
Chapter 3

Coding Theorems for Convolutional

Accumulate-m Codes

3.1 Introduction

It is well-known that long random codes achieve reliable communication at noise lev-

els up to the Shannon limit, but they provide no structure for efficient decoding. The introduction

and analysis of Repeat Accumulate (RA) codes by Divsalar, Jin, and McEliece [10] shows that

the concatenation of a repetition code and a rate-1 code, through a random interleaver, can also

achieve reliable communication at noise levels near the Shannon limit. A more general analysis

of serially concatenated rate-1 codes also implies that using more than one interleaved rate-1

code may yield further improvement [23].

The coding theorem for the ensemble of RA codes under maximum likelihood decod-

ing, given in [10], states that, for allEb/N0 greater than a threshold which depends only on

the repeat orderq ≥ 3, the serial concatenation of a repetition code and a rate-1 “accumulate”

code will have vanishing word error probability as the block length goes to infinity. In [14], this

theorem was extended to serial turbo codes, for outer codes with minimum distanced ≥ 3.

In this chapter, we combine two different generalizations of RA codes. The first in-

volves using either a single parity check (SPC) or a terminated convolutional code (TCC) as

the outer code, and we refer to these codes as Parity Accumulate (PA) and Convolutional Ac-

cumulate (CA) codes respectively. The second involves using a cascade ofm interleaved rate-1
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“accumulate” codes as the outer code [23], and we refer to these codes as either RAm, PAm, or

CAm codes respectively. Of these classes, CAm codes are the most general and both RAm and

PAm can also be viewed as CAm codes by choosing the TCC appropriately. He also discusses

repeat accumulate accumulate (RAA) codes in [13], perhaps overlooking their previous work in

[24].

Following the approach pioneered in [10], we then prove a coding theorem for ensem-

bles of CAm codes on a memoryless channel with maximum likelihood decoding. The theorem

states that if the outer code has minimum distanced ≥ 2 and the channel parameterz is less than

some thresholdz∗, then the probability of word error isO(nν), wheren is the block length and

ν is determined solely bym andd. The proof, based on the union bound, also gives loose lower

bounds on the thresholdz∗. A new tighter bound by Jin and McEliece [16] allows us to compute

very accurateEb/N0 thresholds for the additive white Gaussian noise (AWGN) channel. For

m = 3, many of these thresholds are virtually identical to the Shannon limit.

The chapter is organized as follows. In Section 3.2, we review key results relating

to turbo-like codes which will be required for later sections. In Section 3.3, we discuss new

and existing bounds on the weight enumerators of TCCs. In Section 3.4, we consider bounds

on the input output weight transition probabilities of the rate-1 “accumulate” code. In Section

3.5, we apply the bounds of the two previous sections to RA and CA codes with a single rate-

1 “accumulate” code. In Section 3.6, we state and prove our coding theorem for CAm codes

and follow up by considering the minimum distance of these codes. In Section 3.7, we discuss

the iterative decoding and density evolution for CAm codes. In Section 3.8, we presentEb/N0

and minimum distance thresholds for CAm codes and discuss the numerical methods used to

compute them. Finally, in Section 3.9, we offer some concluding remarks.

3.2 Preliminaries

3.2.1 Weight Enumerators and the Union Bound

In this section, we review the weight enumerator of a linear block code and the union

bound on error probability for maximum likelihood decoding. Theinput output weight enumer-

ator (IOWE),Aw,h, of an(n, k) linear block code is the number of codewords with input weight

w and output weighth, and theweight enumerator(WE),Ah, is the number of codewords with
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output weighth and any input weight. Using these definitions, the probability of word error for

maximum likelihood (ML) decoder is upper bounded by

PW ≤
n∑

h=1

k∑
w=1

Aw,hz
h =

n∑
h=1

Ahz
h (3.2.1)

because the pairwise error probability between any two codewords differing inh positions is

upper bounded byzh.

The parameterz is known as the Bhattacharyya parameter and can be computed for

any memoryless channel [30, p. 88]. For a binary-input discrete output channel withM outputs,

it is defined as

z =
M−1∑
j=0

√
p(j|0)p(j|1),

wherep(j|i) is the probability of outputj given inputi. For channels with continuous outputs,

the parameterz is given by the integral

z =
∫

Y

√
p(y|0)p(y|1)dy,

wherep(y|i) is the output p.d.f. ofy given inputi andY is the set of possible outputs. For the

BSC this giveszBSC(p) =
√

4p(1 − p), and for the AWGN channel this giveszAWGN(σ2) =

e−1/(2σ2), whereEs/N0 = (k/n)Eb/N0 = 1/(2σ2).

Finally, the bit error probability is upper bounded by

PB ≤
n∑

h=1

Bhz
h, (3.2.2)

where thebit normalized weight enumerator, Bh , is given by

Bh =
k∑

w=1

w

k
Aw,h. (3.2.3)

3.2.2 Serial Concatenation through a Uniform Interleaver

We now briefly review the serial concatenation of codes through a uniform random

interleaver (URI). Using a URI is equivalent to averaging over all possible interleavers and was

introduced for the analysis of turbo codes by Benedetto and Montorsi [4].
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Consider the serial concatenation of an(n1, k1) outer code and an(n2, k2) inner code.

Let the IOWEs of the two codes beA(1)
w,h andA(2)

w,h, respectively. The average IOWE of the serial

concatenation,Aw,h is given by

Aw,h =
n1∑

v=0

A(1)
w,v

A
(2)
v,h(k1

v

) =
n1∑

v=0

A(1)
w,vP

(2)
v,h , (3.2.4)

where

P
(i)
w,h =

A
(i)
w,h(
ki
w

) (3.2.5)

is known as theinput output weight transition probability(IOWTP). This definition reflects the

fact thatP (i)
w,h is equal to the probability that this code will map a randomly chosen input sequence

of weightw to an output of weighth.

Since the form of (3.2.4) withP (2)
w,h is essentially a matrix multiplication, the definition

of the IOWTP makes a connection between linear algebra and serial concatenation. This was

first observed in [23], where it was used to show that the WE of CAm codes approaches that of

a random code for largem .

3.2.3 Code Ensembles and Spectral Shape

In this section, we review code ensembles and spectral shape as defined in [1]. Let a

code ensemblebe a set,C, of (n, k) linear codes, each chosen with probability1/ |C|. For any

particular code,C ∈ C, we group the codewords by weight and defineAh(C) to be the number

of codewords with output weighth andAw,h(C) to be the number of codewords of input weight

w and output weighth. This allows theaverage weight enumeratorto be defined as

Ah(C) =
1
|C|

∑
C∈C

Ah(C),

theaverage input-output weight enumeratorto be defined as

Aw,h(C) =
1
|C|

∑
C∈C

Aw,h(C),

and theaverage bit normalized weight enumeratorto be defined as

Bh(C) =
1
|C|

∑
C∈C

k∑
w=1

w

k
Aw,h(C).
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Finally, thespectral shapeof an ensemble is defined to be

r(δ;C) =
1
n

lnAbδnc(C),

for 0 ≤ δ ≤ 1.

We also consider sequences,{Cni}i≥0, of code ensembles, where eachCni is an en-

semble of(ni, ki) codes. We assume that the sequences,{ni}i≥0 and{ki}i≥0, are unbounded

and lead to a well-defined rate,R = limi→∞(ki/ni). This leads us to define thespectral shape

sequence,

rni(δ;C) =
1
ni

lnAbδnic(Cni), (3.2.6)

and theasymptotic spectral shape,

r(δ;C) = lim sup
i→∞

rni(δ;C). (3.2.7)

In general, we will abuse our notation slightly by writingAh(n) and rn(δ) when it is clear

which sequence of code ensembles in being considered. Furthermore, all limits taken asn goes

to infinity are assumed to be along the subsequence{ni}i≥0.

Remark 3.2.1.It is worth considering the validity of the limit, (3.2.7). Suppose, we have a code

ensemble whereni is odd for all i andAh(Cni) is zero for oddh. It is eays to construct an

ensemble sequence of regular low-density parity-check (LDPC) codes, with odd row weight,

which has these properties. Choosingδ = 1/2, we find thatAbni/2c(Cni) = 0 for all i, which

means thatr(1/2, C) = −∞. In general, this is not a problem because one typically deals with

a sequence of continuous functions,fni(h), which upper boundAh(Cni) at integerh. To avoid

technical problems with the limit, however, one could definefni(h) to be the linear interpolation

of the non-zero terms ofAh(Cni). Let hmin(ni) be the smallesth ≥ 1 such thatAh(Cni) > 0

and lethmax(ni) be the largesth ≤ ni such thatAh(Cni) > 0. This allows the spectral shape to

be defined as

r(δ;C) = lim sup
i→∞

1
ni

ln fni(δni)

for any δmin ≤ δ ≤ δmax whereδmin = limi→∞ hmin(ni) andδmax = limi→∞ hmax(ni).

For many codes, including turbo and LDPC codes, we believe that thisr(δ;C) will also be

continuous and differentiable forδmin ≤ δ ≤ δmax.
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Remark 3.2.2.Another problem with the definition of asymptotic spectral shape is that subsets

of codes with exponentially vanishing probability may still affect the value ofr(δ). We believe

that

r̃(δ;C) = lim sup
i→∞

1
|Ci|

∑
C∈Ci

1
ni

lnAbδnic(C).

may be a better definition of spectral shape because it does not have this problem. This is

because1
ni

lnAbδnic(C) is upper bounded by(ki/ni) ln 2, so that subsets of codes with vanishing

probability will contribute nothing tõr(δ;C).

For many sparse graph codes, including turbo-like and LDPC codes, we also believe

that r̃(δ;C) is the mean of a tightly concentrated probability distribution. Consider the proba-

bility,

Pi(δ) = Pr

(∣∣∣∣ 1
ni

lnAbδnic(C) − r̃(δ, C)
∣∣∣∣ > ε

)
,

when the code,C, is chosen randomly from the ensemble,Ci. For any0 ≤ δ ≤ 1 and anyε > 0,

we believe thatlimi→∞ Pi(δ) = 0.

These observations are purely academic, however, because we know of no general

method of computing̃r(δ;C). All may not be lost, however, because some physicists have

started approximating this quantity using something known as the replica method [29]. Iron-

ically, we note that the most straightforward approach to analyzingr̃(δ;C) is probably upper

bounding it byr(δ;C), since the concavity of the logarithm implies thatr̃(δ;C) ≤ r(δ;C).

3.2.4 Asymptotic Order of Functions

This chapter makes frequent use of the standard asymptotic notation, as defined in

[19]. Specifically, the notationO(·), Ω(·), Θ(·), o(·), andω(·) is defined in the following manner.

The expressiong(n) = O(f(n)) means that there exist positive constantsc andn0, such that

g(n) ≤ cf(n) for all n ≥ n0. Similarly, the expressiong(n) = Ω(f(n)) means that there

exist positive constantsc andn0, such thatg(n) ≥ cf(n) for all n ≥ n0. The termg(n) =

Θ(f(n)) combines these two and implies that thatg(n) = O(f(n)) andg(n) = Ω(f(n)). For

strict bounds, we have the expressionsg(n) = o(f(n)) andg(n) = ω(f(n)) which mean that

lim supn→∞ |g(n)/f(n)| = 0 andlim supn→∞ |f(n)/g(n)| = 0, respectively.
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3.2.5 The IGE Conjecture

The Interleaver Gain Exponent (IGE) conjecture is based on the observations of

Benedetto and Montorsi [4] and is stated rigorously in [10]. It was also considered for dou-

ble serially concatenated codes in [3]. The conjecture considers the growth rate ofAh(n), for

fixedh, for an ensemble sequence asi goes to infinity. Following [10], we define

α(h) = lim sup
n→∞

lognAh(n) (3.2.8)

and

βM = max
h≥1

α(h). (3.2.9)

Essentially, the IGE Conjecture [10] predicts that there exists a threshold channel parameterz∗

such that, for anyz < z∗, the probability of word error isPW = O
(
nβM

)
. Another com-

monly cited variation of the IGE Conjecture also predicts that, under the same conditions, the

probability of bit error isPB = O
(
nβM−1

)
.

This conjecture was first proven for repeat accumulate (RA) codes in [10], then ex-

tended to a range of more general turbo codes [9]. In this paper, the IGE conjecture for GRAm

codes is resolved in the affirmative by Theorem 3.6.4.

3.2.6 Noise Thresholds

Many modern coding systems exhibit a threshold behavior, whereby on one side of the

threshold, the probability of decoding error is bounded away from zero, and on the other side

of the threshold the probability of error approaches zero rapidly as the block length increases.

In particular, most derivatives of turbo and LDPC codes, including CAm codes, exhibit this

behavior. In this section, we provide a framework for discussing this phenomenon, and the

corresponding noise thresholds. We note that, in general, the threshold depends both on the code

and the decoder.

Definition 3.2.3. Suppose we have a binary-input channel with parameterα, and a sequence

of code ensembles,{Ci}i≥0. Let P•(C;α) be the probability of a particular error type for a

particular decoder. For example, one might writePMLW (C;α) to represent the word error rate

under ML decoding. TheP• noise threshold, α•, of this ensemble sequence is the largestα· such
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that

lim sup
i→∞

P•(Ci;α) = 0

for all 0 ≤ α ≤ α•. Althoughα• is well-defined as long asP•(Ci; 0) = 0, we will generally

be dealing withP•(Ci;α) functions which are strictly increasing inα. Furthermore, we say that

the ensemble has aP• decay rateof at leastf(n) if we haveP•(Ci;α) = O (f(ni)) for all

0 ≤ α ≤ α•. We also note that upper bounds on the probability of error can be used to provide

lower bounds on the threshold,α•.

The Bhattacharyya union bound, (3.2.1), can be used to derive lower bounds on the

maximum likelihood word error noise threshold,cUB . This approach was first used for turbo

codes in [10]. While thresholds based on the union bound are generally quite pessimistic, the

simplicity of the union bound enables one to analytically show the existence of noise thresholds

for all channels simultaneously. The Bhattacharyya parameter threshold is given byz∗ = e−cUB ,

wherecUB is

cUB = sup
0≤δ≤1

(r(δ;C)/δ) . (3.2.10)

For the AWGN channel, the Viterbi-Viterbi Bound [31] is always tighter. In fact, it can be used

to prove that the ensemble sequence achieves capacity as the rate approaches zero. The Viterbi-

Viterbi Es/N0 threshold is given by

cV V = sup
0≤δ≤1

((1 − δ)r(δ;C)/δ) . (3.2.11)

There are quite a number of other bounds for the AWGN channel, and [8][27] give nice overviews

of the subject. In the next section, we discuss typical set decoding bounds which can be used on

any memoryless symmetric channel and give quite good results.

3.2.7 Typical Set Decoding Bound

The typical set decoding bound on word error probability is very tight because it breaks

the problem into two parts. First, it considers the probability that the noise is atypical. Second, it

considers the probability of error given that the noise is typical. The probability of a memoryless

channel having atypical noise decays rapidly with the block length, so we can essentially ignore
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this probability. It turns out that the probability of error given typical noise lends itself to a very

nice combinatorial analysis [1][16].

Consider a discrete memoryless symmetric channel withM outputs wherepi is the

probability of theith output given a zero input. Let the input to the channel be a sequence ofn

zeros, and assume that output statistics are collected by lettingmi be the number of times theith

output is observed.

Definition 3.2.4. For anyε > 0, we say that the noise sequence istypical if |mi/n − pi| ≤
n−1/2+ε for i = 1, . . . ,M . We also say that any other output sequence isjointly typical with the

all-zero sequence if its frequency statistics satisfy the same condition.

Definition 3.2.5. Consider the probability,Ph(Tn;α), that a codeword of weighth and length

n is jointly typical with the all-zero codeword after being transmitted through a memoryless

symmetric channel with parameterα. Thetypical set decoding exponent, K(δ, α), is defined by

K(δ, α) = − lim
n→∞

1
n

lnPbδnc(Tn;α).

Lemma 3.2.6. For anyε < 1/4, there exists ann0 such that for alln ≥ n0, the probability that

the noise sequence is atypical is upper bounded bye−nε
.

Proof. First, we notice that the distribution of eachmi is binomial with meanpin and variance

npi(1−pi). Since the test for typicality allows variations in the frequency statistics ofO(n1/2+ε)

and the central limit theorem holds for variations ofo(n3/4), we can use Gaussian tail bounds

for ε < 1/4. Using the standard exponential bound for the Gaussian tail (Q(x) ≤ e−x2/2),

we see that the probability that anymi fails the test is upper bounded by2e−O(n2ε). Since all

M bins must pass the test, the probability that a sequence is not typical is upper bounded by

2Me−O(n2ε). For large enoughn, this can be upper bounded bye−nε
.

Consider a sequence of code ensembles with average WE,Ah(n), spectral shape,rn(δ), and

asymptotic spectral shape,r(δ). The following conditions characterize the code ensemble well

enough to give a fairly general coding theorem. We note that these results are taken mainly from

[1].

Condition 3.2.7. There exists a sequence of integers,{Ln}n≥1, and a function,f(n), which

satisfyLn = ω(lnn) and

Ln−1∑
h=1

Ah(n)zh = O (f(n)) ,
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for anyz < 1.

Condition 3.2.8. The spectral shape converges to the asymptotic spectral shape fast enough that

rn(δ;C) ≤ r(δ;C) + o

(
Ln

n

)
and the behavior ofr(δ) near zero is such that

lim
δ→0+

r(δ;C)
δ

<∞.

Now, consider any memoryless symmetric channel, with parameterα, whose Bhat-

tacharyya parameter isz(α) and whose typical set decoding exponent isK(δ, α). We define the

typical set decoding thresholdto be

αTS = inf
0<λ≤1

αmix(λ), (3.2.12)

where

αmix(λ) = sup
{
α ∈ R+|r(δ;C)/δ < − ln z(α), δ ∈ [0, λ] andr(δ;C) < K(δ, α), δ ∈ [λ, 1]

}
.

Theorem 3.2.9 ([1]). Suppose Conditions 3.2.7 and 3.2.8 hold. Letλ any real number in(0, 1]

and suppose also that the channel parameterα is greater than the threshold,αmix(λ). In this

case, there exists anε > 0 such that the probability of word error for the ensemble sequence,

PW , is given by

PW = O (f(n)) +O
(
ne−εLn

)
+O

(
e−nε)

. (3.2.13)

In general, the first term will dominate but this also depends on the particular choice ofLn and

f(n).

Sketch of Proof.We start by breaking up the probability of word error with

PW = P
(UB)
W + P

(TS)
W ,

whereP (UB)
W is the contribution of the small output weights handled by the union bound and

P
(TS)
W is the contribution of the large output weights handled by the typical set bound. Using

(3.2.1), we can write

P
(UB)
W ≤

Ln−1∑
h=1

Ah(n)zh +
λn∑

h=Ln

eh[rn(h/n;C)/(h/n)+ln z(α)],
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for any z < 1. Condition 3.2.7 shows that first term isO (f(n)). Combining Condition

3.2.8 with the fact thatα > αmix(λ), shows that there exists ann0 and ε > 0 such that

sup0≤δ≤λ rn(δ;C)/δ + ln z(α) ≤ −ε for 0 < δ ≤ λ0 and alln ≥ n0. Since the terms

of the second sum are decreasing, we can upper bound the value byn times the first term or

O
(
ne−Lnε

)
.

Next, we write

P
(TS)
W ≤ Pr(noise atypical) + n max

λ≤δ≤1
en[r(δ;C)−K(δ,α)+o(1)],

and use Lemma 3.2.6 to show thatPr(noise atypical) ≤ O
(
e−nε)

for someε > 0. If α >

αmix(λ), then there also exists ann0 andε > 0 such thatsupλ≤δ≤1 r(δ;C) − K(δ, α) ≤ −ε
for all n ≥ n0. This means that the second term decays likeO (e−nε) and can be ignored.

CombiningP (UB)
W andP (TS)

W completes the proof.

Corollary 3.2.10. Suppose the conditions of Theorem 3.2.9 hold, and that there also exists a

g(n) ≤ f(n) such that

Ln−1∑
h=1

Bh(n)zh = O(g(n)),

for anyz < 1, whereBh(n) is the bit normalized WE defined in (3.2.3). In this case, there exists

an ε > 0 such that the probability of bit error,PB , is given by

PB = O (g(n)) +O
(
ne−εLn

)
+O

(
e−nε)

.

Proof. The proof is identical to that of Theorem 3.2.9, except that (3.2.2) is used for the union

bound portion of the bound.

Remark 3.2.11.Since Theorem 3.2.9 essentially applies the union bound for0 ≤ δ ≤ λ and the

typical set decoding bound forλ ≤ δ ≤ 1, it is easy to see that separate spectral shapes could

be used for each bound. For example, a simple upper bound on the spectral shape could be used

for 0 ≤ δ ≤ λ, while numerical evaluation of the exact spectral shape and typical set decoding

bound could be used forλ ≤ δ ≤ 1. This would allow the typical set decoding threshold to be

treated rigorously without considering Condition 3.2.8 for the exact spectral shape.

Remark 3.2.12.It is also worth noting that the quantitylimδ→0+ (r(δ;C)/δ), which equals

r′(0;C) by l’Hôpital’s rule, seems to play an important role in noise thresholds. Ifr′(0;C) <∞,
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then a bit error rate noise threshold usually exists, while ensembles withr′(0;C) = 0 usually

admit a word error rate threshold. Furthermore, ifr′(0;C) = 0, then the noise threshold is

usually determined by the typical set decoding bound (i.e., there exists aλ0 > 0 such that

αTS = supλ0≤λ≤1 {α|r(δ;C) < K(δ, α), λ ≤ δ ≤ 1}).

3.3 Terminated Convolutional Codes

In this section, we consider the WEs of terminated convolutional codes. In particular,

we focus both on useful analytical bounds on the WE and exact numerical methods for com-

puting the spectral shape of a CC. The analytical bound is a generalization of [18, Lemma 3],

while the formula for the spectral shape can be seen as a generalization of Gallager’s Chernov

bounding technique [12, Eqn. 2.12] or as an application of [21].

3.3.1 Analytical Bounds

Now, we consider a useful bound on the weight enumerator of the block code formed

by terminating a CC. This bound is essentially identical to [18, Lemma 3], which was proven for

any rate-1/2 recursive systematic TCC. The major contribution of our result is that all constants

are computable from the derivation. All previous derivations prove only the existence of bounds

of this form. We also provide a proof which is valid for any TCC.

Theorem 3.3.1. Let τ be the numbers of bits output by a CC per trellis step and consider the

(n, k) block code formed by terminating a CC to a length ofn/τ trellis steps. We denote the free

distance of the CC byd, the transfer function of the CC byT (D), and the smallest real positive

root of the equationT (D) = 1 byD∗. The number of weighth codewords in the block code,

A
(o)
h (n), is upper bounded by

A
(o)
h (n) ≤

bh/dc∑
t=1

(
n/τ

t

)
gh, (3.3.1)

whereg = 1/D∗.

Furthermore, if a non-catastrophic convolutional encoder is used, then there exists a

constantρ > 0 such that the input weight,w, can be upper bounded withw ≤ ρh. In this case,



54

the bit normalized weight enumerator,B(o)
h , can be upper bounded by

B
(o)
h (n) ≤ ρh

n

bh/dc∑
t=1

(
n/τ

t

)
gh. (3.3.2)

Proof. Proof of this theorem is provided in Appendix 3B.1.

Various upper bounds can also be applied to the binomial sum in (3.3.1) to make this bound

more useful. The next corollary boundsA(o)
h in a manner which makes it easy to upper bound∑

A
(o)
h xh by an exponential.

Corollary 3.3.2. The binomial sum in (3.3.1) can be upper bounded with (3A.7) to get

A
(o)
h (n) ≤ (n/τ + 1)bh/dc

bh/dc! gh, (3.3.3)

where g = 1/D∗. If τ > d, then this result also requires that21/τg1.72d/τ ≥ 2R and

(de/τ)1/d (√2πn
)−1/n

g ≥ 2R, whereR is the code rate.

If a non-catastrophic encoder is used, then the bit normalized weight enumerator,B
(o)
h ,

can also be upper bounded by

B
(o)
h (n) ≤ C

(n/τ + 1)bh/dc−1

(bh/dc − 1)!
gh, (3.3.4)

whereC = 2ρd
τR

n+τ
n andg = 1/D∗.

Proof. Proof of this corollary is provided in Appendix 3B.2.

The bound presented in the next corollary was originally stated in [24] without proof. We present

it here mainly because of this and because it follows easily from Theorem 3.3.1 and Corollary

3.3.2.

Corollary 3.3.3. Using (3A.6) to upper bound the binomial sum instead, gives

A
(o)
h (n) ≤ C

(n
h

)bh/dc
gh, (3.3.5)

whereC =
(

τ
d

)(d−1)/d
and g =

(
1

D∗
) (

de
τ

)1/d
. If τ > d, then this result also requires that

21/τg1.88d/τ ≥ 2R and(de/τ)1/dg ≥ 2R, whereR is the code rate.

If a non-catastrophic encoder is used, then the bit normalized weight enumerator,B
(o)
h ,

can also be upper bounded by

B
(o)
h (n) ≤ ρ

R

(n
h

)bh/dc−1
gh. (3.3.6)
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Proof. Proof of this corollary is provided in Appendix 3B.3.

Remark 3.3.4.The basic ideas behind this theorem were introduced by Kahale and Urbanke in

[18]. Their treatment, however, focused solely on rate-1/2 recursive systematic CCs. The gen-

eralization to arbitrary convolutional codes, (3.3.5), was given in [24] without proof. Recently,

a bound similar to (3.3.1) was given without proof by Jin and McEliece in [17]. Using our

notation, their result can be written as: there exists ag such that

A
(o)
h ≤

( n/τj
h/d

(o)
free

k
)
gh.

Unfortunately, this bound does not hold for general convolutional codes. Consider, as a coun-

terexample, the memory 0 CC formed by using a(8, 4) Hamming code for each trellis step (i.e.,

τ = 8 andd(o)
free = 4). Choosingh∗ = n/2 + 4 forces the binomial coefficient to 0 and results

in the mistaken conclusion thatA(o)
h∗ ≤ 0, when in factAh∗ is growing exponentially withn.

Remark 3.3.5.Consider the additional conditions required by Corollaries 3.3.2 and 3.3.3 for

τ > d. First, it is worth noting that we have not found any CCs which do not satisfy these

conditions. Second, if a CC is found which does not satisfy these conditions, the parameter,g,

can always be artificially inflated so that the conditions are satisfied. This results is a weaker, but

provably accurate, bound of the same form. Furthermore, the constant,C, can also be removed

by inflatingg.

3.3.2 Analytical Bound Examples

Now, we consider three different TCCs and compare the true WE of each with (3.3.1)

and (3.3.3), which are referred to as upper bound 1 and 2 respectively. In general, we see that

(3.3.1) is tighter than (3.3.3) and that both bounds are reasonably tight for small output weights.

The (7,3) Hamming Code

This code can be thought of as a TCC withτ = 7, d = 3, andT (D) = 7D3 + 7D4 +

D7. Solving the equationT (D) = 1 with Mathematica gives the resultD∗ ≈ 0.46012. Figure

3.3.1 shows the WE of this code forn = 1400 and the corresponding bounds.
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Figure 3.3.1: The true WE and upper bounds for the Hamming (7,3) code.

The (9,8) Single Parity Check Code

This code can be thought of as a TCC withτ = 9, d = 2, andT (D) = 36D2 +

126D4 + 84D6 + 9D8. Solving the equationT (D) = 1 with Mathematica gives the result

D∗ ≈ 0.15959. Figure 3.3.2 shows the WE of this code forn = 1080 and the corresponding

bounds.

The Convolutional Code with GeneratorG(D) = [1, 1 +D]

This is really the only non-trivial memory-1 rate-1/2 CC, and it has parametersτ = 2,

d = 3, andT (D) = D3/(1 − D). Solving the equationT (D) = 1 with Mathematica gives

the resultD∗ ≈ 0.68233. Figure 3.3.3 shows the WE of this code forn = 1400 and the

corresponding bounds. We note that this bound can also be computed by takingk trellis steps

at a time (e.g.,τ = 2k). This has the effect of decreasingD∗, however, and the combination

improves the bound only marginally.
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Figure 3.3.2: The true WE and upper bounds for the single parity check (9,8) CC.

3.3.3 The Exact Spectral Shape

In this section, we generalize the Chernov type WE bound of [12, Eqn. 2.12] to convo-

lutional codes (CCs). A more general treatment of the underlying math problem was completed

by Miller in [21]. Since the bound is exponentially tight, it enables the exact numerical com-

putation of the spectral shape of block codes constructed from CCs. Furthermore, the spectral

shape does not depend on the method of construction (e.g., truncation, termination, or tailbiting)

used.

Theorem 3.3.6. LetG(x) be theM×M state transition matrix of a CC which outputsτ symbols

per trellis step. For example, we have

G(x) =

 1 x2

x x


for the two-state CC with generator matrix[1, 1/(1 +D)]. If the the state diagram of the CC is

irreducible and aperiodic, then we find that, forx > 0, the matrixG(x) has a unique eigenvalue,

λ1(x), of maximum modulus. In this case, the spectral shape,r(δ; TCC), of the block code
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Figure 3.3.3: The true WE and upper bounds for theG(D) = [1, 1 +D] CC.

formed by terminating the CC is given parametrically byδ(x) = xλ′1(x)/(τλ1(x)) and

r(δ(x); TCC) =
1
τ

ln [λ1(x)] − δ(x) ln x. (3.3.7)

Furthermore, both the functionr(δ(x); TCC) and the parametric curve are strictly convex.

Proof. Proof of this theorem is provided in Appendix 3B.4.

Remark 3.3.7.It also turns out that this formula can be evaluated numerically without resorting

to numerical estimation ofλ′1(x). Let the characteristic polynomial ofG(x) be

f(λ, x) = det(λI − G(x)) =
∑

fijλ
ixj ,

and recall that the eigenvalues, for a particularx, are the roots of the equation,f(λ, x) = 0. Now,

we can use implicit differentiation to solve fordλ/dx. We start by computing the differential

form of f(λ, x) = 0, which is given by∑
fij(iλi−1xjdλ+ jλixj−1dx) = 0.

Next, we solve fordλ/dx as a function ofλ andx to get

dλ

dx
=

−
∑

ij fijjλ
ixj−1∑

ij fijiλi−1xjdλ
.
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This allows a point on ther(δ; TCC) curve to be computed by choosing anyx > 0

and numerically computing the eigenvalue,λ1(x). Next, we compute the derivative,dλ/dx, for

the(λ, x) pair and use (3.3.7) to computeδ(x) andr(δ(x); TCC).

3.4 The Accumulate Code

In this section, we consider the “accumulate” code which is generated by a1/(1 +D)

differential encoder.

3.4.1 A Simple Bound on the IOWTP

In this section, we consider the IOWTP of the “accumulate” code. The exact IOWE

of the “accumulate” code was published first in [10] and [22], and this allows the IOWTP to be

written as

Pw,h(n) =


( n−h
bw/2c)(

h−1
dw/2e−1)

(n
w) 1 w ≥ 1 andh ≥ 1

1 w = h = 0

0 otherwise

. (3.4.1)

It is also worth noting that the “accumulate” code never maps an input word of weightw to an

output word of weighth < dw/2e. This property is quite useful, so we summarize it in the

following condition.

Fact 3.4.1. Consider the IOWTP of the “accumulate” code,Pw,h(n), for w ≥ 1 andh ≥ 1. In

this case,Pw,h(n) is non-zero if and only ifh ≥ dw/2e andn − h ≥ bw/2c. This can be seen

easily by noticing that one of the binomial coefficients in the numerator of (3.4.1) will be zero if

either condition is not met.

Now, we derive a new upper bound on the IOWTP of the “accumulate” code. This

bound is quite useful in analysis because of its simplicity, yet it is also tight enough to reproduce

various qualitative results for RA codes. The result is presented as a corollary of Theorem 3C.2,

which is stated and proven in Appendix 3C.

Corollary 3.4.2. The IOWTP of the “accumulate” code,Pw,h(n), is upper bounded by

Pw,h(n) ≤ dw/2e
h

2w

(
h

n

)dw/2e(n− h

n

)bw/2c
(3.4.2)
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and

Pw,h(n) ≤ 2w

(
h

n

)dw/2e(n− h

n

)bw/2c
. (3.4.3)

While some care should be taken when applying this bound withw = 0, h = 0, or h = n, we

note that using the definition00 = 1 makes the bound valid for0 ≤ w ≤ n and0 ≤ h ≤ n.

Proof. Proof of this corollary is provided in Appendix 3C.2.

3.4.2 An Exponentially Tight Bound on the IOWTP

The exact exponential form ofPw,h(n) is very useful for computing tight numerical

bounds on the WE of codes based on the “accumulate” code. It is defined by

p(x, y) = lim
n→∞

1
n

logPbxnc,bync(n)

= yH

(
x

2y

)
+ (1 − y)H

(
x

2(1 − y)

)
−H(x), (3.4.4)

and the limit can be evaluated by using the upper and lower bounds given by (3A.2). When

the argument of any entropy function is greater than one, the true value ofp(x, y) is negative

infinity. This can be seen by applying Fact 3.4.1 to seelimn→∞ Pbxnc,bync(n) = 0 if y < x/2

or y > 1 − x/2.

Remark 3.4.3.It turns out that there is a remarkable similarity between (3.4.3) and the Bhat-

tacharyya bound on pairwise error probability for the BSC, which is given by(4p(1 − p))h/2.

This might seem accidental at first, but we believe that there is something deeper to this con-

nection. In fact, the exponential form of the IOWTP of the “accumulate” code, (3.4.4), and the

typical set decoding exponent for the BSC, [1, Eqn. 2.8], are actually identical.

The fact that these two quantities are mathematically identical has at least one very

interesting consequence. Suppose that we have any ensemble sequence whose noise threshold

for typical set decoding on the BSC isp∗. If we serially concatenate this code with an interleaved

“accumulate” code, then the typical minimum distance of the new ensemble will bep∗n. This

observation is based on the fact that the BSC typical set decoding threshold and this typical

minimum distance are both given by the same expression. Namely, they are both given by the

smallestδ > 0 which satisfiesmaxx r(x) + p(x, δ) = 0, wherer(δ) is the spectral shape of the

ensemble sequence andp(x, y) is given by (3.4.4).
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3.4.3 A Simple Bound on the Cumulative IOWTP

Now, we derive a new upper bound on the cumulative IOWTP (CIOWTP) of the “ac-

cumulate” code. This bound is quite useful in analysis because of its simplicity, yet it is also

tight enough to reproduce various qualitative results for RA codes. The result is presented as a

corollary of Theorem 3C.2, which is stated and proven in Appendix 3C.

Corollary 3.4.4. The CIOWTP of the “accumulate” code,Pw,≤h(n), is defined by

Pw,≤h(n) =
h∑

i=0

Pw,i(n) =


Ph

i=1 ( n−h
bw/2c)(

h−1
dw/2e−1)

(n
w) 1 w ≥ 1 andh ≥ 1

1 h ≥ w = 0

0 w > h = 0

.

This quantity can be upper bounded with

Pw,≤h(n) ≤ 2w

(
h

n

)dw/2e
. (3.4.5)

Using the definition00 = 1 makes the bound valid for0 ≤ w ≤ n and0 ≤ h ≤ n.

Proof. Proof of this theorem is provided in Appendix 3C.3.

Corollary 3.4.5. The CIOWTP of the cascade ofm “accumulate” codes,P (m)
w,≤h(n), is upper

bounded by

P
(m)
w,≤h(n) ≤

2m−1
(

2m+1h
n

)Pm
i=1dw/2ie

(
1 − 2m+1h

n

)m−1 , (3.4.6)

for h < n/2m+1.

Proof. Proof of this corollary is provided in Appendix 3C.4.

Remark 3.4.6.The upper bound provided by Corollary 3.4.5 is actually quite loose, but it suf-

fices for our purposes. We believe the weakness is mainly due to the fixed upper boundhi ≤
2mhm+1 for i = 1, . . . ,m used to derive it.
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3.5 Single Accumulate Codes

3.5.1 Repeat Accumulate Codes

A Repeat Accumulate (RA) code is the serial concatenation of a repeat code and an

interleaved rate-1 “accumulate” code. The elegant simplicity of these codes allowed their inven-

tors, Divsalar, Jin and McEliece, to rigorously prove a coding theorem in [10]. In this section, we

derive a new closed form bound on the WE of an RA code with repeat orderq. The quality and

simplicity of this new bound is mainly due to the new bound on the IOWTP of the “accumulate”

code given by (3.4.3).

Starting with the general formula for serial concatenation,

A
RA
h (n) =

n∑
w=1

A(o)
w (n)Pw,h(n),

we can substitute the WE of the repeat code,

A
(o)
h (n) =


(n/q
h/q

)
if h/q integer

0 otherwise
,

and apply (3.4.3) to get

A
RA
h (n) ≤

n/q∑
i=1

(
n/q

i

)
2qi(h/n)dqi/2e(1 − h/n)bqi/2c.

Next we defineδ = h/n to normalize the output weight and simplify the notation. Forq even,

the binomial theorem can be used to simplify this sum to

A
RA
δn (n) ≤

n/q∑
i=1

(
n/q

i

)(
2qδq/2(1 − δ)q/2

)i

=
(
1 + (4δ(1 − δ))q/2

)n/q
− 1. (3.5.1)

For q odd, we can sum the odd and even terms separately by defining the function

Z±(x, k) =
(1 + x)k ± (1 − x)k

2
,

sinceZ+(x, k) gives even terms in a binomial sum andZ−(x, k) gives the odd terms in a bino-

mial sum. Using this, we write

A
RA
δn (n) ≤ Z+

(
(4δ(1 − δ)q/2 , n/q

)
− 1 +

δ

1 − δ
Z−
(
(4δ(1 − δ)q/2 , n/q

)
. (3.5.2)
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Figure 3.5.1: An upper bound on the spectral shape of RA codes.

Applying (3.2.7) to (3.5.1) and (3.5.2), it is easy to verify that the asymptotic spectral

shape of an RA code is upper bounded by

r(q)(δ; RA) ≤ 1
q

ln
(
1 + (4δ(1 − δ))q/2

)
(3.5.3)

for q ≥ 2 and0 ≤ δ ≤ 1. Figure 3.5.1 compares the actual spectral shape of two RA codes with

the upper bounds. Forq = 30, one can see that the upper bound matches the true spectral shape

very well for δ < 0.3. While, for q = 3, the bound matches only for very smallδ.

3.5.2 Convolutional Accumulate Codes

A Convolutional Accumulate (CA) code is the serial concatenation of a terminated

convolutional code with an interleaved rate-1 “accumulate” code. These codes generally perform

well with iterative decoding and have very good ML decoding thresholds. Their discovery in [11]

actually predates RA codes as well. In this section, we derive a general upper bound on the WE

of a CA which captures some of the important properties of CA codes.

Starting with the general formula for serial concatenation,

A
CA
h (n) =

n∑
i=d

A
(o)
i (n)P (acc)

i,h (n),

we can derive an upper bound on the WE of a CA code. Using (3.3.3) to upper bound the WE
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of the CC and (3.4.3) to upper bound the IOWTP of the “accumulate” code gives

A
CA
h (n) ≤

∞∑
i=d

(n/τ + 1)bi/dc

bi/dc! gi di/2e
h

2i(h/n)di/2e(1 − h/n)bi/2c.

Using the normalized output weight,δ = h/n, and the upper bound,

δdi/2e(1 − δ)bi/2c ≤ δi/2(1 − δ)i/2/(1 − δ),

gives

A
CA
δn (n) ≤ 1

1 − δ

∞∑
i=d

(n/τ + 1)bi/dc

bi/dc!
(
g
√

4δ(1 − δ)
)i
.

Now, we defineγ = g
√

4δ(1 − δ) and simplify the expression to

A
CA
δn (n) ≤ 1

1 − δ

(
1 + γ + . . . + γd−1

) ∞∑
j=1

(n/τ + 1)j

j!
γdj .

Finally, we can write the infinite sum in closed form and use the fact that
(
1 + γ + . . . + γd−1

)
=

(γd − 1)/(γ − 1) to get

A
CA
δn (n) ≤ 1

1 − δ

γd − 1
γ − 1

(
eγ

d(n+τ)/τ − 1
)
. (3.5.4)

We can also upper bound the spectral shape using (3.2.7) and (3.5.4) to get

r(δ; CA) ≤ 1
τ

(
g
√

4δ(1 − δ)
)d
.

3.5.3 Properties of the Bounds

Although the upper bounds, (3.5.1), (3.5.2), and (3.5.4), computed in this section are

quite loose in some cases, they do capture some important characteristics of the underlying

WEs. For example, we will show that they correctly characterize theα in the growth rate of the

minimum distance,dmin ∼ nα. This fact is a straightforward generalization of the well-known

result given in [18]. We will also show that (3.5.3) is tight enough to prove that the ML AWGN

threshold of an RA code approaches -1.59dB asq goes to infinity. This fact was originally

proven in [15].

Since the only difference between (3.4.5) and (3.4.3) is the factor of(1−h/n)bw/2c, it

is straightforward to repeat the derivation using (3.4.3) and one finds that the upper bound on the
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WE is converted to an upper bound on the cumulative WE simply by dropping the(1−h/n)bw/2c

term. Applying this technique to (3.5.4) and substitutingh/n for δ gives

A
CA
≤h(n) ≤ 1

1 − h/n

(2g
√
h/n)d − 1

(2g
√
h/n) − 1

(
e(2g

√
h/n)d(n+τ)/τ − 1

)
. (3.5.5)

The probability that a randomly chosen code from this ensemble will have a minimum distance

less thant is upper bounded byA
CA
≤t (n) [23, Theorem 4]. LetE be the event that a very long

code from this ensemble has a minimum distance less thant(n) = an(d−2)/d, for some constant

a. We can upper bound the probability ofE by consideringA
CA
≤t(n)(n) asn goes to infinity,

which gives

Pr(E) ≤ lim
n→∞

1
1 − an(d−2)/d/n

(2g
√
an(d−2)/d/n)d − 1

(2g
√
an(d−2)/d/n) − 1

(
e(2g

√
an(d−2)/d/n)d(n+τ)/τ − 1

)
= e(4g

√
a)d/τ − 1.

It is easy to see that this upper bound can be made arbitrarily close to zero by decreasinga.

Therefore, almost all of the codes in the ensemble will have a minimum distance which grows

like n(d−2)/d.

Now, let us consider the ML decoding threshold of an RA code in AWGN by applying

Viterbi-Viterbi bound. It was shown in [15], using a great deal of analysis, that this threshold

approaches -1.59dB (i.e., the low-rate Shannon limit) asq goes to infinity. It turns out that

(3.5.3) is tight enough to reproduce the same result almost trivially. Substituting (3.5.3) into

(3.2.11) and normalizing for the rate (i.e., multiplying byq) shows that the Viterbi-ViterbiEb/N0

threshold of a rate-1/q RA code is given by

Tq = max
0≤δ≤1

fq(δ),

where

fq(δ) =
(1 − δ)
δ

qr(q)(δ; RA) =
(1 − δ)
δ

ln
(
1 + (4δ(1 − δ))q/2

)
.

Since we are interested in the limit ofTq as q goes to infinity, we start by noting that, for

δ ∈ [0, 1/2)
⋃

(1/2, 1], fq(δ) decreases strictly to0 asq increases (i.e.,fq(δ) > 0 implies that

fq+1(δ) < fq(δ) for all δ ∈ [0, 1/2)
⋃

(1/2, 1]). This implies thatlimq→∞ Tq ≤ limq→∞ fq(1/2).

Furthermore, it is easy to see thatlimq→∞ Tq ≥ limq→∞ fq(1/2) because we can lower bound

the maximum over an interval by choosing any point inside. Combining these two results shows

thatT∞ = limq→∞ fq(1/2) = ln 2 = −1.59 dB.
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3.6 Convolutional Accumulate-m Codes

3.6.1 Description

A CAm code is the multiple serial concatenation of a TCC andm interleaved rate-1

“accumulate” codes [24]. Any CAm code is completely defined by its outer TCC, and itsm

interleavers. Therefore, a random ensemble of CAm codes is formed, for a particular outer TCC,

by choosing each interleaver randomly from the set of all permutations. This type of ensemble

lends itself nicely to the average analysis introduced by [4] for turbo codes. LetA
(i+1)
h (n) be

the ensemble averaged WE after theith “accumulate” code, then we have

A
(m+1)
hm+1

(n) =
∑

h1,... ,hm

A
(1)
h1

(n)
m∏

i=1

Phi,hi+1
(n), (3.6.1)

wherePw,h(n) is given by (3.4.1) andA
(1)
h equals the WE of the outer TCC,A(o)

h . This WE can

also be written in an incremental form,

A
(i+1)
hi+1

(n) =
n∑

hi=1

A
(i)
hi

(n)Phi,hi+1
(n), (3.6.2)

which highlights the Markov nature of the serial concatenation.

Definition 3.6.1. The tuple,h1, . . . , hm+1, corresponds to the codeword weight at each stage

through them+ 1 encoders. We refer to this tuple as aweight paththrough the encoders. Using

this definition, one can think of (3.6.1) as a sum over all weight paths. Furthermore, we say that

a weight path is valid if it does not violate basic conditions such as Fact 3.4.1. For example, the

weight path,h1, . . . , hm+1, is valid if h1 ≥ d andhi+1 ≥ dhi/2e for i = 1, . . . ,m − 1. All

weight paths which are not valid provide no contribution to the sum.

3.6.2 The IGE Conjecture for CAm Codes

Now, we can apply the IGE conjecture to (3.6.1) by defining

α(hm+1) = lim sup
n→∞

logn

∑
h1,... ,hm

A
(1)
h1

(n)
m∏

i=1

Phi,hi+1
(n)

 . (3.6.3)

Of course, the sum in (3.6.3) is lower bounded by its largest term. Using Definition 3.6.1, it is

easy to verify that all valid weight paths ending athm+1 obeyhi ≤ 2mhm+1 for i = 1, . . . m.
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This means that the number of non-zero terms in the sum is upper bounded by(2mhm+1)m, and

that ∑
h1,... ,hm

A
(1)
h1

(n)
m∏

i=1

Phi,hi+1
(n) ≤ (2mhm+1)

m max
h1,... ,hm

A
(1)
h1

(n)
m∏

i=1

Phi,hi+1
(n).

These upper and lower bounds, along with fact thatlimn→∞ logn(2mhm+1)m = 0,

for fixed hm+1, allow us to replace the sum over weight paths in (3.6.3) by a maximum over

weight paths. The results of Appendix 3D.1 show that

lim
n→∞

(
lognA

(1)
h1

(n)
m∏

i=1

Phi,hi+1
(n)

)
≤ α(h1, . . . , hm+1)

whereα(h1, . . . , hm+1) = bh1/dc −
∑m

i=1 dhi/2e. We also note that the bound holds with

eqaulity ifh1 is an integer multiple ofd. This implies only thatα(hm+1) will be upper bounded

by the maximum ofα(h1, . . . , hm+1) over all valid weight paths. In fact, we will find that

α(hm+1) is equal to this quantity because the maximum occurs whenh1 is an integer multiple

of d.

The following Lemma provides a few results on the maximization ofα(h1, . . . , hm+1).

Lemma 3.6.2. Let the set of valid paths starting ath1, V (h1), be the set of all tuples,

h1, . . . , hm+1, wherehi > 0 for i = 1, . . . m+ 1 andhi+1 ≥ dhi/2e for i = 1, . . . ,m− 1. Let

the function,α(h1, . . . , hm+1), be defined by

α(h1, . . . , hm+1) = bh1/dc −
m∑

i=1

dhi/2e .

The maximum ofα(h1, . . . , hm+1) over the setV (h1) with h1 ≥ 2 is equal to

ν(h1) = bh1/dc −
m∑

i=1

⌈
h1/2i

⌉
. (3.6.4)

Also, the maximum ofν(h1) for h1 ≥ d ≥ 2 is equal toν(d). Finally, for d ≥ 3 or m ≥ 2, we

also show thatν(h) ≤ ν(d) − 1 for all h ≥ 4d.

Proof. Proof of this lemma is given in Appendix 3D.2.

Sinceα(h1, . . . , hm+1) does not depend onhm+1, we can apply Lemma 3.6.2 to show that

α(hm+1) = ν(d). Furthermore, it is clear thatβM = maxhm+1≥1 α(hm+1) = ν(d), so the

maximum exponent,ν, is given byν = ν(d) or

ν = 1 −
m∑

i=1

⌈
d/2i

⌉
. (3.6.5)
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3.6.3 The Worst Case Minimum Distance

Using Fact 3.4.1, we can compute the minimum possible output weight,dmin, of a

GRAm code. This worst case minimum distance is found by minimizinghm+1 subject to the

constraints thathi+1 ≥ dhi/2e andh1 ≥ d. It is easy to see that pickingh1 as small as possible

allows us to pickh2 as small as possible, and so on. Therefore, the weight path which minimizes

hm+1 is given byh1 = d andhi+1 = dhi/2e. One might notice from the previous section that

this weight path also maximizes the exponent of the IGE conjecture. Simplifying the expression

for hm+1 gives

dmin = dd/2me . (3.6.6)

3.6.4 Weight Enumerator Bound

In this section, we derive an upper bound on the cumulative WE of a CAm which will

be used to prove the main theorem of the chapter, Theorem 3.6.4. The cumulative WE of a

CAm code can be written in terms of the WE of the outer TCC and the CIOWTP ofm cascaded

“accumulate” codes with

A
(m+1)
≤h (n) =

n∑
w=1

Aw(n)P (m)
w,≤h.

Forh ≤ n/2m+1, this can be upper bounded by using (3.3.5) and (3.4.6) to get

A
(m+1)
≤h (n) ≤ 2m−1(

1 − 2m+1h
n

)m−1

2mh∑
w=d

(n/τ + 1)bw/dc

bw/dc! gw

(
2m+1h

n

)Pm
i=1dw/2ie

. (3.6.7)

We note that the upper limit,2mh, of the sum is due to the fact thatP (m)
w,≤h = 0 for w ≥ 2mh.

For the next step, we need the bound
∑m

i=1

⌈
w/2i

⌉
≥ d(1 − 2−m) bw/dc, which is

easily verified by noticing that

m∑
i=1

⌈
w/2i

⌉
≥ w

m∑
i=1

2−i = w(1 − 2−m)

andw ≥ d bw/dc. Using this bound, we can write the cumulative WE as

A
(m+1)
≤h (n) ≤ 2m−1(

1 − 2m+1h
n

)m−1

2mh∑
w=d

(n/τ + 1)bw/dc

bw/dc! gw

(
2m+1h

n

)cbw/dc
,
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wherec = d(1 − 2−m). Now, we can change the index of summation fromw to i = bw/dc and

extend the upper limit of the sum to get

A
(m+1)
≤h (n) ≤ 2m−1(

1 − 2m+1h
n

)m−1

(
1 + g + . . .+ gd−1

) ∞∑
i=1

(n/τ + 1)i

i!
gdi

(
2m+1h

n

)ci

.

Evaluating the sum and applying the identity,
∑d−1

w=0 g
w = (gd − 1)/(g − 1), gives

A
(m+1)
≤h (n) ≤ 2m−1(

1 − 2m+1h
n

)m−1

gd − 1
g − 1

(
eg

d(2m+1h/n)c(n+τ)/τ − 1
)
, (3.6.8)

for h < n/2m+1. Writing the logarithm of the cumulative WE as

lnA(m+1)
≤h (n) ≤ O(1) +

n

τ
gd(2m+1h/n)d(1−2−m), (3.6.9)

for h < n/2m+1, makes it easy to see that the spectral shape is given by

r(m+1)(δ; CAm) ≤ 1
τ
gd(2m+1δ)d(1−2−m), (3.6.10)

for δ < 1/2m+1.

3.6.5 The Main Theorem

Almost all of the pieces are now in place to consider the main theorem of the chapter.

Before continuing, however, with the statement of the main theorem, we state the following

lemma, which will be used in its proof.

Lemma 3.6.3. Consider the serial concatenation of a TCC, with free distanced, and an “accu-

mulate” code. The probability that the resulting code has a codeword of minimum weight (i.e.,

h = dd/2e) is PM (n) = Θ(n1−dd/2e) wheren is the block length.

Proof. Proof of this lemma is given in Appendix 3D.3.

The following theorem is the main theorem of the chapter and essentially extends the results of

[10][14] to CAm codes.
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Theorem 3.6.4. Consider the average performance of a sequence of CAm code ensembles,

based on a particular outer TCC with minimum distanced ≥ 2, transmitted over a memo-

ryless channel with Bhattacharyya channel parameterz. There exists a positive thresholdz∗

such that, for anyz < z∗, the probability of word error under maximum likelihood decoding is

PW = Θ(nν), whereν = 1−
∑m

i=1

⌈
d/2i

⌉
. Furthermore, if a non-catastrophic encoder is used

for the CC, then the probability of bit error isPB = Θ(nν−1).

Proof. The proof can broken into four main parts. The first part uses (3.6.7) to verify that the

WE of a CAm code satisfies Condition 3.2.7. This also includes finding the error decay rates,

which arePW = O(nν) andPB = O(nν−1). The second part uses the upper bound, (3.6.9), to

verify that the WE of a CAm code satisfies Condition 3.2.8. The third part uses Theorem 3.2.9

and Corollary 3.2.10 to establish the basic coding theorem. The final part uses Lemma 3.6.3 to

lower bound the probability of error and establish thatPW = Ω(nν) andPB = Ω(nν−1).

First, we chooseLn = (lnn)2 and verify that Condition 3.2.7 holds. To do this, we

consider an upper bound on cumulative WE, (3.6.7), for small output weights (h = Ln). In this

case, we can upper bound (3.6.7) by2mh times the largest term to get

A
(m+1)
≤h (n) ≤ 22m−1h(

1 − 2m+1h
n

)1−m max
d≤w≤2mh

(n/τ + 1)bw/dc

bw/dc! gw

(
2m+1h

n

)Pm
i=1dw/2ie

.

(3.6.11)

It should be clear that the exponent ofn in this expression plays the crucial role for largen and

h = O
(
(lnn)2

)
. This exponent is the same as that given in the IGE conjecture with the help of

Lemma 3.6.2. For simplicity, we restate it as

ν(w) = bw/dc −
m∑

i=1

⌈
w/2i

⌉
.

For large enoughn, the maximum in (3.6.11) will be determined first by the set ofw’s which

give the maximum exponent ofn. If this set has more than member, then the term which

also maximizes the exponent ofh will be chosen becauseh = O
(
(lnn)2

)
. So we apply

Lemma 3.6.2 to show that the maximum exponent ofn, which we denote byν, is given by

ν = maxw≥d ν(w) = ν(d). Now, we can consider all weight paths which achieve the maximum

exponent ofn, and find the path in this set with the maximum exponent ofh. Once again, we
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apply Lemma 3.6.2 to show thatν(w) ≤ ν − 1 for all w ≥ 4d. It is easy to verify that the ex-

ponent ofh in (3.6.11) is given by1 +
∑m

i=1

⌈
w/2i

⌉
. Since this value is non-decreasing withw,

we find that the maximum exponent ofh is upper bounded by1+
∑m

i=1

⌈
4d/2i

⌉
≤ 1+4d+m.

This means that

A
(m+1)
≤h (n) = O

(
nνh4d+m+1

)
, (3.6.12)

for h = O
(
(lnn)2

)
. We note that the second part of Lemma 3.6.2 does not hold for the case of

d = 2 andm = 1, and this case will be dealt with separately.

Now, ford ≥ 3 orm ≥ 2, we can upper bound the probability of error associated with

small output weights. Combining (3.2.1) and (3.6.12) allows us to upper bound the probability

of word error associated with small output weights by

Ln∑
h=1

O
(
nνh4d+m+1

)
zh = O(nν),

for anyz < 1. We note that the sum can be evaluated by taking derivatives of the geometric sum

formula. This proves that the WE of any CAm code withd ≥ 3 or m ≥ 2 satisfies Condition

3.2.7 withLn = (lnn)2 andf(n) = nν. The probability of bit error can also be upper bounded

by revisiting the entire derivation of (3.6.7), and starting withB(o)
h instead ofA(o)

h . If the encoder

of the outer code is non-catastrophic, then we find that the result is scaled by a constant and the

exponent is reduced by one. Therefore, the bit error rate condition of Corollary 3.2.10 is satisfied

with g(n) = nν−1.

For d = 2 andm = 1, we can bound the probability of error more directly. The WE

bound, (3.5.4), can be simplified for the case ofd = 2 andh = O
(
(lnn)2

)
, and it is easy to

verify that

A
CA
h (n) ≤ O(1)e4g2h/τ .

Using this, the probability of word error, (3.2.1), can be upper bounded by

Ln∑
h=1

O(1)e4g2h/τzh = O(1),

as long asz < e−4g2/τ . It is worth noting that this is exactly the same threshold that will be

predicted by the bound of large output weights. This proves that the WE of any CAm code with
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d = 2 or m = 2 satisfies Condition 3.2.7 withLn = (lnn)2 andf(n) = 1. As before, the

probability of bit error, (3.2.2), can be upper bounded by revisiting the derivation of (3.5.4) and

starting withB(o)
h instead ofA(o)

h . If the encoder of the outer code is non-catastrophic, then we

find that the the exponent is reduced by one. Therefore, the bit error rate condition of Corollary

3.2.10 is satisfied withg(n) = n−1. Since the exponent,ν, is zero ford = 2 andm = 1, both of

these decay rates satisfy the theorem.

Next, we can verify that Condition 3.2.8 holds by first using (3.2.6) and (3.6.9) to show

that

r(m+1)
n (δ; CAm) =

1
n

lnA(m+1)
≤h (n) =

1
τ
gd(2m+1h/n)d(1−2−m) +O

(
1
n

)
.

Combining this with the fact thatLn = (ln n)2 shows that the first part of Condition 3.2.8 holds

because1n = o
(

(ln n)2

n

)
. Now, we can use (3.6.10) to verify thatlimδ→0+

(
r(m+1)(δ; CAm)/δ

)
<∞. It is easy to verify that the limit is given by

lim
δ→0+

r(m+1)(δ; CAm)
δ

≤

 4g2/τ if d = 2 andm = 1

0 if d ≥ 3 orm ≥ 2
.

This proves that the WE of any CAm code withd ≥ 2 satisfies Condition 3.2.8.

Now that we have established the validity of Conditions 3.2.7 and 3.2.8, we can apply

Theorem 3.2.9 and Corollary 3.2.10. Using only the union bound, rather than the tighter typical

set bound, corresponds to choosingλ = 1 and makes the noise threshold equal toαT (1). Us-

ing the definition, (3.2.10), gives the same threshold in terms of the Bhattacharyya parameter,

namely thatz∗ = e−cUB . Sincer(δ) < ∞ andlimδ→0+

(
r(m+1)(δ; CAm)/δ

)
< ∞, it is clear

thatcUB <∞ and this proves that there exists a positive threshold such that, for anyz < z∗, the

probability of word error under ML decoding isPW = Θ(nν). The corollary extends this result

to the probability of bit error with a decay rate ofPB = Θ(nν−1).

Finally, we consider a lower bound on the probability of error associated with small

output weights. Consider the weight path of the worst case minimum distance, which is given by

hi+1 =
⌈
d/2i

⌉
for i = 0, . . . ,m. The probability of picking a code, from the ensemble, which

has a codeword of this distance is lower bounded by

PM (n)
m∏

i=2

Phi,hi+1
(n),
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wherePM (n) is the probability that there is a codeword of weightdd/2e after the first inter-

leaver. We note that this is a lower bound because it does not take into account the effect

of multiple codewords of minimum weight at each stage. Now, we can combine the fact that

Phi,hi+1
(n) = Θ(n−dhi/2e) with the result of Lemma 3.6.3 (i.e.,PM = Ω(n1−dd/2e)) to show

that the probability of picking a code with worst case minimum distance is

Ω
(
n1−Pm

i=1dd/2ie
)

= Ω (nν) .

Since the probability of word error is a constant for codewords of fixed output weight, this means

that the probability of word error isΩ(nν). Furthermore, the number of bit errors generated by

such a word error is a constant, so the probability of bit error isΩ(nν−1). Combining these lower

bounds with the previously discussed upper bounds completes the proof thatPW = Θ(nν) and

PB = Θ(nν−1).

3.6.6 The Exact Spectral Shape

Let r(i+1)(x) be the spectral shape of the WE after theith “accumulate” encoder. It

turns out that we can computer(i+1)(x) exactly by noting that (3.6.1) can be upper and lower

bounded with

max
h1,... ,hm

A
(1)
h1

(n)
m∏

i=1

Phi,hi+1
(n) ≤ A

(m+1)
hm+1

(n) ≤ nm max
h1,... ,hm

A
(1)
h1

(n)
m∏

i=1

Phi,hi+1
(n).

Using these bounds, it is easy to verify that the asymptotic spectral shape is given by

r(m+1)(xm+1; CAm) = max
x1,... ,xm

[
r(1)(x) +

m∑
i=1

p(xi, xi+1)

]
,

wherep(x, y) is given by (3.4.4). This can also be computed using the incremental form,

r(i+1)(xi+1; CAm) = max
0<xi<1

[
r(i)(xi) + p(xi, xi+1)

]
. (3.6.13)

The functional form of (3.6.13) makes it quite amenable to analysis. It turns out

that (3.6.13) is simply a linear transform in the max-plus semiring [5]. We start by show-

ing that the function,H(x) + C, is a left eigenvector ofp(x, y), which essentially means that

max0≤x≤1 [H(x) + C + p(x, y)] = H(y) +C. Using (3.4.4) to expand thep(x, y) on the LHS

of this expression gives

max
0≤x≤1

[H(x) + C + p(x, y)] = max
0≤x≤1

[
C + yH

(
x

2y

)
+ (1 − y)H

(
x

2(1 − y)

)]
.
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It is easy to verify thatx = 2y(1 − y) maximizes the RHS, and that the maximum is given

by H(y) + C. This is really not that surprising, however, because this analysis is quite similar

to the Markov chain approach taken in [23] and gives the same result. On the other hand, we

believe that a more detailed analysis of this operation may also allow one to bound the rate of

convergence. In fact, we make the following conjecture.

Conjecture 3.6.5. Let r(m+1)(x; CAm) be the spectral shape of any CAm code of rateR, and

let r(∞)(x; CAm) be the stationary spectral shape asm goes to infinity. We conjecture that

r(∞)(x; CAm) = [H(x) + 1 −R]+, where[x]+ = x for x ≥ 0 and zero otherwise, and that∣∣∣r(m+1)(x; CAm) − r(∞)(x; CAm)
∣∣∣ = O

(
1
m

)
.

Remark 3.6.6.It is worth noting that the floor of the spectral shape at zero is basically due

to the fact thatp(0, y) = 0. This means that inputs of small output weight are mapped by

the accumulate code to outputs of arbitrary weight with a probability that does not decay ex-

ponentially in the block length. This essentially sets up the lower boundr(i+1)(y; CAm) ≥
r(i+1)(0; CAm) + p(0, y) = 0. Also, this result implicitly assumes thatm grows independently

of the block length because of the order in which limits are taken.

3.6.7 The Typical Minimum Distance

Now, we prove that the typical minimum distance of GRAm codes grows linearly with

the block length form ≥ 2. We do this by first proving this result form = 2, and then showing

that it must also hold for any finitem > 2. The basic method involves bounding the cumulative

WE of the code and then using the fact that

Pr(dmin ≤ h) ≤ A≤h.

First, we simplify the WE for CA codes. Starting with (3.5.4), we can drop the−1 and

separate the exponential to get

A
CA
δn (n) ≤ 1

1 − δ

γd − 1
γ − 1

(
eγ

d(n+τ)/τ − 1
)
≤ 1

1 − δ

γd − 1
γ − 1

eγ
d
eγ

dn/τ .

Sinceγ = g
√

4δ(1 − δ) ≤ g andg ≥ 1, we can simplify the constant using the fact that

γd − 1
γ − 1

eγ
d ≤ gd − 1

g − 1
eg

d ≤ gdeg
d
.
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Ford ≥ 2, we can also bound theγdn/τ term in the exponential using

γdn/τ = gd (4δ(1 − δ))d/2 n/τ ≤ gd (4δ(1 − δ)) n/τ ≤ 4gdh/τ.

Combining these bounds together gives

A
CA
h (n) ≤ gdeg

d

1 − h/n
e4gdh/τ . (3.6.14)

The remainder of the derivation must be handled separately for codes withd = 2 and codes with

d ≥ 3.

Convolutional Accumulate-2 Codes withd = 2

Now, we derive an upper bound on the cumulative WE of CA2 codes withd = 2 by

combining (3.6.14) and (3.4.5) to get

A
CA2

≤h (n) ≤ g2eg
2

2h∑
w=1

1
1 − w/n

e4g2w/τ (4h/n)dw/2e.

Using the fact that1/(1−w/n) ≤ 1/(1− 2h/n) for 1 ≤ w ≤ 2h, we can rewrite this sum with

w = 2i to get

A
CA2

≤h (n) ≤ (e−4g2/τ + 1)
h∑

i=1

e8g2i/τ (4h/n)i, (3.6.15)

for h < n/2. Upper bounding this sum by the infinite sum and lettingh = δn gives

A
CA2

≤δn(n) ≤ 2g2eg
2

1 − 2δ

(
4δe8g2/τ

)
1 − 4δe8g2/τ

,

for δ < 1/
(
4e8g2/τ

)
. Now, we point out that for anyε > 0 there exists aδ > 0 such that

A
CA2

≤δn(n) ≤ ε. Therefore, almost all of the codes in the ensemble will have a minimum distance

growing linearly with the block length. Since the geometric sum in (3.6.15) also grows expo-

nentially inn for δ > 1/
(
4e8g2/τ

)
, one might conjecture that the minimum distance is almost

always equal to1/
(
4e8g2/τ

)
. Numerical evidence suggests otherwise, however.

Remark 3.6.7.Let δ∗ be the smallestδ such thatA
CA2

≤δn(n) grows exponentially inn. Numerical

evidence suggests thatlimn→∞A
CA2

≤δn(n) = f(δ) is a well-defined function ofδ for 0 ≤ δ < δ∗.
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This function can be used as an upper bound on the cumulative distribution function of minimum

distance ratio for the code ensemble. Simple analytical arguments show thatf(δ) starts atf(0) =

0 and is strictly increasing towardsf(δ∗) = ∞. Finally, the largest minimum distance ratio

provable via the average WE is given by theδ which solvesf(δ) = 1. Unfortunately, while the

numerical methods of Section 3.8 may be used to estimateδ∗, we are not aware of any simple

method for computingf(δ).

Convolutional Accumulate-2 Codes withd ≥ 3

Ford ≥ 3, we can boundA
CA
≤h(n) differently for small and large output weights. Using

(3.6.12) for small output weights and (3.6.14) for large output weights gives

A
CA
≤h(n) ≤

 O
(
n1−dd/2eh4d+3

)
h ≤ (ln n)2

gdegd

1−h/ne
4gdh/τ otherwise

.

Now, we can upper bound the cumulative WE of CA2 codes withd ≥ 3 by combining this with

(3.4.5) to get

A
CA2

≤h (n) ≤
(ln n)2∑
w=1

O
(
n1−dd/2ew4d+3

)
(4h/n)dw/2e + gdeg

d
2h∑

w=(lnn)2

e4gdw/τ

1 − w/n
(4h/n)dw/2e.

It is easy to verify that the first sum isO
(
n1−dd/2e), for h/n < 1/4, by taking derivatives of

the geometric sum formula. The second sum can be rewritten withw = 2i by using the fact that

1/(1 − w/n) ≤ 1/(1 − 2h/n) for 1 ≤ w ≤ 2h. This gives

A
CA2

≤h (n) ≤ O
(
n1−dd/2e

)
+

2gdeg
d

1 − 2h/n

h∑
i=(ln n)2/2

e8gdi/τ (4h/n)i.

Upper bounding this sum by the infinite sum and lettingh = δn gives

A
CA2

≤δn(n) ≤ O
(
n1−dd/2e

)
+

2gdeg
d

1 − 2δ

(
4δe8gd/τ

)(ln n)2/2

1 − 4δe8gd/τ
.

Since this expression isO
(
n1−dd/2e) for δ < 1/

(
4e8g2/τ

)
, almost all of the codes in the

ensemble will have a minimum distance ratio of1/
(
4e8g2/τ

)
or larger.

Remark 3.6.8.Again, we letδ∗ be the smallestδ such that the trueA
CA2

≤δn(n) grows exponen-

tially in n. In this case, we conjecture that almost all codes in the ensemble have a minimum
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distance ratio ofδ∗. Assuming this is true, we can calculate the minimum distance ratio using

the numerical methods of Section 3.8.

Convolutional Accumulate-m Codes

Suppose we serially concatenate any code, whose minimum distance grows likeδn,

with an interleaved “accumulate” code. Using Fact 3.4.1, it is clear that that the minimum

distance of the new code is greater thanδn/2. This means that if the minimum distance isΩ(n)

for anym0 then it isΩ(n) for any finitem ≥ m0. This concludes the proof that the minimum

distance of any CAm code, withm ≥ 2 (andm < ∞), grows linearly with the block length.

Although the minimum distance growth rate guaranteed by this argument decreases withm, this

does not imply that the actual growth rate decreases withm. In fact, analytical evidence strongly

suggests the growth rate increases monotonically to the limit implied by the Gilbert-Varshamov

bound.

3.7 Iterative Decoding of CAm Codes

3.7.1 Decoding Graphs

The iterative decoding of CAm codes is based on a message passing decoder which op-

erates on a graph representing the code constraints. This approach was introduced by Gallager in

[12], and then generalized by Tanner in [28] and Wiberg in [32]. We refer to the resulting graph-

ical representation of code constraints as a Gallager-Tanner-Wiberg (GTW) graph. The GTW

graph of a code is not unique, however, and different graphs representing the same constraints

may have very different decoding performances.

Belief propagation (BP) is a general algorithm for distributing information on a graph

representing local constraints. Most message passing decoders described in the literature im-

plement some form of BP on a code’s GTW graph [20]. If the graph has no cycles, then BP is

equivalent to the optimal soft output decoding, known asa posterioriprobability (APP) decod-

ing. This is sometimes cited as the reason why these decoders work quite well if the GTW graph

does not have too many short cycles.

The GTW graph of the rate-1 “accumulate” code is shown in Figure 3.7.1. The nodes

drawn as circles represent equality constraints (e.g., all edges attached to these nodes represent
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Input Bit Nodes

State/Output Bit Nodes

Figure 3.7.1: A GTW graph for the rate-1 “accumulate” code.

the same bit), and the nodes drawn as squares represent parity constraints (e.g., all edges attached

to these nodes must sum to zero modulo-2). Letu1, . . . , un be the input bits from left to right

and letx1, . . . , xn be the output (state) sequence. We note that all addition between bits is

assumed to be modulo-2. The outputs of the “accumulate” code can be computed using the

recursive formula,xi+1 = xi + ui, with the initial conditionx0 = 0. This recursive formula

can also be seen in the structure of the graph. Assuming all of input bits are known, an encoder

can step from left to right on the graph computing the next output bit each time. The recursive

update equation can also be rewritten asui + xi + xi+1 = 0, and the graph reflects this in that

each parity check involves an input bit and two adjacent output bits. It is also worth noting that

the output sequence is equal to the encoder state sequence.

A GTW graph for general CA2 codes, shown in Figure 3.7.2, is the concatenation of

the outer code constraints with two “accumulate” GTW graphs mapped through permutations.

From an encoding point of view, the outer code generates the input bits at the top of the graph

and they are encoded by each “accumulate” GTW graph as they travel downward. When they

reach the bottom, they are transmitted through the channel. From a decoding point of view, the

channel starts the process with noisy estimates of the transmitted codeword at the bottom of the

graph. Belief propagation can then used to propagate messages through the graph until all of the

messages satisfy the constraints or some maximum iteration number is reached.

3.7.2 Message Passing Rules

The message passed along any edge in Figure 3.7.2 is the probability distribution of

the edge’s true value given the subgraph below that edge. If the true edge values are binary, then

the log-likelihood ratio (LLR) can be used to represent the distribution. Similar to the notion of

a probability, we define theLLR function of a binary random variable to be

LLR(X|Y ) = log
Pr(X = 1|Y )
Pr(X = 0|Y )

.
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The message passing decoder propagates LLRs around the graph by assuming that all input

messages arriving at a constraint are independent. Using the input messages from all but one

edge, the constraint can be combined with Bayes’ rule to calculate an output message for the

edge left out. This rule is used to calculate all of the output messages for that constraint node,

and generally all of these messages will be different.

Consider an equality constraint withj edges. In this case, the true value of each edge

must be the same and we will havej LLRs for a single random bit. It is clear that the true

bit, which we refer to asX, must either be a one or a zero. The output passed to each edge is a

function only of the otherj−1 edges, so computing the output message involves combiningj−1

independent LLR messages. LetM1, . . . ,Mj be the LLR input messages, and letM̂1, . . . , M̂j

be the output messages. This means thatM̂i = LLR(X|M1, . . . ,Mi−1,Mi+1, . . . ,Mj), and

using the product rule for independent observations gives

M̂i = log
∏
k 6=i

Pr(X = 0|Mk)
Pr(X = 1|Mk)

=
∑
k 6=i

Mk. (3.7.1)

Consider a parity constraint withj edges. In this case, the modulo-2 sum of true bits

must be zero. Let the true bits associated with edge beX1, . . . ,Xj . It is clear that the modulo-2

sum of anyj − 1 of these bits must equal the bit which was left out. The same idea can be

applied to LLRs using a soft-XOR operation. Given two independent binary random variables,

A andB, we define their soft-XOR to beLLR(A+B). It is easy to verify that this function is

given by

LLR(A+B) = 2 tanh−1

(
tanh

(
LLR(A)

2

)
tanh

(
LLR(B)

2

))
,

and this can be found in [26]. LetM1, . . . ,Mj be the LLR input messages, and letM̂1, . . . , M̂j

be the output messages. If we letZ be the modulo-2 sum,
∑

k 6=iXi, then this means that

M̂i = LLR (Z|M1, . . . ,Mi−1,Mi+1, . . . ,Mj) .

Writing M̂i in terms of the soft-XOR function gives

M̂i = 2 tanh−1

∏
k 6=i

tanh
Mk

2

 . (3.7.2)

Now, we consider the constraints imposed by the outer code. If the outer code is a

repeat or single parity check code, then these constraints are easily represented using the equality
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Figure 3.7.2: A Tanner graph for an arbitrary CA2 code.

and parity constraints discussed above. If the outer code is a more general TCC, then the GTW

graph for the code will include state variables and belief propagation is very similar to the BCJR

algorithm [2]. We refer to soft-output variations of the BCJR algorithm as APP algorithms. A

thorough discussion of this can be found in [20].

3.7.3 Message Passing Schedule

The message passing schedule is the order in which the messages are updated on the

graph. While there are almost an unlimited number of message passing schedules, there are two

in particular worth mentioning. We will refer to them as as turbo style decoding and LDPC style

decoding.

In turbo style decoding, each horizontal slice of the GTW graph, shown in 3.7.2, is

treated as an independent APP algorithm. So starting at the bottom with subgraph representing

the “accumulate” code, messages are passed left and right until the APPs are computed for that

slice. Since this subgraph is cycle free, the message passing algorithm computes the exact APPs.

Next, the output messages are passed upwards to the next stage, where another APP decoding is

done. Finally, the process reaches the outer code at the top and reverses itself by stepping back

down the graph. This is identical to the standard turbo decoding of serially concatenated turbo

codes.

In LDPC style decoding, the messages for all edges are computed at the same time.
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This implicitly results in a two step process where bit nodes first pass messages to the check

nodes, and then the check nodes pass messages back to the bits nodes. There appears to be no

significant performance difference between these two message passing schedules if a large num-

ber of iterations are performed. Also, while the LDPC style decoder requires more operations

per iteration, all of these operations can be done in parallel.

3.7.4 Density Evolution

Density evolution (DE) is a very useful technique that can be used to analyze the ex-

pected performance of a message passing decoder. The basic idea is that, by assuming that

all messages arriving at a constraint node are independent, one can easily track the probability

density functions of the LLR messages being passed around the graph. The independence as-

sumption is theoretically justified for large sparse graphs and small iteration numbers. This type

of analysis was first performed by Gallager for LDPC codes [12], and later generalized (and put

on firm theoretical ground) by Richardson and Urbanke [26].

Since LLRs are simply summed up at equality constraint nodes, the density of the

output message is simply the convolution of the density of the input messages. So, if the input

messages are all drawn i.i.d. from a LLR density function, then the output messages will also be

i.i.d. but with a different distribution. LetP (x) be the density function ofX andQ(y) be the

density function ofY , then we write the density function ofZ = X + Y as(P ⊗ Q)(z). The

effect of the parity constraint on message densities is much more complicated, so we write the

density function of

Z = 2 tanh−1

(
tanh

(
X

2

)
tanh

(
Y

2

))
as(P ⊕Q)(z). It is easy to verify that both of these operators are commutative, associative, and

distributive over the addition of densities. Furthermore, the identity of⊗ is the delta function at

zero,∆0, and the identity of⊕ is the delta function at infinity,∆∞.

Now, we consider a general CA code and focus on the message density on the edges

out of the equality constraint for the “accumulate” code. Let the message density of these edges

after l decoding iterations bePl, whereP0 is the initial LLR density of the channel. Let the

output of the APP decoder for the outer code have LLR densityf(Q) when the inputs have LLR
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densityQ. Tracking one cycle of theP message around the graph gives the density evolution,

Pl+1 = (f(Pl ⊕ Pl) ⊕ Pl) ⊗ P0. (3.7.3)

For a memoryless symmetric channel, with parameterα, we define the DE threshold,αDE, to be

the largestα such thatliml→∞ Pl = ∆∞ (i.e., the fraction of incorrect messages goes to zero).

Numerical methods can be used to show thatPl is approaching∆∞ as l increases, but actual

convergence requires also that∆∞ be a stable fixed point of the iteration. This is known as the

stability condition, and can be understood by examining the iteration whenPl = (1−ε)∆∞+εQ

for smallε and anyQ.

We start by expanding the density update function of the outer code with

f ((1 − ε)∆∞ + εQ) = (1 − κε)∆∞ + κεQ+O(ε2). (3.7.4)

We can compute the coefficient,κ, by analyzing the APP decoder. For any bit in the outer code,

consider all of the codewords which have a one in that position. Ignoring the chosen bit, the

probability of more than one bit in the remaining bits of the codeword receiving aQ message is

O(ε2). If exactly one other bit in the codeword receives aQmessage and the rest receive the∆∞
message, then we can compute the output of the APP decoder exactly. For code bits which do

not support a weight-2 codeword, this output will always be∆∞ because the perfect knowledge

of the other bits corrects the error. For code bits which support weight-2 codewords, the output

will receive messages from theQ density. Since each weight-2 codeword involving the output

bit will contribute oneεQ, the average output will beκεQ whereκ is the average number of bits

involved in weight-2 codewords per input bit. This means that

κ = lim
n→∞

2
n
A

(o)
2 (n), (3.7.5)

whereA(o)
2 is the number of weight-2 codewords in the outer code.

Proposition 3.7.1. Consider a CA code whose outer code has the WE,A
(o)
h (n), and letz(α) be

the Bhattacharyya parameter of a memoryless symmetric channel with parameterα. The DE

threshold is upper bounded by the stability condition, which states that

αDE ≤ sup
{
α ∈ R+|z(α) ≤ 1

2κ+ 1

}
,

whereκ is given by (3.7.5).
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Proof. We start by expanding (3.7.3) aboutPl = (1 − ε)∆∞ + εQ for smallε, and this gives

Pl+1 =
(
f
(
(1 − 2ε)∆∞ + 2εQ+O(ε2)

)
⊕ ((1 − ε)∆∞ + εQ)

)
⊗ P0.

Using (3.7.4), we can simplify this to

Pl+1 = (1 − (2κ+ 1)ε) ∆∞ + (2κ+ 1)εQ⊗ P0 +O(ε2).

If we considerPl+n for largen, we can apply a large deviation principle to the repeated convo-

lution to show that the contribution ofQ toPl+n is essentially given by

(2κ+ 1)nz(α)nεQ,

wherez(α) is the Bhattacharyya parameter of the channel [26]. Clearly this will tend to zero if

and only ifz(α) < 1/(2κ + 1).

Example 3.7.2. For parity accumulate codes, the APP decoder for the outer code is given simply

by a parity check node. So the decoding graph is equivalent to a particular LDPC code and the

stability condition can be derived without considering general outer codes. Assuming a rate

(k − 1)/k code is used on the AWGN channel, we have

e−1/(2σ2) ≤ 1
2k − 1

which implies thatEb/N0 ≥ k
k−1 log(2k− 1). Using Proposition 3.7.1, we find that the number

of weight-2 codewords in the outer code is given byA
(o)
2 (n) = (n/k)(k)(k − 1)/2. This makes

κ = k − 1 and gives exactly the same condition.

The generalization of (3.7.3) to CAm codes is straightforward and the details are left to the

reader. We do note, however, that CAm codes are unconditionally stable ifd ≥ 3 or m ≥ 2.

If d = 2 andm = 1, the stability of iterative decoding depends on the channel parameter and

therefore may determine the DE threshold. For example, the true DE threshold of all PA codes

is determined by the stability condition. Furthermore, the DE threshold computed via stability

condition for PA codes is actually identical to the ML decoding threshold.

For LDPC codes, Richardson and Urbanke also proved a concentration theorem which

shows that, for allα > αDE , the true probability of bit error probability can be made arbitrarily

small by increasing the block length and the number of iterations [26]. We believe this result can

be extended to a very general class of sparse graph codes which includes CAm codes. The DE

thresholds of various CAm codes have been computed and are given in Table 3.1.
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Figure 3.8.1: Typical set decodingEb/N0 thresholds for RAm and PAm codes in AWGN.

3.8 Numerical Methods for the Spectral Shape

In this section, we outline our numerical method for computing exponentially tight

bounds on the spectral shape of CAm codes. These bounds can be used to compute very good

bounds on the noise threshold and minimum distance ratio. These noise thresholds are based on

the typical set decoding bounds described in [1] and [16], which can be applied to any binary-

input symmetric channel. The minimum distance ratio bounds are based on finding the smallest

output weight such that the WE is growing exponentially.

3.8.1 The Quantized Spectral Shape

Our numerical method for computing the spectral shape of CAm code is based on

quantizing the normalized output weight to the grid0,∆, 2∆, . . . ,N∆ where∆ = 1/N . Let

r̃(i)(j∆; CAm) be an estimate ofr(i)(j∆; CAm) based on this quantization. We use the recursive

update,

r̃(i+1)(k∆; CAm) = max
0≤j≤N

r̃(i+1)(j∆; CAm) + p(j∆, k∆),
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Figure 3.8.2: The spectral shape of a (2,1) single parity code and the associated PAm codes with
m = 1, 2, 3.

which is based on (3.6.13) and (3.4.4). The only difficulty lies in estimatingr̃(1)(j∆; TCC)

from the parametric representation ofr(1)(δ; TCC) given by (3.3.7). We do this by calculating

r(δ(x); TCC) and δ(x) on an x-grid and then interpolatingr(δ(x); TCC) onto the

0,∆, 2∆, . . . ,N∆ grid. One problem with this method is that a uniformx-grid may require

a very large number of points for reliable estimation ofr(1)(δ; TCC). We have had more success

using a non-uniformx-grid, wherex =
√
y andy is uniform on[0, 1].

In general, we have observed that the spectral shape of a CAm code is continuous and

smooth whenever it is positive. Under this assumption, we believe that the error due to quanti-

zation,
∣∣r(i+1)(j∆; CAm) − r̃(i+1)(j∆; CAm)

∣∣, will beO(1/N). The results of this method are

shown in Figures 3.8.2 and 3.8.3 for two particular outer codes andm = 1, 2, and3.

3.8.2 Noise Thresholds

Consider a binary-input symmetric channel with a single parameter,α. The typical

pairs decoding threshold,αT , is given by (3.2.12) of Theorem 3.2.9. It can be computed nu-

merically by finding theα-root of the equationmax0≤j≤N r̃(m+1)(j∆; CAm)−K(j∆, α) = 0.
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Figure 3.8.3: The spectral shape of a[1, 1 + D] CC and the associated CAm codes withm =
1, 2, 3.

Standard root finding methods such as bisection can be used to solve this problem. Since the

most time consuming part of this calculation is computingK(j∆, α), one can precompute this

quantity on anα-grid of sufficient accuracy, for eachj.

We have also found that AWGN thresholds computed usingN = 1000 typically do not

change by more than0.005 dB for N > 1000. Also, thresholds computed using this method for

m = 1 match other published results in all significant digits [16]. Finally, we note that the thresh-

olds of CAm with d = 2 andm = 1 are usually determined bylimδ→0+ r(2)(δ; CA)/δ and will

not be correctly estimated using this method. In this case, thresholds can and should be calcu-

lated by analytically expandingr(1)(δ; TCC) aboutδ = 0 and computinglimδ→0+ r(2)(δ; CA)/δ

analytically.

This method was applied to RAm and PAm codes on the AWGN channel. TheEb/N0

thresholds are shown in Figure 3.8.1 and listed in Table 3.1. In the table,γ∗ denotes the Shannon

limit andγm denotes the typical set decoding threshold. The table also lists thresholds for CAm

whose outer codes are the(8, 4) Hamming code and the[1, 1 +D] CC.
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3.8.3 Minimum Distance Ratio

In Section 3.6.7, it was shown that the minimum distance of a CAm code grows lin-

early with the block length form ≥ 2. Letδ∗m be the smallestδ > 0 such thatr(m+1)(δ; CAm) >

0. Except for the case ofd = 2 andm = 2, we believe that the growth rate of the minimum

distance with block length will be at leastδ∗m. The case ofd = 2 andm = 2 is discussed

more thoroughly in Remark 3.6.7. Since we can use our numerical method to estimateδ∗m with

arbitrary accuracy, this provides a useful method for considering the minimum distance ratios of

CAm codes. Furthermore, the minimum distance ratios computed using this method are quite

close to the empirical growth rates observed via the exact calculation of the average WE for finite

block lengths [23]. Theδ∗m value form = 2, 3 is given in Table 3.1 for each code considered.

3.9 Concluding Remarks

In this chapter, we give a fairly complete analytical picture of the properties and per-

formance of CAm codes. While the iterative decoding of these codes cannot compete with that of

turbo codes or optimized LDPC codes [25], their ability to approach channel capacity under ML

decoding is quite astounding. Theoretically, these results offer some insight into the structure

of CAm codes, and a number of new mathematical tools of more general use. From a practical

point of view, this work shows that the future of CAm codes depends on either improving their

performance with iterative decoding or, more ambitiously, finding new decoding methods which

approach the performance of ML decoding.
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C R γ∗ γ1 γ2 γ3 δ∗GV δ∗2 δ∗3 α1 α2 α3

RA 1/8 -1.207 -1.102 -1.206 -1.207 .295 .291 .295 0.29 3.86 6.85

RA 1/7 -1.150 -0.905 -1.149 -1.150 .281 .275 .282 0.19 3.52 6.41

RA 1/6 -1.073 -0.742 -1.072 -1.073 .264 .255 .265 0.11 3.13 5.9

RA 1/5 -0.964 -0.494 -0.962 -0.963 .243 .229 .243 0.06 2.69 5.31

RA 1/4 -0.794 -0.078 -0.790 -0.794 .215 .192 .215 0.12 2.20 4.61

RA 1/3 -0.495 0.739 -0.478 -0.495 .174 .133 .174 0.50 1.65 3.76

PA 1/2 0.187 3.419 0.327 0.188 .110 .0287 .104 3.42 1.23 2.72

PA 2/3 1.059 3.828 1.224 1.062 .061 .0101 .054 3.83 1.83 2.86

PA 3/4 1.626 4.141 1.794 1.630 .042 .0052 .035 4.14 2.27 3.12

PA 4/5 2.040 4.388 2.206 2.044 .031 .0032 .031 4.39 2.62 3.36

PA 5/6 2.362 4.590 2.526 2.366 .025 .0021 .019 4.59 2.89 3.57

PA 6/7 2.625 4.760 2.785 2.629 .020 .0015 .016 4.76 3.12 3.75

PA 7/8 2.845 4.906 3.001 2.849 .017 .0011 .012 4.91 3.32 3.90

PA 8/9 3.033 5.034 3.187 3.037 .015 .0009 .011 5.03 3.49 4.04

PA 9/10 3.198 5.148 3.349 3.202 .013 .0007 .009 5.15 3.63 4.16

PA 10/11 3.343 5.249 3.492 3.348 .012 .0006 .008 5.25 3.76 4.27

PA 11/12 3.474 5.341 3.620 3.478 .010 .0005 .007 5.34 3.88 4.37

PA 12/13 3.591 5.425 3.736 3.596 .009 .0004 .006 5.43 3.99 4.46

PA 13/14 3.699 5.502 3.841 3.703 .009 .0004 .006 5.50 4.08 4.55

PA 14/15 3.797 5.572 3.938 3.801 .008 .0003 .005 5.57 4.17 4.63

PA 15/16 3.887 5.638 4.027 3.892 .007 .0003 .005 5.64 4.26 4.70

PA 16/17 3.971 5.700 4.109 3.976 .007 .0002 .004 5.70 4.33 4.77

HA 4/8 0.187 0.690 0.191 0.187 .110 .090 .110 N/A N/A N/A

CA 1/2 0.187 0.909 0.199 0.187 .110 .084 .110 N/A N/A N/A

Table 3.1: Numerical results for various CAm codes. (C = outer code, R = code rate,γ∗= Shan-
non limit, γm= typical set decoding threshold withm accumulates,δ∗GV = Gilbert-Varshamov
bound, δ∗m= normalized distance threshold withm accumulates, andαm= density evolution
threshold withm accumulates)
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3A Binomial Coefficient Bounds

3A.1 The Product Bound

First, we consider the following well-known upper and lower bounds on the binomial

coefficient, (n
k

)k
≤
(
n

k

)
≤
(ne
k

)k
. (3A.1)

Although these bounds are somewhat loose, their simplicity makes them surprisingly useful. The

proof of the lower bound is based on the fact that(
n

k

)
=
n(n− 1) · · · (n− k + 1)

k(k − 1) · · · (1) =
(n
k

)k
k−1∏
i=0

1 − i/n

1 − i/k
,

and that(1− i/n) ≥ (1− i/k). The proof of the upper bound is based on the trivial upper bound(
n

k

)
≤ nk

k!
,

and a corollary of Stirling’s formula that saysln k! ≥
∫ k
0 ln(x) dx = ln(kke−k).

3A.2 The Entropy Bound

Let the binary entropy function beH(x) = −x log2 x− (1 − x) log2(1 − x), then we

have

2nH(k/n)

n+ 1
≤
(
n

k

)
≤ 2nH(k/n), (3A.2)

for 0 ≤ k ≤ n. A simple information theoretic proof of this can be found in [6, p. 284]. The

more detailed analysis of MacWilliams and Sloane can be used to improve these to

1√
8n(k/n)(1 − k/n)

2nH(k/n) ≤
(
n

k

)
≤ 1√

2πn(k/n)(1 − k/n)
2nH(k/n). (3A.3)

3A.3 Sums of Binomial Coefficients

In this section, we consider bounds on the sum of binomial coefficients,

S(n, k) =
k∑

i=0

(
n

k

)
. (3A.4)
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In general, there is no closed form expression for this sum and it arises quite frequently.

The most straightforward bound simply uses a generating function bound (a.k.a. Cher-

nov bound). Starting with the binomial theorem, we have

(1 + x)n =
n∑

i=0

(
n

i

)
xi ≥

k∑
i=0

(
n

i

)
xi,

for any0 < x ≤ 1. Lower boundingxi by xk and rearranging terms gives

S(n, k) ≤ (1 + x)nx−k

for any0 < x ≤ 1. Minimizing this bound overx gives the final result of

S(n, k) ≤ 2nH(k/n), (3A.5)

for 0 ≤ k ≤ n. We can simplify (and weaken) the bound further by applyinglog(1 − x) ≤
−x/ ln 2 to the entropy function. This results inH(x) ≤ −x log x − (1 − x)(−x/ ln 2) and

dropping the−x2/ ln 2 term results in the very simple bound

S(n, k) ≤
(ne
k

)k
. (3A.6)

It turns out that even though (3A.5) is only valid for0 ≤ k ≤ n, the weakened version of this

bound allows it to hold for0 ≤ k ≤ 1.88n. This can be verified by solving for the largestk such

that (3A.6) is greater than or equal to2n. Furthermore, it is easy to verify that this upper bound

is concave ink because the second derivative is negative fork > 0.

Finally, we give the bound,

k∑
i=0

(
n

i

)
≤ (n+ 1)k

k!
, (3A.7)

which distinguishes itself from the rest via thek! denominator even though it is numerically very

similar to (3A.6). The proof of this bound is via induction, so we define

T (n, k) =
(n+ 1)k

k!
,

and begin by listing the base casesS(0, 0) = T (0, 0) = 1 andS(n, 1) = T (n, 1) = n + 1.

Next, we prove thatT (n, k) ≥ S(n, k) assuming thatT (n, k − 1) ≥ S(n, k − 1). To do this,

we observe that

S(n, k) = S(n, k − 1) +
(
n

k

)
,
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and

T (n, k) = T (n, k − 1) +
(n+ 1)k−1(n− k + 1)

k!
.

SinceT (n, k − 1) ≥ S(n, k − 1) by assumption and

(n+ 1)k−1(n− k + 1)
k!

≥ n(n− 1) · · · (n− k + 1)
k!

=
(
n

k

)
,

for 0 ≤ k ≤ n, it is clear thatT (n, k) ≥ S(n, k). It turns out that this version of this bound

actually holds for0 ≤ k ≤ b1.72nc, sinceT (n, b1.72nc) ≥ 2n. This can be verified by plotting

log T (n, b1.72nc) − n log 2 for n ≥ 1. Furthermore, this upper bound is concave ink because

the second derivative oflog T (n, k) is given by

d2

d2k
(k ln(n+ 1) − Γ(k + 1)) = −

∞∑
i=1

1
(k + i)2

,

which is negative fork > 0.

3B Convolutional Code Bounds

3B.1 Proof of Theorem 3.3.1

Proof of Theorem 3.3.1.Following [18], this proof is based on breaking the output sequence into

non-overlapping segments, known as detours, which can be placed in the block independently

of each other. Adetour is defined to be any output sequence generated by a state sequence

which starts in the zero state, ends in the zero state, and does not otherwise visit the zero state.

Furthermore, all of the weight in an output sequence is contained in the detours. Consider any

output sequence consisting ofr detours. This output sequence can be uniquely specified by the

r detour starting positions and by ther detour output sequences.

So we can count the total number of output sequences by counting the number of

ways of choosing the detour starting positions, the detour output sequences, and the number of

detours. The number of ways to chooser distinct detour starting positions fromn/τ possible

starting positions is given by the binomial coefficient
(n/τ

r

)
. Let T (r)

h be the number of ways to

chooser detour output sequences such that the total weight of all detours ish. Since each detour

produces an output weight of at leastd, the number of detours is at mostbh/dc. Therefore, the
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number of output sequences of weighth, A(o)
h (n), is upper bounded by

A
(o)
h (n) ≤

bh/dc∑
r=1

(
n/τ

r

)
T

(r)
h . (3B.1)

The transfer function,T (D), of a CC is a formal power series which enumerates all

detours by weight, and is given by

T (D) =
∞∑

h=1

ThD
h,

whereTh is the number of distinct detours of weighth. Using basic combinatorics, the formal

power series which enumerates distinctr-tuples of detours by total weight is given by

[T (D)]r =
∞∑

h=1

T
(r)
h Dh,

whereT (r)
h is the number of ways of independently choosingr detours which have total weight

h.

Using these definitions, it is clear thatT (D) will be analytic in the neighborhood of

D = 0 and therefore have a Taylor series which converges for allD < D0, whereD0 is the

radius of convergence. Since expansion will also be non-negative andTd > 0, it is also clear

thatT (D) is monotonic increasing for allD < D0. So we can upper boundT (r)
h using standard

asymptotic methods. Starting with

[T (D)]r =
∞∑
i=1

T
(r)
i Di ≥ T

(r)
h Dh,

we can rearrange terms to get

T
(r)
h ≤ [T (D)]r D−h. (3B.2)

LetD∗ be the unique real positive root of the equationT (D) = 1 in the domain0 < D < D0.

Since (3B.2) holds for any0 < D ≤ D0, we chooseD = D∗ to get the final bound

T
(r)
h ≤

(
1
D∗

)h

. (3B.3)

Combining (3B.1) and (3B.3) gives the bound

A
(o)
h (n) ≤

bh/dc∑
t=1

(
n/τ

t

)(
1
D∗

)h

.
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This bound is generally quite useful in the small output weight regime (e.g.,h ≤ dn/(2τ)).

It does become quite weak for larger output weights, however. We note that the trivial bound,

A
(o)
h (n) ≤ 2nR, whereR is the rate of the CC, may improve the bound somewhat for large

output weights.

The bound onB(o)
h (n) follows from combining our bound onA(o)

h (n) with a bound

on input weight,w, for a given output weight,h. Let ρ be the smallest number such that the

input weight,w, satisfiesw ≤ ρh for all codewords. Since every codeword can be represented

by a closed cycle in the state diagram of the encoder, the constantρ can be computed by finding

the maximum value ofw/h over all cycles in the state diagram withw > 0. If the encoder is

non-catastrophic, thenρ < ∞ because there will be no cycles withh = 0 andw > 0. We note

that findingρ is a standard combinatorial optimization problem known as the minimum cycle

ratio problem [7]. Starting with (3.2.3), it is easy to verify that

B
(o)
h (n) =

k∑
w=1

w

k
A

(o)
w,h(n) ≤ ρh

k
A

(o)
h (n).

Substituting the WE bound forA(o)
h (n) completes the proof.

3B.2 Proof of Corollary 3.3.2

Proof of Corollary 3.3.2.We start by using (3A.7) to upper bound the binomial sum in (3.3.1).

We define the result as

f(h, n) =
(n/τ + 1)bh/dc

bh/dc! gh,

whereg = 1/D∗. At first, it seems rather straightforward that

A
(o)
h (n) ≤ f(h, n), (3B.4)

because we have simply upper bounded the binomial sum. Unfortunately, the binomial sum

bound, (3A.7), is designed for cases where the second argument is less than the first. Forf(h, n),

this corresponds to the condition thatbh/dc ≤ n/τ . If d ≥ τ , this means that (3B.4) holds for

the entire range,1 ≤ h ≤ n. If d < τ , we can show, with the aid of a few additional assumptions,

that (3B.4) also holds for1 ≤ h ≤ n.

We start by noting that (3B.4) actually holds for1 ≤ h ≤ h∗, with h∗ = 1.72dn/τ ,

because (3A.7) holds fork ≤ 1.72n. LetR be rate of the CC, and recall that we always have
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the trivial upper boundA(o)
h (n) ≤ 2nR. So, if we can show thatf(h, n) ≥ 2nR for h∗ ≤ h ≤ n,

then this implies that (3B.4) holds for1 ≤ h ≤ n. Indeed, we show thatf(h, n) ≥ 2nR for

h∗ ≤ h ≤ n by showing thatf(h∗, n) ≥ 2nR andf(n, n) ≥ 2nR and then using the concavity

of f(h, n) in h for fixedn.

First, we show thatf(h∗, n) ≥ 2nR follows from the assumption that21/τg1.72d/τ ≥
2R. We begin by raising the LHS to thenth power and noting that

(n/τ + 1)h
∗/d

Γ(h∗/d+ 1)
gh∗ ≥ 2n/τg1.72dn/τ

becauseT (n, 1.72n) ≥ 2n. Since the LHS is a decreasing function ofh∗/d in this range (i.e.,

h∗/d ≥ n/τ ), we also have the bound

f(h∗, n) =
(n/τ + 1)bh∗/dc

bh∗/dc! ≥ (n/τ + 1)h
∗/d

Γ(h∗/d+ 1)
gh∗

.

Combining these bounds gives the desired result off(h∗, n) ≥ 2nR.

Assuming that(de/τ)1/d (√2πn
)−1/n

g ≥ 2R, we show now thatf(n, n) ≥ 2nR. We

begin by raising the first expression to thenth power and noting that

(n/τ + 1)n/d

√
2πn

(
n
de

)n/d
gn ≥

(
n
τ

)n/d

√
2πn

(
de
n

)−n/d
gn =

(
de
τ

)n/d

√
2πn

gn ≥ 2nR.

Using the fact thatΓ(n+ 1) ≤
√

2πn(n/e)n, we substitute terms to get

(n/τ + 1)n/d

Γ(n/d+ 1)
gn ≥ (n/τ + 1)n/d(

n
de

)n/d
gn.

Since the LHS is a decreasing function ofn/d in this range (i.e.,n/d ≥ n/τ ), we also have the

bound

f(n, n) =
(n/τ + 1)bn/dc

bn/dc! gn ≥ (n/τ + 1)n/d

Γ(n/d+ 1)
gn.

Combining these bounds gives the desired result off(n, n) ≥ 2nR. This completes the proof of

the WE bound.

Using the WE bound to upper bound the bit normalized WE,B
(o)
h (n), gives

B
(o)
h (n) ≤ ρh

k

(n/τ + 1)bh/dc

bh/dc! gh =
ρ

Rτ

n+ τ

n

h

bh/dc
(n/τ + 1)bh/dc−1

(bh/dc − 1)!
gh.

For h ≥ d ≥ 2, we use the bound,h/ bh/dc ≤ 2d, to obtain (3.3.4). This completes the

proof.
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3B.3 Proof of Corollary 3.3.3

Proof of Corollary 3.3.3.We start by using (3A.6) to upper bound the binomial sum in (3.3.1).

Let f(h, n) be the resulting bound, which gives

f(h, n) =
(
ne/τ

bh/dc

)bh/dc
gh,

whereg = 1/D∗. At first, it seems rather straightforward that

A
(o)
h (n) ≤ f(h, n), (3B.5)

because we have simply upper bounded the binomial sum. Unfortunately, the binomial sum

bound, (3A.6), is designed for cases where the second argument is less than the first. Forf(h, n),

this corresponds to the condition thatbh/dc ≤ n/τ . If d ≥ τ , this means that (3B.5) holds for

the entire range,1 ≤ h ≤ n. If d < τ , we can show, with the aid of a few additional assumptions,

that (3B.5) also holds for1 ≤ h ≤ n.

We start by noting that (3B.4) actually holds for1 ≤ h ≤ h∗, with h∗ = 1.88dn/τ ,

because (3A.6) holds fork ≤ 1.88n. LetR be rate of the CC, and recall that we always have

the trivial upper boundA(o)
h (n) ≤ 2nR. So, if we can show thatf(h, n) ≥ 2nR for h∗ ≤ h ≤ n,

then this implies that (3B.4) holds for1 ≤ h ≤ n. Indeed, we show thatf(h, n) ≥ 2nR for

h∗ ≤ h ≤ n by showing thatf(h∗, n) ≥ 2nR andf(n, n) ≥ 2nR and then using the concavity

of f(h, n) in h for fixedn.

First, we show thatf(h∗, n) ≥ 2nR follows from the assumption that21/τg1.88d/τ ≥
2R. We begin by raising the LHS to thenth power and noting that(

ne/τ

h∗/d

)h∗/d

gh∗ ≥ 2n/τg1.88dn/τ

because(ne/(1.88n))1.88n ≥ 2n. Since the LHS is a decreasing function ofh∗/d in this range

(i.e.,h∗/d ≥ n/τ ), we also have the bound

f(h∗, n) =
(
ne/τ

bh∗/dc

)bh∗/dc
gh∗ ≥

(
ne/τ

h∗/d

)h∗/d

gh∗
.

Combining these bounds gives the desired result off(h∗, n) ≥ 2nR.

Next, we show thatf(n, n) ≥ 2nR follows from the assumption that(de/τ)1/d g ≥
2R. We begin by raising the LHS to thenth power and noting that(ne

τ

)n/d
(
d

n

)n/d

gn =
(
de

τ

)n/d

gn ≥ 2nR.
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Since the LHS is a decreasing function ofn/d in this range (i.e.,n/d ≥ n/τ ), we also have the

bound

f(n, n) =
(
ne/τ

bn/dc

)bn/dc
gn ≥

(ne
τ

)n/d
(
d

n

)n/d

gn.

Combining these bounds gives the desired result off(n, n) ≥ 2nR.

Finally, we can simplify the form off(h, n) by lettingh = i bh/dc+r and noting that(
ne/τ

bh/dc

)bh/dc (n
h

)−bh/dc(de
τ

)−h/d

=
(
1 +

r

di

)i ( τ
de

)r/d
≤
(τ
d

)(d−1)/d

for i ≥ 1 (i.e.,h ≥ d). Using this to upper bound
(

ne/τ
bh/dc

)bh/dc
gives

A
(o)
h (n) ≤ C

(n
h

)bh/dc
gh,

whereC =
(

τ
d

)(d−1)/d
andg =

(
1

D∗
) (

de
τ

)1/d
. This completes the proof of the WE bound.

Using the WE bound to upper bound the bit normalized WE,B
(o)
h (n), gives

B
(o)
h (n) ≤ ρn

k
C
(n
h

)bh/dc
gh =

ρ

R
C
(n
h

)bh/dc−1
gh,

and proves (3.3.6).

3B.4 Proof of Theorem 3.3.6

Proof of Theorem 3.3.6.After treating this problem as a generalization of Gallager’s Chernov

bounding technique for LDPC codes [12, Eqn. 2.12], a literature search turned up a very mathe-

matical and complete treatment by Miller [21]. We retain our proof of the upper bound since it

treats the problem from a coding perspective. For the lower bound and convexity, we refer the

reader to [21].

Let A(x, p) be the state transition matrix forp steps through the trellis be defined by

G(x). It is well-known that trellis sections may be combined by multiplying state transition

matrices, and this gives

A(x, p) = [G(x)]p

=
∑
h≥0

Ah(p)xh, (3B.6)
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where eachAh(p) is anM × M non-negative matrix. For anyx ≥ 0, we can lower bound

(3B.6) by any single term in the sum withAh(p)xh ≤
∑

i≥0 Ai(p)xi. Solving forAh(p) and

rearranging terms gives the element-wise matrix inequality

Ah(p) ≤ x−h [G(x)]p . (3B.7)

One can construct a block code from a CC in a number of ways. Two common methods

which preserve the free distance of the code (as the minimum distance of the block code) are

trellis termination and trellis tail-biting. We denote the WEs of these two methods byATE
h (p)

andATB
h (p) respectively, and point out that

ATE
h = [Ah(p)]11 ≤ ATB

h =
M∑
i=1

[Ah(p)]ii = Tr (Ah(p)) . (3B.8)

Let λi(x) beith eigenvalue ofG(x) in decreasing order by modulus (fori = 1, . . . ,M ). Using

the well-known eigenvalue-sum formula for the trace, we can combine (3B.7) and (3B.8) to get

ATB
h (p) ≤ Tr

(
x−h [G(x)]p

)
= x−h

M∑
i=1

(λi(x))
p .

Now, we can upper bound the spectral shape with

rCC(δ) ≤ lim
p→∞

1
τp

lnATB
δn (p).

This limit can be evaluated by writing

ln
M∑
i=1

(λi(x))
p = p lnλ1(x) + ln

(
1 +

M∑
i=2

(
λi(x)
λ1(x)

)p
)
,

and noting that the last term iso(1) becauseλ1(x) > λi(x) for i = 2, . . . ,M . Using that fact

results in the upper bound,

rCC(δ) ≤ 1
τ

lnλ1(x) − δ lnx.

This upper bound is valid for anyx > 0 and can be minimized overx. Setting the derivative

with x equal to zero and solving gives

δ(x) =
xλ′1(x)
τλ1(x)

,

and concludes the proof of the upper bound.



98

3C “Accumulate” Code Bounds

3C.1 Lemma 3C.1 and Theorem 3C.2

Lemma 3C.1. Then term Riemann sum of a function,f(x), on the interval[a, b] is given by

Rn =
b− a

n

n−1∑
i=0

f

(
a+ i

b− a

n

)
. (3C.1)

If f(x) is convex and non-decreasing on the interval[a, b], then the sequence{Rn}n≥1 is also

non-decreasing. Furthermore, iff(x) is concave and non-increasing on the interval[a, b], then

the sequence{Rn}n≥1 is non-increasing

Proof. Using convexity and the fact thatn−i
n

i
n+1 + i

n
i+1
n+1 = i

n , we have

f

(
a+ i

b− a

n

)
≤ n− i

n
f

(
a+ i

b− a

n+ 1

)
+
i

n
f

(
a+ (i+ 1)

b− a

n + 1

)
.

Now, we can upper boundRn with a linear combination off
(
a+ i b−a

n+1

)
to get

Rn ≤ b− a

n

n−1∑
i=0

n− i

n
f

(
a+ i

b− a

n+ 1

)
+
i

n
f

(
a+ (i+ 1)

b− a

n + 1

)
.

Rearranging the terms in the sum gives

Rn ≤ b− a

n

[
f(a)
n

+
n∑

i=0

n− 1
n

f

(
a+ i

b− a

n+ 1

)]
. (3C.2)

Sincef(x) is non-decreasing, we can upper boundf(a) with

f(a) ≤ 1
n+ 1

n∑
i=0

f

(
a+ i

b− a

n+ 1

)
. (3C.3)

Substituting the RHS of (3C.3) forf(a) in (3C.2) and rearranging terms gives

Rn ≤ b− a

n+ 1

n∑
i=0

f

(
a+ i

b− a

n+ 1

)
= Rn+1.

This completes the proof forf(x) convex and non-decreasing.

If f(x) is concave and non-increasing on the interval[a, b], then−f(x) is convex and

non-decreasing on the same interval. In this case, the original proof can be used to show that

−Rn ≤ −Rn+1. Therefore, the sequence is non-increasing.
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Theorem 3C.2. Let a, b, i, j be integers obeying0 ≤ i ≤ a and 0 ≤ j ≤ b. We have the

following inequality,(
a
i

)(
b
j

)(
a+b
i+j

) ≤
(

a

a+ b

)i( b

a+ b

)j ( i+ j

i

)i( i+ j

j

)j

.

In the case ofa = 0 or b = 0, we use the convention that00 = 1 so that the expression remains

well-defined.

Proof. We start by expanding the binomial coefficients in terms of factorials and rearranging

terms to get

(a)i(b)j
(a+ b)i+j

(a+ b)i+j

aibj
≤ (i)i(j)j

(i+ j)i+j

(i+ j)i+j

iijj
,

where the falling factorial is defined by(a)i = a(a − 1) · · · (a − i + 1). Next, we define the

function

fij(a, b) =
(a)i(b)j

(a+ b)i+j

(a+ b)i+j

aibj

for real numbersa, b satisfyinga ≥ i andb ≥ j. It is easy to verify that the original inequality

is equivalent to the statementfij(a, b) ≤ fij(i, j). Sincefij(a, b) = fji(b, a), we assume that

a ≥ bi/j without loss of generality. We proceed by showing thatfij(ci, cj) is non-increasing

for c ≥ 1 and thatfij(a, b) is non-increasing fora ≥ bi/j. Since the logarithm preserves order,

we will actually consider the logarithm of the function,

log fij(a, b) =
i−1∑
x=0

log
(
a− x

a

)
+

j−1∑
y=0

log
(
b− y

b

)
−

i+j−1∑
z=0

log
(
a+ b− z

a+ b

)
.

First, we show that the derivative oflog fij(ci, cj) with respect toc is negative for all

c ≥ 1. We start by noting that

c
∂

∂c
log fij(ci, cj) =

i−1∑
x=0

x

ci− x
+

j−1∑
y=0

y

cj − y
−

i+j−1∑
z=0

z

ci+ cj − z
. (3C.4)

Now, we note that the first sum can be written as

i−1∑
x=0

x

ci− x
=

i−1∑
x=0

x/i

c− x/i
= iRi,
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whereRn is given by (3C.1) withf(x) = x/(c − x), a = 0, andb = 1. In fact, each sum in

(3C.4) can be rewritten in this form to give

c
∂

∂c
log fij(ci, cj) = iRi + jRj − (i+ j)Ri+j ,

and rearranging terms gives

c
∂

∂c
log fij(ci, cj) = i(Ri −Ri+j) + j(Rj −Ri+j).

Sinceg(x) is convex and increasing forx ∈ [0, 1) andc ≥ 1, Lemma 3C.1 shows thatRn is

non-decreasing. Therefore, the derivative is upper bounded by zero andlog fij(ci, cj) is non-

increasing for allc ≥ 1.

Next, we show that the derivative oflog fij(a, b) with respect toa is negative for

a ≥ bi/j. We start by noting that

∂

∂a
log fij(a, b) =

i−1∑
x=0

x

a(a− x)
−

i+j−1∑
z=0

z

(a+ b)(a+ b− z)
.

Sincez/(a + b − z) is convex and increasing forz ∈ [0, a + b) andi ≤ i + j, Lemma 3C.1

shows that

i+j−1∑
z=0

z

(a+ b)(a+ b− z)
≥ i+ j

i

i−1∑
z=0

z(i+ j)/i
(a+ b)(a+ b− z(i+ j)/i)

=
i−1∑
z=0

z

c(c − z)
,

with c = (a+ b)i/(i + j). Incorporating this bound gives

∂

∂a
log fij(a, b) ≤

i−1∑
x=0

x

a(a− x)
−

i−1∑
z=0

z

c(c− z)
.

The RHS of this expression will be non-positive as long asa ≥ c (or equivalentlya ≥ bi/j).

Therefore, we have shown thatlog fij(a, b) is non-increasing fora ≥ bi/j.

The conclusion of the theorem follows from the inequality,

fij(a, b) ≤ fij(bi/j, b) ≤ fij(i, j),

where the RHS holds becausefij(ci, cj) is non-increasing forc ≥ 1 and the LHS holds because

fij(a, b) is non-increasing fora ≥ bi/j. This completes the proof.
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3C.2 Proof of Corollary 3.4.2

Proof of Corollary 3.4.2.This inequality can be verified by hand for the cases ofh ≥ w = 0

andw ≥ h = 0. Forw ≥ 1 andh ≥ 1, we start with (3.4.1) and note that

Pw,h(n) =

(
n−h
bw/2c

)(
h−1

dw/2e−1

)(n
w

) =

(
n−h
bw/2c

)(
h

dw/2e
)dw/2e

h(n
w

) .

Applying Theorem 3C.2 to this the RHS gives

Pw,h(n) ≤ dw/2e
h

(
n− h

n

)bw/2c(h
n

)dw/2e( w

bw/2c

)bw/2c( w

dw/2e

)dw/2e
,

and the log-sum inequality can be used to show that(
w

bw/2c

)bw/2c( w

dw/2e

)dw/2e
≤ 2w.

Sinceh ≥ dw/2e wheneverPw,h(n) > 0, dropping thedw/2e /h only weakens the bound. This

completes the proof.

3C.3 Proof of Corollary 3.4.4

Proof of Corollary 3.4.4.This inequality can be verified by hand for the cases ofh ≥ w = 0

andw > h = 0. Forw ≥ 1 andh = 1, the sum has no effect and we must simply verify that

Pw,1(n) ≤ 2w

(
1
n

)dw/2e
.

This result is easily reproduced by combining (3.4.3) with the fact that((n− h)/n)bw/2c ≤ 1.

Forw ≥ 1 andh ≥ 2, we start by writing (3.4.1) as

Pw,h(n) =

( n−h
bw/2c

)( h−1
dw/2e−1

)
n
w

(
n−1
w−1

)
because (

n

w

)
=
(
n− 1
w − 1

)
n

w
.

Applying Theorem 3C.2 to this upper bound gives

Pw,h(n) ≤ w

n

(
n− h

n − 1

)bw/2c(h− 1
n− 1

)dw/2e−1(w − 1
bw/2c

)bw/2c−1( w − 1
dw/2e − 1

)dw/2e−1

,
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and the log-sum inequality can be used to show that(
w − 1
bw/2c

)bw/2c−1( w − 1
dw/2e − 1

)dw/2e−1

≤ 2w−1.

Next, we note that

n− h

n− 1
≤ n− 1

n
,

for h ≥ 2. This means that the cumulative IOWTP can be upper bounded by

Pw,≤h(n) ≤
h∑

i=1

w

n
2w−1

(
h− 1
n

)dw/2e−1

,

for w ≥ 1 andh ≥ 2. Sincexk is strictly increasing withx, the sum can be upper bounded with

z∑
i=1

(i− 1)k =
z−1∑
i=1

ik ≤
∫ z

1
xkdx ≤ 1

k + 1
zk+1.

Finally, we have

Pw,≤h(n) ≤ w

dw/2e2w−1

(
h

n

)dw/2e
,

which is easily reduced to (3.4.5) by noting thatw/ dw/2e ≤ 2.

3C.4 Proof of Corollary 3.4.5

Proof of Corollary 3.4.5.Combining the definition ofP (m)
h1,≤h(n) with the standard formula for

serial concatenation through a random interleaver, we get

P
(m)
h1,≤h(n) =

n∑
h2,... ,hm−1

h∑
hm=1

m∏
i=1

Phi,hi+1
(n).

Using Fact 3.4.1, we can see that all non-zero terms must obeyhi+1 ≥ dhi/2e for i = 1, . . . ,m.

Furthermore, we can upper bound eachPhi,hi+1
(n) with Phi,≤hi+1

(n) and drop the sum overhm

to get

P
(m)
h1,≤hm

(n) ≤
2h3∑

h2=dh1/2e
· · ·

2hi+1∑
hi=dhi−1/2e

· · ·
2hm∑

hm−1=dhm−2/2e

m∏
i=1

(
4hi+1

n

)dhi/2e
.
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Since all non-zero terms havehi+1 ≥ dhi/2e for i = 1, . . . ,m, we have the inductive upper

boundhi ≤ 2m+1−ihm+1 for non-zero terms. For simplicity, we apply the weaker bound,

hi ≤ 2m−1hm+1 for i = 2, . . . ,m, to get

P
(m)
h1,≤hm

(n) ≤
2h3∑

h2=dh1/2e
· · ·

2hi+1∑
hi=dhi−1/2e

· · ·
2hm∑

hm−1=dhm−2/2e

m∏
i=1

(
2m+1hm+1

n

)dhi/2e
.

Each sum in this expression is essentially a geometric sum which can be upper bounded using

2hi+1∑
hi=dhi−1/2e

(
2m+1hm+1

n

)dhi/2e
≤ 2

(
2m+1hm+1/n

)dhi−1/2e

1 − 2m+1hm+1/n
,

for hm+1 < n/2m+1. We note that the troublesomedhi/2e is handled by repeating each term

twice and therefore results in the factor of 2. Applying this bound to them − 1 sums results in

the expression (3.4.6).

3D Proof of CAm Code Bounds

3D.1 WE Bounds for the IGE Conjecture

We use upper and lower bounds to evaluate the limit,limn→∞ logn Pw,h(n), where

Pw,h(n) is defined by (3.4.1). Applying (3A.1) toPw,h(n) gives the upper and lower bounds(
(n−h)
bw/2c

)bw/2c (
(h−1)

dw/2e−1

)dw/2e−1

(
ne
w

)w ≤ Pw,h(n) ≤

(
(n−h)e
bw/2c

)bw/2c (
(h−1)e
dw/2e−1

)dw/2e−1

(
n
w

)w .

Computing the limit oflogn of these upper and lower bounds is simplified by noticing that all

terms not involvingn will vanish. Taking only these non-zero terms shows that the two bounds

are identical and equal to

bw/2c
(

lim
n→∞ logn(n− h)

)
− w = −dw/2e .

Now, consider the limit,limn→∞Ah(n), whereAh(n) is the WE of a TCC. Using the

upper bound, (3.3.1), we can upper bound the limit oflogn with

lim
n→∞ lognAh(n) ≤ lim

n→∞ logn

(
n/τ

bh/dc

)
= bh/dc .
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If we assume thath is an integer multiple ofd, then we can also lower bound the number of

codewords of weighth in a TCC. We start by assuming that each codeword consists of exactly

bh/dc minimum distance detours. The number of ways to choose starting positions on these

detours is greater than (
n/τ − h

bh/dc

)
because there are at leastn/τ − h unused trellis steps. This gives a lower bound on the limit of

logn which is equal to the upper bound.

3D.2 Proof of Lemma 3.6.2

Proof of Lemma 3.6.2.For any integerh1 ≥ 0, it is clear that the functionα(h1, . . . , hm+1) =

bh1/dc −
∑m

i=1 dhi/2e is maximized by minimizingh2, . . . , hm. Let h̃1, . . . , h̃m+1 be some

(but not any) weight path which maximizes the function. Since the maximization is performed

over the set of valid weight paths starting ath1, this means that̃h2, . . . , h̃m can be determined by

the constraints and thath̃i+1 =
⌈
h̃i/2

⌉
for i = 1, . . . ,m− 1. Using the fact thatddx/2e /2e =

dx/4e, this can be inductively reduced tõhi =
⌈
h̃1/2i

⌉
. Therefore, rewritingα(h1, . . . , hm+1)

as a function ofh1 with hi+1 = dhi/2e, for i = 1, . . . ,m− 1, gives

ν(h1) = bh1/dc −
m∑

i=1

⌈
h1/2i

⌉
,

which is the maximum as a function ofh1.

Now, we consider the maximum ofν(h1) for h1 ≥ 2. Suppose we start withh1 = id

(i.e., at some integer multiple ofd) and consider the sequenceh1 = id, id + 1, . . . , id + d− 1.

Each increase by one cannot increaseν(h1) because the positive term is non-increasing while

the negative terms are non-decreasing. Now, we can try increasingh1 by integer multiple of

d. In this case, the positive term increases by one while the negative sum contributes a change

of did/2e − d(i+ 1)d/2e. For d ≥ 2 even, it is easy to verify thatdid/2e − d(i+ 1)d/2e =

−d/2 ≤ −1. Ford ≥ 3 odd, it is also easy to verify thatdid/2e−d(i+ 1)d/2e ≤ −1. Choosing

i = 1 as our starting point, this implies thatν(h1) ≤ ν(d). This completes the proof that the

maximum ofν(h1) = ν(d) for h1 ≥ 2. It is also worth noting that̃hm+1 is not constrained by

this maximization because it does not appear inα(h1, . . . , hm+1).
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Now, we would like to show, ford ≥ 3 or m ≥ 2, thatν(4d) ≤ ν(d) − 1. This will

be useful for bounding the number of terms which achieve the maximum exponent ofν(d). We

note that this does not hold ford = 2 andm = 1, however, becauseν(h) achieves the maximum

of zero ifh is even.

Form ≥ 2, we show thatν(4d) ≤ ν(d) − 1 by writing

ν(4d) − ν(d) = (4 − 1) +
m∑

j=1

⌈
d/2j

⌉
−

m∑
i=1

⌈
4d/2i

⌉
.

Cancelling the terms wherei = j + 2 gives

ν(4d) − ν(d) = 3 − 3d+
m∑

m−1

⌈
d/2i

⌉
.

For anym ≥ 2 andd ≥ 2, it can be verified that
∑m

m−1

⌈
d/2i

⌉
≤ d, and using this bound gives

the final result,

ν(4d) − ν(d) ≤ 3 − 2d ≤ −1.

Form = 1 andd ≥ 3, we start by writing

ν(4d) − ν(d) = 4 + dd/2e − d4d/2e .

Next, we verify by hand thatν(4d) − ν(d) ≤ −1 for d = 3. Applying the bound,x ≤ dxe ≤
x+ 1, gives

ν(4d) − ν(d) ≤ 4 − 3d/2,

which proves thatν(4d) − ν(d) ≤ −1 for d ≥ 4.

3D.3 Proof of Lemma 3.6.3

Proof of Lemma 3.6.3.This proof is based on sequentially choosing the random interleaver and

counting the number of ways a minimum weight codeword may be produced during each choice.

We start by pointing out that all TCCs haveΘ(n) non-overlapping codewords of minimum

weight. For example, if we letµ be the output length of the shortest detour of minimum weight,

then there are at leastn/µ non-overlapping codewords of minimum weight.

Now, consider all mappings ofd ≥ 1 bits through an “accumulate” code which result

in the minimum output weight ofh = dd/2e. Ford even, these mappings consist of breaking
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thed bits intod/2 pairs of bits and placing these pairs independently. Ford odd, the same basic

process is used except that there is a leftover bit. This bit must be placed at the end of the block

for the minimum output weight to occur.

Now, consider the sequential process of choosing the random interleaver. We assume

that the process is applied ton/µ non-overlapping codewords of weightd. In the ith step, we

choose thed bit positions, from the remaining unused positions, where theith codeword of

weightd will be mapped. Consider the event that the placement inith step supports a minimum

weight output given that no previous step has resulted in a minimum weight codeword. We de-

note this event asEi+1 and the overall probability that a minimum weight codeword is produced

by thesen/µ codewords is

PM (n) = 1 −
n/µ−1∏

i=0

(1 − Pr(Ei)) . (3D.1)

We can lower bound the probabilityPr(Ei) by counting the number of possible way

it may occur. Afteri steps, exactlydi bits have been placed and so there are exactly(
n− di

d

)
ways to place the nextw bits. Since a minimum weight output is only generated by breaking the

input into pairs, we can lower bound the number of ways this may occur as well. Initially, there

are exactlyn−1 ways to place a pair of bits adjacent to each other. Afteri steps, there are still at

leastn− 2di− 1 ways to do this because each bit placed eliminates at most two possible pairs.

The number of ways to place thebd/2c pairs can be computed in the same manner as a binomial

coefficient, with the exception that each placed pair eliminates at most three of the total possible

pairs. There arebd/2c! orders that the pairs may be placed in as well, so the number of ways to

placebd/2c adjacent pairs is greater than∏bd/2c−1
k=0 (n− 2di − 3k − 1)

bd/2c! .

Since the last bit position is special, we only allow the leftover bit to be placed in this

position if there is still a chance that a minimum weight codeword may be created. This only

reduces the number of ways a minimum distance output may be created and maintains the lower

bound. The−1 in the last expression reflects this change and makes it valid for oddw as well,
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since there is only one way to place the leftover bit in the last position. This gives the lower

bound,

Pr(Ei) ≥
∏bd/2c−1

k=0 (n− 2di − 3k − 2)(
n−di

d

)
bd/2c!

.

Now, we can simplify this expression by weakening the bound to

Pr(Ei) ≥
(n− 2di− 3 bd/2c + 1)bd/2c

nd
≥ (1/2)bd/2c

ndd/2e , (3D.2)

for i ≤ n/4d+ 2. Combining (3D.1) and (3D.2) gives the lower bound

PM (n) ≥ 1 −
min[n/4d,n/µ]∏

i=0

(
1 − (1/2)bd/2c

ndd/2e

)
= Ω(n1−dd/2e).
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