).
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WER for Rate 8/9 PA’ Code by simulation (20 iterations)
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and 20 decoding iterations. The top plot shows the word error rate (WER) while the bottom plot
shows the bit error rate (BER).
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2A Proof of Theorem 2.4.1

The generator matrixT',,, of the lengthn block code is

ho hl h2 cee hn—l
ho ha ... hpoo
Tn = ho
ho M
L h/O |

For simplicity of notation, we definge: = [ + 1. By hypothesis, the generator matrix
of this code will be the identity matrix for any < m, making the code trivial. We will show
that the block code of length > m is primitive by first establishing that the length-block
code is primitive, then showing that the length- 1 block code is primitive if the length code
is primitive, and finally using induction to extend the proof to arbitrarily lange

Recall that a rate-1 block code is primitive if the MC associated witHQtsibmatrix
of the code’s IOWTP matrix is primitive. LeaR,, be theQ submatrix of the lengtm block
code’s IOWTP matrix. It is easy to verify th@n]m is greater than zero iff the corresponding
component of the IOWE of the lengthblock code,AEf}), is greater than zero. Thinking of the
latter as an adjacency matrix, we associate to the lendpiock code a directed graph,,, which
we call theweight-mapping graphT he vertices ofx,,, which are labeled, 2, . . . ,n, correspond
to the Hamming weights of input and output sequences of the code. Denote the Hamming weight
of a binary vectow by |v|. For each binary input to the codb, = b1, b2,... ,b,, there is a
directed edge from the vertex label@s to the vertex labele¢t| if the input vectorb produces
the output vectoe. This implies that the grapty,, will have a directed edge from vertéxo
vertexy iff AEZ) > 0. Therefore, the grapy,, has the same connectivity as the MC associated
with Q,,, and we have reduced the problem to showing that éggHor n > m, is primitive.

We will prove that eacltr,, is primitive by establishing that it is both irreducible and
aperiodic. By definition, a graph is irreducible if there is a directed path from each vertex to
every other vertex. A graph is aperiodic if the greatest common divisor of the lengths of all its
cycles (i.e., paths which start and end in the same state) is one. Therefore, for aperiodicity, it is
sufficient to exhibit a single vertex with a self-loop (i.e., a directed edge from a vertex back to
itself). The verification of these properties @y, will be simplified by the fact, proved below,

thatG,, is a subgraph of7,, ;1.
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For the primary case, corresponding to length- m, the generator matrix of the code

Consider strings of the forrfil*, 0»=%] and [15=%,0"~%, 1], wherea’ refers to a string ofj
repeated symbolg. For eachs = 1,... ,n — 1, the inputb = [1%,0"*] has weights and
produces an output= [1%,0"~*~! 1] which has weight + 1. Likewise, foreacls = 2,... ,n,
the inputb = [1°=1,0"~% 1] has weights and produces an outpat= [15~1, 0"~**] which
has weights — 1. Now consider any vertex, labelégin the graph’z,,,. These input-output pairs
establish that there is a directed edge from the vertex labdtethe vertex labeled+ 1 and to
the vertex labeled — 1, if those vertices exist. So there is a directed path from any vertex to any
other vertex, andy,, is irreducible. The inpub = [0"~! 1] produces the output = [0"1, 1]
which establishes that the vertex labeled 1 has a self-loop. So the gtaph also aperiodic,
and therefore primitive.
Now we assume thatr,, is primitive for somen > m, and use this to prove that

Gn+1 IS primitive. We start by proving the result mentioned abat/g:is a subgraph of7,, 1.
Consider any inputb, to the rate-1 block code with generator mafiiy. The output will be
bT,, and the weight mapping grapt,, will have an edge from the vertex labelds| to the
vertex labeledbT,,|. In fact, all edges of+,, are enumerated by considering all possible inputs.

Notice that the generator matriX,, ., can be written as

TnJrl =

This implies that[ 0 b } Tht1 = [ 0 bT, } and proves, for each, that the weight map-
ping graphG, 1 also has a directed edge from the vertex labélgidto the vertex labeled
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Figure 2A.1: The weight mapping grapfi,, with the G subgraph drawn in solid lines.

|[bT,|. So, for every directed edge A, connecting two labeled vertices, there is a directed
edge inG,,41 connecting two vertices with the same labels. The vertic&s,odre also a subset
of the vertices of7,,, 1, SOG, is a subgraph of7,, ;.

To prove that the grapty,, 11 is irreducible, it now suffices to show thét,,; has a
directed edge from the vertex labeled+ 1 to some vertex with label £ n + 1, as well as a
directed edge from some such vertex to ventex 1. Considerb = [1"1], the only input of
weightn + 1, and notice that the:th column of7}, ., has exactly two ones. Therefore thh
element ofbT,,; must be zero an®T,,;; # b. This implies that an input of weight + 1
produces an output of weight< n + 1. Therefore,G, 1 has a directed edge from the vertex
labeledn + 1 to a vertex labeledwherei < n+1. Next, we notice thal',,, 1 is upper triangular
and has all ones on the main diagonal, which makes it invertible. This means that there must be
a unique inputp’, which is mapped to the outplit = [1"*!]. We know that this input must
obey the equatiob’T,,.; = b, and sincebT,,;; # b, we also know thab’ # b. Sinceb is
the only lengthén + 1) sequence of weight + 1, we conclude thab’| < n + 1. This implies
that there is an input of weighit= |b’| < n + 1 which produces an output of weight+ 1.
Therefore,GG,,+1 has a directed edge from a vertex labeletbr somei < n + 1, to the vertex
labeledn + 1. We conclude that7,,;; is irreducible.

The aperiodicity ofG,, 11 follows immediately from the fact that the subgra@h, C
G,+1 contains a self-loop at vertex 1. This completes the proof @hat; is primitive, and,

therefore, the proof that the rate-1 block code of length 1 is primitive, as desired. O

We illustrate the proof technigue using the “accumulate” code example from Section
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2.2.3. The impulse responde, of the “accumulate” code is the infinite sequence of ohgs;

1, for i > 0. The weight mapping graplds, is shown in Fig. 2A.1 and th@s subgraph is drawn

with solid lines. It is easy to see th&}; is both irreducible and aperiodic; in particular, note the
self-loop at the vertex labeled 1. There is an edgdrom vertex 4 to vertex 2, corresponding to
the weight-4 input vectob = [1%], and a directed edge from vertex 1 to vertex 4, corresponding
to the weight-4 input vectds’ = [1, 0%]. Together with the irreducibility of+s, this implies that

G, isirreducible. The self-loop at vertex 1 ensures the aperiodicity and, therefore, the primitivity
of Gy.
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