
Chapter 2

The Serial Concatenation of Rate-1

Codes Through Uniform Interleavers

2.1 Introduction

Since the introduction of turbo codes by Berrou, Glavieux, and Thitimajshima [3],

iterative decoding has made it practical to consider a myriad of different concatenated codes,

and the use of “random” interleavers and recursive convolutional encoders has provided a good

starting point for the design of new code structures. Many of these concatenated code structures

fit into a class that Divsalar, Jin, and McEliece call “turbo-like” codes [4]. Perhaps the simplest

codes in this class are Repeat Accumulate (RA) codes, which consist only of a repetition code, an

interleaver, and an accumulator. Yet, Divsalaret al. prove that the maximum likelihood decoding

(MLD) of RA codes has vanishing word error probability, for sufficiently low rates and any fixed

signal to noise ratio (SNR) greater than a threshold, as the block length goes to infinity. This

demonstrates that powerful error-correcting codes may be constructed from extremely simple

components.

In this chapter we consider the serial concatenation of an arbitrary binary linear outer

code of rater < 1 with m identical rate-1 binary linear inner codes where, following the con-

vention of the turbo-coding literature, we use the term serial concatenation to mean serial con-

catenation through a “random” interleaver. Any real system must, of course, choose a particular

interleaver. Our analysis, however, will make use of theuniform random interleaver(URI) [2]
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Figure 2.1.1: Our system consists of any rater < 1 code followed bym rate-1 codes.

which is equivalent to averaging over all possible interleavers. We analyze this system using a

probabilistic bound on the minimum distance and show that, for any fixed block length and large

enoughm, the ensemble contains some codes whose minimum distance achieves the Gilbert-

Varshamov Bound (GVB) [6].

Our work is largely motivated by [4] and by the results of Öberg and Siegel [12]. Both

papers consider the effect of a simple rate-1 “accumulate” code in a serially concatenated system.

In [4] a coding theorem is proved for RA codes, while in [12] the “accumulate” code is analyzed

as a precoder for the dicode magnetic recording channel. Benedettoet al. also investigated the

design and performance of Double Serially Concatenated Codes in [1].

We also discuss a specific class of codes in this family, known as Convolutional

Accumulate-m (CAm) codes, which were introduced as Generalized Repeat Accumulate Codes

in [15] and [16]. A CAm code is a serially concatenated code where the outer code is a termi-

nated convolutional code (CC) and the inner code is a cascade ofm interleaved “accumulate”

codes. These codes were studied in some depth form = 1 by Jin in [10]. This chapter focuses

on the case ofm > 1, and gives a straightforward Markov chain based analysis of the distance

properties and MLD performance.

The outline of the chapter is as follows. In Section 2.2, we review theweight enumer-

ator (WE) of linear block codes and the union bound on the probability of error for maximum

likelihood decoding. We also review the average weight enumerator for the serial concatenation

of two linear block codes through a URI, and relate serial concatenation to matrix multiplication

using a normalized form of each code’sinput output weight enumerator(IOWE). In Section 2.3,

we introduce our system, shown in Fig. 2.1.1, compute its average output WE, and compare

this WE to that of random codes. In Section 2.4, we consider some properties of rate-1 codes

which affect the performance of our system. In Section 2.5, we discuss a probabilistic bound on

the minimum distance of any code, taken from an ensemble, in terms of the ensemble averaged

WE. Applying this bound to the WE from Section 2.3 gives an expression that is very similar

to the Gilbert-Varshamov Bound (GVB) and that is asymptotically equal to the GVB for large
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block lengths. We also evaluate this bound numerically for various CAm codes and observe that

3 or 4 “accumulate” codes seem to be sufficient to achieve the bound derived for asymptotically

largem. In Section 2.6, we evaluate the performance of those same CAm codes using bounds

on the MLD error probability and simulations for iterative decoding error probability. Finally, in

Section 2.7, we share some conclusions and discuss the direction of our future work.

2.2 Weight Enumerators and Serial Concatenation

2.2.1 The Union Bound

In this section, we review the weight enumerator of a linear block code and the union

bound on error probability for MLD. The IOWEAw,h of an(n, k) block encoder is the number

of codewords with input Hamming weightw and output Hamming weighth, and the WEAh is

the number of codewords with any input weight and output weighth. Using these definitions,

the MLD probability of word error is upper bounded by

PW ≤
n∑

h=1

k∑
w=1

Aw,hz
h,

and the MLD probability of bit error is upper bounded by

PB ≤
n∑

h=1

k∑
w=1

w

k
Aw,hz

h.

The parameterz is known as the Bhattacharyya parameter, andzh represents an upper bound on

the pairwise error probability between any two codewords differing inh positions [21, p. 88].

It can be computed for any memoryless channel, and for the binary-input AWGN channel it is

z = e−Es/N0 , whereEs/N0 is the SNR of the decision statistic.

2.2.2 Serial Concatenation through a Uniform Interleaver

We now briefly review the serial concatenation of codes through a URI. The introduc-

tion of the URI in the analysis of turbo codes, by Benedetto and Montorsi [2], has made the

analysis of complex concatenated coding systems relatively straightforward; using the URI for

analysis is equivalent to averaging over all possible interleavers. The important property of the

URI is that the output sequence distribution is a function only of the input weight distribution.
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More precisely, given that the input to a URI has weightw, each output sequence of weightw

will be observed with equal probability and all other output sequences will have zero probability.

Consider any(n, k) block encoder with IOWEAw,h preceded by a URI. We will refer

to such a code as auniformly interleaved code(UIC). The probability,Pr (w → h), of the

combined system mapping an input sequence of weightw to an output sequence of weighth is

Pr (w → h)
def
=

Aw,h(
k
w

) . (2.2.1)

Now we can consider the ensemble of(n, k) block codes formed by first encoding

with an (n1, k) outer code with IOWEA(o)
w,h, permuting the output bits with a URI, and finally

encoding again with an(n, n1) inner code with IOWEA(i)
w,h. The ensemble averaged IOWE

Aw,h is given by

Aw,h =
n1∑

h1=0

A
(o)
w,h1

Pr (h1 → h)

=
n1∑

h1=0

A
(o)
w,h1

A
(i)
h1,h(n1

h1

) . (2.2.2)

The average IOWE for the serial concatenation of two codes may also be written as

the matrix product of the IOWE for the outer code and a normalized version of the IOWE for the

inner code. Let us define, for any code, theinput output weight transition probability(IOWTP)

Pw,h as the probability that an input sequence of weightw is mapped to an output sequence of

weighth. From (2.2.1), we can see thatPw,h = Pr (w → h) . Substituting (2.2.1) into (2.2.2),

we have

Aw,h =
n1∑

h1=0

A
(o)
w,h1

P
(i)
h1,h = A(o)P(i).

whereA(o)P(i) is a matrix product and the matrix representations are defined by
[
A(o)

]
w,h

=

A
(o)
w,h and

[
P(i)

]
w,h

= P
(i)
w,h. Using induction, it is easy to verify that matrix multiplication by

an arbitrary number of IOWTP matrices results in the average IOWE,Aw,h, of the overall serial

concatenation. It is also easy to verify, using (2.2.1), that all IOWTP matrices are stochastic.

2.2.3 A Simple Example - The Accumulate Inner Code

We compute the IOWE and IOWTP of the rate-1 “accumulate” code [4]. The “accu-

mulate” code is a block code formed by truncating, aftern symbols, the recursive rate-1 CC with
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Input Sequence 000 001 010 100 011 101 110 111

Input Weight 0 1 1 1 2 2 2 3

Output Sequence 000 001 011 111 010 110 100 101

Output Weight 0 1 2 3 1 2 1 2

Table 2.1: Input-output sequences and weight mappings forn = 3 “accumulate” code.

generator matrixG(D) = 1/(1+D). The generator matrix for this block code is ann×nmatrix

with all ones in the upper triangle and all zeros elsewhere. For the casen = 3, the generator

matrix is

C =


1 1 1

0 1 1

0 0 1

 .
Using Table 2.1, we see that the uniformly interleaved “accumulate” code maps an input of

weight 1 to an output of weight 1, 2, or 3, each with probability 1/3. So thew = 1 row of the

IOWTP matrix is
[

0 1/3 1/3 1/3
]
. The matrix representations of the IOWE and IOWTP

are given by

A =


1 0 0 0

0 1 1 1

0 2 1 0

0 0 1 0

 P =


1 0 0 0

0 1/3 1/3 1/3

0 2/3 1/3 0

0 0 1 0

.

2.3 Multiple Rate-1 Serial Concatenations

2.3.1 The Input Output Weight Enumerator

Now, we consider the average IOWE,Aw,h, of the(n, k) linear block encoder formed

by first encoding with any(n, k) linear block encoder and then encoding with a cascade of

m identical interleaved rate-1 block encoders. Let the outer encoder be defined by thek × n

generator matrixC(o) and the inner code be defined by then × n generator matrixC(i). The

serial concatenation of linear block codes is achieved by multiplying their generator matrices, so
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the generator matrix of any code in this ensemble can be written as

C = C(o)Π1C(i)Π2C(i) · · ·ΠmC(i), (2.3.1)

where eachΠi is an n × n permutation matrix. Our ensemble of encoders, denoted by

Ωm(C(o),C(i)), can be defined succinctly by a probability distribution over allk × n gener-

ator matrices. In theory, this distribution can be computed by counting the number of distinct

ways each generator matrix can be written in the form of (2.3.1), but the large number of gener-

ator matrices makes this infeasible. Instead, we focus on computing the average IOWE of this

ensemble. LetA(o)
w,h be the IOWE associated with the generator matrixC(o) and letA(i)

w,h be the

IOWE associated with the generator matrixC(i). Let P be the IOWTP matrix associated with

A
(i)
w,h, then the average IOWEA

(m)
w,h of this ensemble is

A
(m)
w,h =

n∑
h1=0

A
(o)
w,h1

[Pm]h1h . (2.3.2)

The linearity of the code guarantees that inputs of weight zero will always be mapped

to outputs of weight zero and inputs of weight greater than zero will always be mapped to outputs

of weight greater than zero, so the matrixP will be block diagonal with two blocks. Let the first

block be the1 × 1 submatrix associated withw = h = 0 and the second block be then × n

submatrix formed by deleting the first row and column ofP. In general, we will refer to the

second block as theQ submatrix of the IOWTP matrix, and we write

P =

 1 0

0 Q

 .
Multiplication acts independently on the components of a block diagonal matrix, so we can also

write

Pm =

 1 0

0 Qm

 .
If P is a finite dimensional stochastic matrix, then we can associate it with a finite-

state Markov Chain (MC) with state transition matrixP. In this case, bothP andQ are finite

dimensional stochastic matrices and the association matches states in the MC with input/output

weights of the rate-1 UIC. Using some well-known definitions from the theory of MCs, we say
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that π = [π0, . . . , πn] is a stationary state distribution of the MC with transition probability

matrix P if πP = π and
∑
πi = 1. This allows us to associate a stationary state distribution,

π, of the MC with a stationary weight distribution of the rate-1 UIC. If the average WE,Ah, of

a code ensemble is not changed by encoding every code in the ensemble with the same rate-1

UIC, thenAh is a stationary WE of that rate-1 UIC. Using (2.2.2), it is easy to verify that this

occurs when

[
A1, . . . , An

]
Q =

[
A1, . . . , An

]
,

which makes
[
A1, . . . , An

]
/(2k − 1) a stationary state distribution of the MC associated with

state transition matrixQ. Recall also that a MC, with state transition matrixQ, is irreducible if

and only if, for alli, j, there exists a positiveti,j such that
[
Qti,j

]
i,j
> 0 [19, p. 18].

Definition 2.3.1. A rate-1 UIC isirreducible if the Q submatrix of its IOWTP matrix,P, can

be associated with an irreducible MC.

We now draw upon some well-known theorems from the theory of non-negative ma-

trices and MCs [19, p. 119].

Theorem 2.3.2 (Perron-Frobenius).An irreducible Markov Chain has a unique positive sta-

tionary state distribution.

Proposition 2.3.3. LetP be the IOWTP matrix of an irreducible rate-1 UIC with block lengthn.

The infinite family of stationary state distributions,π(α) = [π0(α), . . . , πn(α)], of P is defined

by

πh(α) =

 α h = 0

(1 − α) (n
h)

2n−1 1 ≤ h ≤ n
.

Finally, the unique stationary distribution for inputs of non-zero weight is given byπ(0).

Proof. The(n+1)× (n+1) matrix,P, is block diagonal with the first block equal to the scalar,

1, and the second block equal to then × n matrixQ. It is easy to verify thatP has exactly two

irreducible components because a scalar is irreducible andQ is irreducible by Definition 2.3.1.

The stationary distribution of the scalar component is the unit vector associated with inputs of

weight zero because a linear code always maps the all zero input to the all zero output.
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Now, we consider the stationary distribution of theQ irreducible component. The

matrixQ represents the action of a rate-1 linear code on the set of all non-zero sequences, which

is simply a permutation of these sequences. Therefore, a uniform distribution on the set of non-

zero sequences will be stationary under this mapping. Now, we can simply calculate the weight

distribution associated with a uniform distribution on the set of non-zero sequences. Simple

combinatorics gives the answer

πh =

(n
h

)
2n − 1

for 1 ≤ h ≤ n.

Any stationary distribution ofP can be written as the convex combination of these two

unique stationary distributions (one for each irreducible component). Restricting our attention to

inputs of non-zero weight has the effect of making the stationary distribution unique and equal

to the stationary distribution of theQ component.

Example 2.3.4. The rate-1 code from Section 2.2.3 is irreducible, and applying Proposition

2.3.3 gives 
0

3/7

3/7

1/7



T 
1 0 0 0

0 1/3 1/3 1/3

0 2/3 1/3 0

0 0 1 0

 =


0

3/7

3/7

1/7



T

.

An MC with state transition matrixQ is primitive if and only if there exists a positive

t such that
[
Qt
]
i,j
> 0 for all i, j. This is equivalent to the state transition matrix,Q, having

a unique eigenvalue of maximum modulus. The following theorem from the theory of MCs

characterizes the asymptotic behavior of a primitive matrix taken to a large power [19, p.119].

Theorem 2.3.5 (Perron-Frobenius).If Q is the state transition matrix of a primitive Markov

Chain, with unique stationary distributionπ, then

lim
m→∞Qm =


π
...

π

 .
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Moreover, the convergence is uniform and geometric. Specifically, if we letλ2 be the eigenvalue

with second largest magnitude, then
∣∣∣[Qm]ij − πj

∣∣∣ = O(qm), for anyq satisfying|λ2| < q <

1.

Definition 2.3.6. An irreducible rate-1 UIC isprimitive if the MC associated with theQ sub-

matrix of its IOWTP matrix is primitive.

Corollary 2.3.7. If P is the IOWTP matrix of a primitive rate-1 UIC with block lengthn, then

lim
m→∞ [Pm]ij =


1 if i = j = 0(n

j

)
/(2n − 1) if i > 0 andj > 0

0 otherwise

. (2.3.3)

Example 2.3.8. The rate-1 code from Section 2.2.3 is also primitive, and applying Theorem

2.3.5 confirms that

lim
m→∞Pm =


1 0 0 0

0 3/7 3/7 1/7

0 3/7 3/7 1/7

0 3/7 3/7 1/7

 .

2.3.2 A Large Number of Concatenations

We now use (2.3.2) and Theorem 2.3.5 to compute the average WE of any rater < 1

outer code serially concatenated withm primitive rate-1 UICs, in the limit asm goes to infinity.

The intriguing part of this result is that this average WE is independent of the particular outer

encoder and inner encoder chosen. Using the notation from Section 2.3.1, we letC(o) be the

k × n generator matrix of the invertible outer code andC(i) be then × n generator matrix of

the primitive rate-1 inner code, and we letΩm(C(o),C(i)) denote the ensemble of codes withm

serial concatenations. Since this sequence of ensembles may not approach a well-defined limit

asm goes to infinity, we avoid discussing properties of the infinite-m ensemble. Instead, we say

that a property holds forΩ∗(C(o),C(i)) if there exists a finitem0 such that the property holds

for all Ωm(C(o),C(i)), form ≥ m0.

Remark 2.3.9.An interesting open question is whether the ensembleΩm(C(o),C(i)) contains

all invertible linear codes, for sufficiently largem. Using the generator matrix definition, (2.3.1),

it is possible to give a sufficient condition for this. LetS be the set of alln × n permutation
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matrices and defineT =
{
ΠC(i)|Π ∈ S

}
. SinceC(i) is invertible by assumption and all per-

mutation matrices are invertible, it is clear thatT is a subset of the multiplicative group ofn×n

invertible binary matrices denotedGLn(F2). Let Tm = {V1V2 . . .Vm|Vi ∈ T} and assume

that there exists anm0 such thatTm0 = GLn(F2). In this case,Ωm(C(o),C(i)) will contain all

invertible linear codes for allm ≥ m0. Furthermore, the limit,limm→∞ Ωm(C(o),C(i)), exists

and is equal to the ensemble of all invertible linear codes under the uniform distribution. For

example, whenC(i) is the “accumulate” code, we have verified that this occurs forn = 2, 3, 4

with m0 = n+ 1.

Theorem 2.3.10.LetA
(m)
h (n, k) be the average output WE of the ensemble,Ωm(C(o),C(i)),

whereC(o) is thek × n generator matrix of the outer code andC(i) is then × n generator

matrix of the primitive rate-1 inner code. If we defineA
(∞)
h (n, k) to be limm→∞A

(m)
h (n, k),

then we have

A
(∞)
h (n, k) =


(
2k − 1

) (n
h)

2n−1 if h ≥ 1

1 if h = 0
. (2.3.4)

Furthermore, for anyγ > 0, there exists anm0 such that
∣∣∣A(∞)

h (n, k) −A
(m)
h (n, k)

∣∣∣ < γ for

all m ≥ m0.

Proof. Starting with (2.3.2) gives

A
(∞)
h (n, k) = lim

m→∞

k∑
w=1

n∑
h1=1

A
(o)
w,h1

[Pm]h1h .

Applying (2.3.3) gives

A
(∞)
h (n, k) =

 k∑
w=1

n∑
h1=1

A
(o)
w,h1

 (n
h

)
2n − 1

,

and the double sum is independent of the outer code and equal to the number of codewords

(excluding the all zeros codeword), so

A
(∞)
h (n, k) =

(
2k − 1

) (n
h

)
2n − 1

.

For the second statement, we start with
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∣∣∣A(∞)
h −A

(m)
h

∣∣∣ =

∣∣∣∣∣∣
rn∑

w=1

n∑
h1=1

A
(o)
w,h1

(
πh − [Pm]h1h

)∣∣∣∣∣∣
and then we separate the terms and apply Theorem 2.3.5 to get

∣∣∣A(∞)
h −A

(m)
h

∣∣∣ ≤

 rn∑
w=1

n∑
h1=1

A
(o)
w,h1

∣∣πh − [Pm]h1h

∣∣
= (2rn − 1)O(qm).

Although the(2k − 1) term is possibly quite large, it is a constant with respect tom,

so this expression is stillO(qm). Sinceq < 1, it follows that, for anyγ > 0, there exists anm0

such that, for allm ≥ m0, the inequality
∣∣∣A(∞)

h (n, k) −A
(m)
h (n, k)

∣∣∣ < γ holds.

Let us define the uniform ensemble of linear codes as the ensemble generated by the

set of allk × n generator binary matrices. This is equivalent to the ensemble formed by letting

each entry of a random generator matrix be chosen independently and equiprobably from the

set{0, 1}. For non-zero input weights, the average WE is computed by simply noting there are

2k − 1 input sequences, each of which will be mapped to a weight-h codeword with probability(n
h

)
/2n. Of course, the all zero input is always mapped to the all zero output. Therefore, the

average WE of the uniform ensemble is given by

A
U
h (n, k) =

 (2k − 1)(
n
h)
2n for 1 ≥ h ≥ n

1 + 2k−1
2n for h = 0

. (2.3.5)

Since the average number of weight zero codewords is larger than one, there will always be some

codes in this ensemble which are not invertible.

It turns out that the WE,A
(∞)
h (n, k), is almost identical to the average WE of the

uniform ensemble of random linear codes. The main difference between these two ensembles

is that all of the codes inΩm(C(o),C(i)) are invertible, while the uniform ensemble contains a

small percentage of non-invertible codes. The following Corollary of Theorem 2.3.10 explicitly

compares the average WE of the ensemble,Ωm(C(o),C(i)), with the average WE of the uniform

ensemble of random codes.
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Corollary 2.3.11. Let A
(m)
h (n, k) be the average WE of the ensembleΩm(C(o),C(i)), as de-

fined in Theorem 2.3.10. For any0 < r < 1 and ε > 0, there exist integersn0 andm0 such

that ∣∣∣AU
h (n0, drn0e) −A

(m)
h (n0, drn0e)

∣∣∣ ≤ ε

for all m ≥ m0.

Proof. Using the fact thatr < 1, it is easy to verify that, for anyε > 0, there exists ann0 such

that ∣∣∣AU
h (n, drne) −A

(∞)
h (n, drne)

∣∣∣ ≤ ε

2
,

for all n ≥ n0. Using Theorem 2.3.10, it is also easy to verify that, for anyε > 0, there exists an

m0 such that ∣∣∣A(∞)
h (n0, drn0e) −A

(m)
h (n0, drn0e)

∣∣∣ ≤ ε

2
,

for all m ≥ m0. Combining these two bounds completes the proof.

2.4 Properties of Rate-1 Codes

2.4.1 Conditions for Primitivity

In this section, we consider the conditions under which a rate-1 linear code is primitive.

Theorem 2.4.1 gives a sufficient condition by showing that the rate-1 block code formed by

truncating any rate-1/1 CC is primitive. Surprisingly, this also includes non-recursive CCs, which

are seldom considered in practical turbo coding systems.

Theorem 2.4.1. Let h = h0, h1, h2, . . . be the semi-infinite impulse response of a nontrivial,

causal, rate-1/1 convolutional code. To avoid degenerate cases, assume thath0 = 1 . Define

l to be the smallest positive integer such thathl = 1. Then, the rate-1 block code formed by

truncating this convolutional code, to any lengthn ≥ l + 1, is primitive.

Proof. This proof is given in the Appendix.

Proposition 2.4.2 establishes a simple necessary condition for primitivity. In fact, we

conjecture that this condition is also sufficient.
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Proposition 2.4.2. A primitive rate-1 linear code must have at least one row of even weight in

its generator matrix.

Proof. Assume that all rows of the generator matrix have odd weight. It is easy to see that any

linear combination of an even (odd) number of rows will have even (odd) weight. So even (odd)

weight inputs will map only to even (odd) weight outputs and there will be no weight paths from

odd weights to even weights and vice-versa. Therefore, the MC associated with this code is

reducible into at least two components and the rate-1 code is not primitive.

Now, we discuss two exceptional classes of rate-1 codes which are not primitive. Re-

member that a rate-1 code cannot be primitive if its associated MC is reducible. First, consider

any rate-1 code whose generator matrix is ann × n permutation matrix. All of these codes

map inputs of weighth to outputs of weighth and therefore their associated MCs are reducible

into n + 1 components. Next, for evenn, consider any rate-1 code whose generator matrix is

the complement of ann × n permutation matrix. For inputs of even weight, this maps inputs

of weighth to outputs of weighth. For inputs of odd weight, this maps inputs of weighth to

outputs of weightn− h. Therefore, the MC associated with any of these codes is reducible into

roughly3n/4 components.

In fact, we have been unable to construct a rate-1 code that is not primitive and that

still has at least one row of even weight. This leads us to conjecture that the necessary condition

implied by Proposition 2.4.2 is also sufficient.

Remark 2.4.3.Suppose the MC associated with a rate-1 code breaks into exactly two compo-

nents based on parity (cf. the proof of Proposition 2.4.2). In this case, a variant of Theorem

2.3.10 will still apply. This is because the code will preserve the odd or even parity of its inputs.

Since the outer code is linear, either none of the codewords will have odd weight or exactly half

of the codewords will have odd weight. If exactly half have odd weight, then the average WE

will be identical to (2.3.4). If none have odd weight, then the even weight terms of the overall

code will be roughly doubled while the odd weight terms will be exactly zero. For this reason,

this type of reducibility based on parity is essentially irrelevant in terms of minimum distance

and performance.
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2.4.2 Recursive vs. Non-Recursive Rate-1/1 CCs

If we consider the average WE of the ensembleΩm(C(o),C(i)), for finitem, then there

is a distinct difference between using a generator matrix,C(i), derived from a recursive rate-1/1

CC and one derived from a non-recursive rate-1/1 CC. This difference manifests itself in the

convergence rate of the matrix productPm to its limiting value for largem. This is very much

related to the convergence rate, inm, of the average WE of the ensembleΩm(C(o),C(i)) to the

value predicted by Theorem 2.3.10. Since the WE predicted by Theorem 2.3.10 has almost no

codewords of small output weight, we compare these two ensembles by considering the number

of cascaded rate-1 UICs required to map an input of small weight to an output whose weight

grows linearly with the block length.

Consider the non-recursive CC with generatorG(D) = 1 + D. It is easy to verify

that the output weight of this code will be at most twice the input weight. If the desired output

weight is ρn and the input weight is 1, then the minimum number of encodings required is

log2 ρn. More generally, for any non-recursive CC with an impulse response of weightd, the

minimum number of encodings islogd ρn. Therefore, for fixedm and asymptotically largen,

there will be no mappings from input weight 1 to output weightρn. So, for any finitem, we

expect this ensemble to have low weight codewords.

Now consider the recursive CC with generatorG(D) = 1/(1+D). It is easy to verify

that this encoder maps an input of weight 1 at positioni = 1, . . . , n to an output weight of

n − i + 1. Moreover, most inputs of small weight are mapped to outputs of large weight. If

we view this code simply as the inverse of the previous code, then it is clear that if one code

mapsAw,h input sequences from weightw to weight h then the other code maps the same

number of sequences from weighth to weightw. So, for fixedm and asymptotically largen,

the interleaved cascade ofm recursive rate-1/1 CCs has no paths from weightρn to weight1.

In practice, recursive CCs are preferred because this is a much more desirable property for error

correcting codes. In fact, the results of Section 2.5.2 imply that many codes with relatively small

m still have large minimum distance.

Remark 2.4.4.Another way to see the difference between recursive and non-recursive rate-1

CCs is in the second largest eigenvalue,λ2, of theQ submatrix of the IOWTP matrix. Numerical

observations suggest that the magnitude of this eigenvalue for theG(D) = 1/(1 + D) code is

|λ2| = O(n−1) while for theG(D) = 1 +D code, it is|λ2| = O(1). It is well known that the
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Figure 2.5.1: Encoder for a CAm Code with the block size indicated at each stage.

convergence of the matrix productPm to its limiting value is very sensitive to the magnitude of

λ2 (cf. Theorem 2.3.5). Moreover, we believe this behavior may be characteristic of all recursive

and non-recursive codes, and if this is true, then it is another factor which favors recursive CCs

over non-recursive CCs.

2.5 Bounds on the Minimum Distance

2.5.1 The Minimum Distance Distribution

In this section, we examine minimum distance properties of the ensemble

Ωm(C(o),C(i)). We make use of a general upper bound on the probability that any code in

some ensemble has minimum distance,dmin, less thand. The key property of this bound is that

it can be computed using only the average WE of the ensemble. The bound, a simple corollary

of the Markov inequality [13, p. 114], has been used previously by Gallager [7]and by Kahale

and Urbanke [11]. For convenience and completeness, we now explicitly state and prove this

bound.

Lemma 2.5.1. The probability that a code, randomly chosen from an ensemble of linear codes

with average WEAh, hasdmin < d is bounded by

Pr(dmin < d) ≤ (A0 − 1) +
d−1∑
h=1

Ah. (2.5.1)

Proof. LetAh be a random variable equal to the number of codewords with weighth in a code

randomly chosen from an ensemble of codes with average WEAh. We can bound the probability

that a code in the ensemble has minimum distance less thand with

Pr(dmin < d) = Pr

(
(A0 > 1) ∪

d−1⋃
i=1

(Ai > 0)

)
.



21

SinceAh takes only positive integer values, we can apply the union bound and then the Markov

inequality to get

Pr(dmin<d) ≤ Pr(A0 − 1 ≥ 1)+
d−1∑
h=1

Pr(Ah ≥ 1)

≤ (A0 − 1) +
d−1∑
h=1

Ah.

Now, we use Lemma 2.5.1 to compare the minimum distance distribution of the uni-

form ensemble with that ofΩm(C(o),C(i)). Both of these are also compared to the well-known

Gilbert-Varshamov Bound (GVB).

Using the counting argument of Gilbert [9], it is easy show that there exists at least

one code withn code bits,k information bits, and minimum distanced if

(2k − 1)
d−1∑
h=0

(
n

h

)
< 2n. (2.5.2)

Varshamov derives a slightly better bound by considering only linear codes, and the similarity

between the two permits one to refer to them jointly as the GVB [6]. LetdGV B(n, k) be the

largestd which satisfies (2.5.2) for a particularn andk. This is the largest minimum distance

which is guaranteed to be achievable by the GVB.

Consider the bound which results from applying Lemma 2.5.1 to the average WE of

the uniform ensemble of linear codes, given in (2.3.5). For this ensemble, we find

Pr(dmin < d) ≤ S(n, k, d),

where

S(n, k, d) =
(
A

U
0 (n, k) − 1

)
+

d−1∑
h=1

A
U
h (n, k)

=
2k − 1

2n

d−1∑
h=0

(
n

h

)
.

Let dU (n, k, ε) be the largestd such thatS(n, k, d) < ε. Notice that the inequality, (2.5.2), is

actually equivalent to the inequality,S(n, k, d) < 1. Therefore, this bound contains the GVB as

a special case anddU (n, k, 1) = dGV B(n, k).
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Now, we apply Lemma 2.5.1 to the average WEA
(∞)
h (n, k), given in (2.3.4). In this

case, we get

Pr(dmin < d) ≤ T (n, k, d),

where

T (n, k, d) =
(
A

(∞)
0 (n, k) − 1

)
+

d−1∑
h=1

A
(∞)
h (n, k)

=
2k − 1
2n − 1

d−1∑
h=1

(
n

h

)
.

Proposition 2.5.2. The inequalityT (n, k, d) < S(n, k, d) holds for alln ≥ 2, 0 < k < n, and

0 ≤ d ≤ n.

Proof. Notice that the difference,T (n, k, d) − S(n, k, d), is given by the expression,

2k − 1
2n − 1

d−1∑
h=1

(
n

h

)
− 2k − 1

2n

d−1∑
h=0

(
n

h

)
,

which can be simplified to

2k − 1
2n(2n − 1)

(
d−1∑
h=1

(
n

h

))
− 2k − 1

2n
.

Notice that this expression is negative ford = 0, strictly increasing withd, and equal to zero for

d = n+1. Therefore, this expression is negative for0 ≤ d ≤ n andT (n, k, d) < S(n, k, d).

Let dΩ(n, k, ε) be the largestd such thatT (n, k, d) < ε and notice that Proposition

2.5.2 implies thatdΩ(n, k, ε) ≥ dU (n, k, ε). Recall that the WE of the ensembleΩm(C(o),C(i))

can be made arbitrarily close toA
(∞)
h (n, k) by increasingm. SinceT (n, k, d) < S(n, k, d),

this shows that there exists anm0 such that, for allm ≥ m0, the minimum distance guaranteed

by Lemma 2.5.1 forΩm(C(o),C(i)) is greater than or equal todU (n, k, ε). Qualitatively, it is

interesting to note that this proves (independently of the GVB) that there exists at least one code

satisfyingdmin ≥ dGV B(n, k).

The asymptotic form of the GVB says that, in the limit asn goes to infinity, there

exists a code with rater = k/n and normalized minimum distanceδ = dmin/n if

H(δ) ≤ 1 − r (2.5.3)
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whereH(x) = −x log2 x− (1−x) log2(1−x) is the binary entropy function [6]. Letδ∗GV B(r)

be the largestδ ≤ 1/2 which satisfies (2.5.3) for a particular block length and rate. This is the

largest normalized minimum distance which is guaranteed to be achievable by the GVB.

Now, we can define similar normalized distance bounds for the uniform ensemble and

for the ensemble,Ω∗(C(o),C(i)). LetδU (r, ε) be the largestδ such thatlimn→∞ S(n, drne , δn)

< ε and letδΩ(r, ε) be the largestδ such thatlimn→∞ T (n, drne , δn) < ε. Following the

approach taken by Pierce in [17], it is easy to verify thatδΩ(r, ε) = δU (r, ε) = δGV B(r) for any

ε < 1.

2.5.2 Convolutional Accumulate-m (CAm) Codes

Now, we apply Lemma 2.5.1 to get some numerical results for the minimum distance

of specific CAm codes. Recall that CAm codes are the serial concatenation of a terminated CC

andm interleaved rate-1 “accumulate” codes. The encoder for CAm codes is shown in Fig.

2.5.1. We note that the MLD performance of RA codes and some other CAm codes withm = 1

was reported in [10]. Generalizations tom > 1 were introduced in [15] and a coding theorem

for these codes was given in [16]. Now, we give results pertaining to the minimum distance of

CAm codes using a few examples. For simplicity, our examples use CCs with memory 0, which

may also be viewed as repeated block codes [15].

In order to apply Lemma 2.5.1 to a specific ensemble, we must compute the ensemble

averaged WE and choose anε. LetCi be a sequence of code ensembles withki information bits

andni code bits such that the rate,r = ki/ni, is fixed. We defined∗C(ni, ε) as the largest min-

imum distance guaranteed, with probability1 − ε, by applying Corollary 2.5.1 to the ensemble

averaged WE ofCi. In the following results, we look at the sequenced∗C(ni, 1/2) using numeri-

cally averaged WEs for various code ensembles. This means that at least half of the codes in each

ensemble have a minimum distance of at leastd∗C(ni, 1/2). We consider 16 ensembles formed

by choosing one of four outer codes and the number of “accumulate” codesm = 1, . . . , 4. Each

outer code is referred to in shorthand: repeat by 2 (R2), repeat by 4 (R4), rate 8/9 single parity

check (P9), and the(8, 4) extended Hamming code (H8). The results, over a range of codeword

lengths, are shown in Fig. 2.5.2.

We compare these code ensembles to the uniform ensemble by focusing on the rate

at which the minimum distance grows with the block length. It is important to note that, at a
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Figure 2.5.2: Probabilistic bound on the minimum distance of various CAm codes.

fixed rate, a “good” code is defined by a minimum distance which grows linearly with the block

length. When examining these results, we will focus on whether or not the minimum distance

appears to be growing linearly with block length and on how close thed∗C(ni, 1/2) is to the GVB.

For ensembles of CAm codes withm = 1, it is known that the minimum distance of almost all

of the codes grows likeO(n(do−2)/do
), wheredo is the free distance of the outer terminated CC

[11]. Examining Fig. 2.5.2 form = 1, we see that the minimum distance grows slowly for R4

and H8 (which havedo ≥ 3) and not at all for R2 and P9 (which havedo = 2). Form = 2, the

growth rate of the minimum distance for R4, H8, and R2 appears distinctly linear. It is difficult
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to determine the growth rate of P9 withm = 2 from these results. Withm = 3, all of the codes

appear to have a minimum distance growing linearly with the block length. In fact, the apparent

growth rates are very close toδ∗GV B(r). Finally, withm = 4, the bounds on minimum distance

andd∗GV B(n, r) are almost indistinguishable. These results are very encouraging and suggest

that, over a range of rates, even a few “accumulate” codes are sufficient to approach the behavior

of an asymptotically large number.

2.5.3 Expurgated Ensembles

One of the problems with average WEs is that some terms may be dominated by the

probability of choosing very bad codes. For example, at large enough SNR, the ensemble aver-

aged probability of error will always be dominated by the code with smallest minimum distance

even if the probability of choosing that code is extremely small. Now, suppose we could remove

all of the codes with minimum distancedmin < d from a particular ensemble. Then, every code

in the newexpurgated ensemblemust have minimum distancedmin ≥ d. Note that we must

choosed carefully, otherwise there may be no codes left in the new ensemble. Suppose that we

choosed andε together such that the total probability of picking a code withdmin ≥ d from the

original ensemble is exactly1 − ε.

We can bound the ensemble averaged IOWE of the expurgated ensemble, which only

contains codes withdmin ≥ d, by dividing the original ensemble into two disjoint sets. LetBw,h

be the average IOWE for the ensemble withdmin < d, which has probabilityε, and letCw,h be

the average IOWE for the ensemble withdmin ≥ d, which has probability1 − ε. We can write

the original average IOWE as

Aw,h = εBw,h + (1 − ε)Cw,h,

and solving forCw,h gives

Cw,h =
Aw,h − εBw,h

1 − ε
.

Dropping theεBw,h term gives the upper bound

Cw,h ≤ 1
1 − ε

Aw,h.
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Up to this point, we have assumed thatε is known exactly. It is sufficient, however, to have an

upper bound onε which is less than1. Applying Lemma 2.5.1 to this end gives

Cw,h ≤ 1

1 −
∑d−1

i=1

∑k
j=1Aj,i

Aw,h.

It is also clear, from the definition ofCw,h, thatCw,h = 0 for all h < d andw > 0.

It is important to note that this result allows one to derive performance bounds which

can be much tighter for typical codes in the ensemble. For example, suppose that all of the

codes in the ensemble with small minimum distance have a small total probability,ε, so that

the rest of the codes, which have very good minimum distance, have a large total probability.

Performance bounds based on the average WE will always have an error floor based uponε and

the small minimum distance, while bounds based on the expurgated ensemble will represent the

performance of the typical codes, which have large minimum distance.

2.6 Performance

2.6.1 The Error Exponent

In this section, we draw on a generalization of Gallager’s derivation of the error ex-

ponent [8] due to Shulman and Feder [20]. This generalization allows one to upper bound the

probability of MLD error, using Gallager’s random coding error exponent, for any binary lin-

ear code. Applying Theorem 1 from [20] to (2.3.4) shows that, for any symmetric memoryless

channel with binary inputs and discrete outputs, the ensembleΩ∗(C(o),C(i)) has nearly the

same error exponent as the Shannon ensemble of random codes. A Shannon random code is

generated by picking the2rn codewords uniformly from the2n possible binary sequences with

replacement, and the Shannon ensemble is the set of possible codes chosen in this manner with

their associated probabilities. Since the Shannon ensemble achieves the capacity of any sym-

metric discrete memoryless channel, this proves that the ensembleΩ∗(C(o),C(i)) can operate at

rates arbitrarily close to capacity.

Theorem 2.6.1 (Shulman-Feder).The probability of word errorPW for a family of(n, drne)
linear codes, transmitted over a symmetric memoryless channel with binary inputs and discrete

outputs, is upper bounded by

PW ≤ 2−nE
�
r+

log2 α
n

�
(2.6.1)
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whereE(·) is the error exponent of the channel and

α = max
1≤h≤n

Ah

2drne − 1
2n(n
h

) .

Corollary 2.6.2. Consider the ensembleΩm(C(o),C(i)) with n code bits anddrne information

for 0 < r < 1. LetPW be the average probability of word error when a code is randomly chosen

from the ensemble and used on some channel with MLD. There exists anm0 such that, for all

m ≥ m0, we have

PW ≤ 2−nE(r+O(1/n)),

whereE(·) is the error exponent of the channel.

Proof. Using Theorem 2.6.1, we must simply show that the constantα for the ensemble

Ωm(C(o),C(i)) remains essentially constant asn increases. Using the formula forα and Theo-

rem 2.3.10, we find that

α = max
1≤h≤n

A
(m)
h

2drne − 1
2n(n
h

)
≤ 1

1 + 2−n
+ max

1≤h≤n

γ 2n

(2drne − 1)
(n
h

) .
Sinceγ can be made arbitrarily small by increasingm (from Theorem 2.3.10), we choosem0

such that

max
1≤h≤n

γ 2n

(2drne − 1)
(n
h

) ≤ 1
(1 − 2−n)

for all m ≥ m0. This gives the upper boundα ≤ 2/(1 − 2−n), and now we can estimate

(log2 α)/n using

1
n

log2 α ≤ 1
n
− 1
n

log2(1 − 2−n) = O

(
1
n

)
.

This completes the proof.

Remark 2.6.3.Since the constantγ is proportional toqm for someq < 1, this proof actually

requires the value ofm0 to grow linearly withn. This is because the probability that a poor

code is chosen from the ensemble decays very slowly. Nonetheless, we believe that almost all

of the codes in the ensemble will achieve the error exponent as long asm0 grows faster than

logarithmically inn.
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2.6.2 Maximum Likelihood Decoding Performance

In Section 2.5.2, we applied (2.3.2) to compute the averaged WEs for several CAm

code ensembles. Using the WEs and the Viterbi-Viterbi Bound [22], we calculated upper bounds

on the probability of MLD error for some of these ensembles. The results for the R2, R4, and P9

ensembles are given in Figs. 2.7.1, 2.7.2, and 2.7.3, respectively. These figures also show the re-

sults of iterative decoding simulations which will be discussed in the next section. At high SNR,

these bounds are dominated by the probability of picking a code with small minimum distance,

as reflected in the pronounced error floors of the non-expurgated ensembles in Figs. 2.7.1, 2.7.2,

and 2.7.3. For this reason, we also considered the expurgated ensembles, as described in Section

2.5.3, withε = 1/2.

The results of applying the Viterbi-Viterbi bound to these ensembles have some char-

acteristics worth mentioning. In all cases, increasingm, the number of “accumulate” codes,

seems to improve the performance both by shifting the cliff region to the left and by lowering

the error floor. We also see that, in some cases, the effect of expurgation is negligible, which

implies that almost all of the codes in the ensemble have small minimum distance. As we saw

in Section 2.5.2, the minimum distance of the expurgated ensemble depends on the outer code

and the number of “accumulate” codes. The minimum distance of the outer code does not seem

to completely explain the behavior though, because the P9 ensemble requires one more “accu-

mulate” code than the R2 ensemble in order for expurgation to make a significant difference. Of

course, at longer block lengths this may change.

The axes of the figures were chosen to show details of the performance curves, but in

many cases the error floor of the expurgated ensemble is too low to be shown. Consider the R2

ensemble withm = 2; the WER of the expurgated ensemble remains steep until around10−28

where it flattens somewhat. The expurgated R2 ensemble withm = 3 has a WER which remains

steep until well below the numerical accuracy of our computations. The expurgated P9 ensemble

with m = 3 also shows no error-floor region, but the curve loses some steepness at a WER of

10−18. These error floors are interesting because understanding the performance of these codes

at high SNR, where simulation is infeasible, is important for applications where very low error

rates are required.
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2.6.3 Iterative Decoding Performance

In this section, we use computer simulation to evaluate the performance of iterative

decoding for these codes. A single decoding iteration corresponds to2m− 1 APP decoding op-

erations of an “accumulate” code (a backward/forward pass through all “accumulate” encoders)

and a single APP decoding operation of the outer code. It is worth noting that the complexity

of iterative decoding is linear in bothm andn, making it quite feasible to implement. All sim-

ulation results were obtained using between 20 and 50 decoding iterations, depending on the

particular code, and modest gains are observed (but not shown) when the number of iterations is

increased to 200. These results are compared with analytical bounds in Figs. 2.7.1, 2.7.2, and

2.7.3 and shown by themselves in Figs. 2.7.4 and 2.7.5.

The discrepancies between the simulation results and MLD bounds in Figs. 2.7.1,

2.7.2, and 2.7.3 are very pronounced. While the MLD bounds predict uniformly improving

performance with increasingm, it is clear that the performance of iterative decoding does not

behave in this manner. The optimumm depends on the desired error rate and the minimum

distance of the outer code. In general, it appears that increasingm moves the the cliff region of

the error curve to the right and makes the floor region steeper. This seems reasonable because

more rate-1 decoders (which have no coding gain) are applied before the outer code (with all

of the coding gain) is decoded. This results in a phenomenon where the iterative decoder often

does not converge, but rarely makes a mistake when it does converge.

The expurgated WE can also be used to detect the presence of bad codes which are

chosen with low probability. If the MLD expurgated bound is better than the non-expurgated

bound, then the effect of these bad codes has been reduced. The MLD expurgated bound is

not shown when it coincides with the non-expurgated bound. In some cases, iterative decoding

is performing better than the MLD expurgated bound (e.g., the R4 ensemble withm = 1).

This may occur because the use of well designed (e.g., S-random [5]) interleavers can provide a

minimum distance which is better than that guaranteed by Lemma 2.5.1.

The Interleaver Gain Exponent (IGE) conjecture is based on the observations of

Benedetto and Montorsi [2] and is stated rigorously in [4]. It states that the probability of MLD

decoding error for turbo-like codes will decay asO(n−ν), whereν depends on the details of the

coding system. If the IGE conjecture predicts that the BER (resp. WER) will decay with the

block length, then we say that the system has BER (resp. WER) interleaver gain. It is easy to
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verify that WER interleaver gain implies BER interleaver gain. The IGE and the MLD expur-

gated bound are quite closely connected. If a system has WER interleaver gain, the probability

of picking a code with codewords of fixed weight must decay to zero as the block length in-

creases. Therefore, one would expect the MLD expurgated bound to beat the non-expurgated

bound. On the other hand, if a system has only BER interleaver gain, then it is likely that the

MLD expurgated bound will equal the non-expurgated bound.

Finally, the IGE Conjecture predicts that the R2 code will have no WER interleaver

gain (i.e. PW = O(n−1)) for m = 1 , but that it will have WER interleaver gain (i.e.PW =

O(n−1)) for m = 2. In Fig. 2.7.4, the WER of the R2 code withm = 1 does indeed appear to

be independent of block length and the WER of the R2 code withm = 2 is clearly decreasing

with block length. In Fig. 2.7.5, we see similar behavior for the interleaver gain of the P9 codes.

2.7 Conclusions and Future Work

In this chapter, we introduce a new ensemble of binary linear codes consisting of

any rater < 1 outer code followed by a large number of uniformly interleaved rate-1 codes.

We show that this ensemble is very similar to the ensemble of uniform random linear codes in

terms of minimum distance and error exponent characteristics. A key tool in the analysis of

these codes is a correspondence between input output weight transition probability matrices and

Markov Chains (MC), which allows us to draw on some well-known limit theorems from MC

theory. We derive a probabilistic bound on the minimum distance of codes from this ensemble,

and show it to be almost identical to the Gilbert-Varshamov Bound (GVB). In particular, our

analysis implies that almost all long codes in the ensemble have a normalized minimum distance

meeting the GVB.

Next, we consider a particular class of these codes, which we refer to as Convolutional

Accumulate-m (CAm) codes. These codes consist of an outer terminated convolutional code

followed bym uniformly interleaved “accumulate” codes. We evaluate the minimum distance

bound for a few specific CAm codes form = 1, . . . , 4 and observe that these relatively smallm

values may be sufficient to approach the GVB. Finally, we use computer simulation to evaluate

the bit error rate and word error rate performance of these CAm codes with iterative decoding and

compare this to the performance predicted by union bounds for maximum likelihood decoding

(MLD).
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Remark 2.7.1.An MLD coding theorem for CAm codes can be found in [16], with numerical

estimates of the corresponding noise thresholds. Also given there are the thresholds which re-

sult from applying density evolution to the iterative decoding of these codes [18]. Finally, a

comprehensive treatment of both of these subjects can be found in [14].
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Figure 2.7.1: Analytical and simulation results for a rate 1/2 RAm code withk = 1024 and
m = 1, 2, 3. Simulations are completed using 50 decoding iterations and the top plot shows the
word error rate (WER) while the bottom plot shows the bit error rate (BER). The label XVV
signifies the Viterbi-Viterbi (VV) Bound applied to the expurgated ensembles.
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Figure 2.7.2: Analytical and simulation results for a rate 1/4 RAm code withk = 1024 and
m = 1, 2, 3. Simulations are completed using 50 decoding iterations and the top plot shows the
word error rate (WER) while the bottom plot shows the bit error rate (BER). The label XVV
signifies the Viterbi-Viterbi (VV) Bound applied to the expurgated ensembles.
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Figure 2.7.3: Analytical and simulation results for a rate 8/9 PAm with k = 1024 andm =
1, 2, 3. Simulations are completed using 50 decoding iterations and the top plot shows the word
error rate (WER) while the bottom plot shows the bit error rate (BER). The label XVV signifies
the Viterbi-Viterbi (VV) Bound applied to the expurgated ensembles.
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Figure 2.7.4: Simulation results for rate 1/2 RAm codes for 30 decoding iterations withm = 1, 2
andk = 1024, 2048, 4096, 8192, 16384. The top plot shows the word error rate (WER) while
the bottom plot shows the bit error rate (BER).
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Figure 2.7.5: Simulation results for rate 8/9 PA2 codes withk = 1024, 2048, 4096, 8192, 16384
and 20 decoding iterations. The top plot shows the word error rate (WER) while the bottom plot
shows the bit error rate (BER).
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2A Proof of Theorem 2.4.1

The generator matrix,Tn, of the lengthn block code is

Tn =



h0 h1 h2 . . . hn−1

h0 h2 . . . hn−2

h0
...

...

h0 h1

h0


.

For simplicity of notation, we definem = l + 1. By hypothesis, the generator matrix

of this code will be the identity matrix for anyn < m, making the code trivial. We will show

that the block code of lengthn ≥ m is primitive by first establishing that the length-m block

code is primitive, then showing that the lengthn+ 1 block code is primitive if the lengthn code

is primitive, and finally using induction to extend the proof to arbitrarily largen.

Recall that a rate-1 block code is primitive if the MC associated with theQ submatrix

of the code’s IOWTP matrix is primitive. LetQn be theQ submatrix of the length-n block

code’s IOWTP matrix. It is easy to verify that[Qn]i,j is greater than zero iff the corresponding

component of the IOWE of the length-n block code,A(n)
i,j , is greater than zero. Thinking of the

latter as an adjacency matrix, we associate to the length-n block code a directed graphGn, which

we call theweight-mapping graph. The vertices ofGn, which are labeled1, 2, . . . , n, correspond

to the Hamming weights of input and output sequences of the code. Denote the Hamming weight

of a binary vectorv by |v|. For each binary input to the code,b = b1, b2, . . . , bn, there is a

directed edge from the vertex labeled|b| to the vertex labeled|c| if the input vectorb produces

the output vectorc. This implies that the graphGn will have a directed edge from vertexi to

vertexj iff A(n)
i,j > 0. Therefore, the graphGn has the same connectivity as the MC associated

with Qn, and we have reduced the problem to showing that eachGn, for n ≥ m, is primitive.

We will prove that eachGn is primitive by establishing that it is both irreducible and

aperiodic. By definition, a graph is irreducible if there is a directed path from each vertex to

every other vertex. A graph is aperiodic if the greatest common divisor of the lengths of all its

cycles (i.e., paths which start and end in the same state) is one. Therefore, for aperiodicity, it is

sufficient to exhibit a single vertex with a self-loop (i.e., a directed edge from a vertex back to

itself). The verification of these properties forGn will be simplified by the fact, proved below,

thatGn is a subgraph ofGn+1.
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For the primary case, corresponding to lengthn = m, the generator matrix of the code

is

Tm =



1 0 . . . 0 1

1 0 0 0
... 0

...

1 0

1


.

Consider strings of the form[1s, 0n−s] and [1s−1, 0n−s, 1], whereaj refers to a string ofj

repeated symbolsa. For eachs = 1, . . . , n − 1, the inputb = [1s, 0n−s] has weights and

produces an outputc = [1s, 0n−s−1, 1] which has weights+1. Likewise, for eachs = 2, . . . , n,

the inputb = [1s−1, 0n−s, 1] has weights and produces an outputc = [1s−1, 0n−s+1] which

has weights− 1. Now consider any vertex, labeledi, in the graphGm. These input-output pairs

establish that there is a directed edge from the vertex labeledi to the vertex labeledi+ 1 and to

the vertex labeledi− 1, if those vertices exist. So there is a directed path from any vertex to any

other vertex, andGm is irreducible. The inputb = [0n−1, 1] produces the outputc = [0n−1, 1]

which establishes that the vertex labeled 1 has a self-loop. So the graphGm is also aperiodic,

and therefore primitive.

Now we assume thatGn is primitive for somen ≥ m, and use this to prove that

Gn+1 is primitive. We start by proving the result mentioned above:Gn is a subgraph ofGn+1.

Consider any input,b, to the rate-1 block code with generator matrixTn. The output will be

bTn and the weight mapping graph,Gn, will have an edge from the vertex labeled|b| to the

vertex labeled|bTn|. In fact, all edges ofGn are enumerated by considering all possible inputs.

Notice that the generator matrix,Tn+1, can be written as

Tn+1 =



h0 h1 . . . hn

0
...

0

Tn


.

This implies that
[

0 b
]
Tn+1 =

[
0 bTn

]
and proves, for eachb, that the weight map-

ping graphGn+1 also has a directed edge from the vertex labeled|b| to the vertex labeled
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Figure 2A.1: The weight mapping graph,G4, with theG3 subgraph drawn in solid lines.

|bTn|. So, for every directed edge inGn connecting two labeled vertices, there is a directed

edge inGn+1 connecting two vertices with the same labels. The vertices ofGn are also a subset

of the vertices ofGn+1, soGn is a subgraph ofGn+1.

To prove that the graphGn+1 is irreducible, it now suffices to show thatGn+1 has a

directed edge from the vertex labeledn + 1 to some vertex with labeli 6= n + 1, as well as a

directed edge from some such vertex to vertexn + 1. Considerb = [1n+1], the only input of

weightn+ 1, and notice that themth column ofTn+1 has exactly two ones. Therefore themth

element ofbTn+1 must be zero andbTn+1 6= b. This implies that an input of weightn + 1

produces an output of weighti < n + 1. Therefore,Gn+1 has a directed edge from the vertex

labeledn+1 to a vertex labelediwherei < n+1. Next, we notice thatTn+1 is upper triangular

and has all ones on the main diagonal, which makes it invertible. This means that there must be

a unique input,b′, which is mapped to the outputb = [1n+1]. We know that this input must

obey the equationb′Tn+1 = b, and sincebTn+1 6= b, we also know thatb′ 6= b. Sinceb is

the only length-(n + 1) sequence of weightn+ 1, we conclude that|b′| < n+ 1. This implies

that there is an input of weighti = |b′| < n + 1 which produces an output of weightn + 1.

Therefore,Gn+1 has a directed edge from a vertex labeledi, for somei < n + 1, to the vertex

labeledn+ 1. We conclude thatGn+1 is irreducible.

The aperiodicity ofGn+1 follows immediately from the fact that the subgraphGm ⊂
Gn+1 contains a self-loop at vertex 1. This completes the proof thatGn+1 is primitive, and,

therefore, the proof that the rate-1 block code of lengthn+ 1 is primitive, as desired.

We illustrate the proof technique using the “accumulate” code example from Section
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2.2.3. The impulse response,h, of the “accumulate” code is the infinite sequence of ones,hi =

1, for i ≥ 0. The weight mapping graph,G4, is shown in Fig. 2A.1 and theG3 subgraph is drawn

with solid lines. It is easy to see thatG3 is both irreducible and aperiodic; in particular, note the

self-loop at the vertex labeled 1. There is an edgeG4 from vertex 4 to vertex 2, corresponding to

the weight-4 input vectorb = [14], and a directed edge from vertex 1 to vertex 4, corresponding

to the weight-4 input vectorb′ = [1, 03]. Together with the irreducibility ofG3, this implies that

G4 is irreducible. The self-loop at vertex 1 ensures the aperiodicity and, therefore, the primitivity

of G4.
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