Chapter 3

Coding Theorems for Convolutional

Accumulate-m Codes

3.1 Introduction

It is well-known that long random codes achieve reliable communication at noise lev-
els up to the Shannon limit, but they provide no structure for efficient decoding. The introduction
and analysis of Repeat Accumulate (RA) codes by Divsalar, Jin, and McEliece [10] shows that
the concatenation of a repetition code and a rate-1 code, through a random interleaver, can also
achieve reliable communication at noise levels near the Shannon limit. A more general analysis
of serially concatenated rate-1 codes also implies that using more than one interleaved rate-1
code may yield further improvement [23].

The coding theorem for the ensemble of RA codes under maximum likelihood decod-
ing, given in [10], states that, for alt;, /N, greater than a threshold which depends only on
the repeat ordeg > 3, the serial concatenation of a repetition code and a rate-1 “accumulate”
code will have vanishing word error probability as the block length goes to infinity. In [14], this
theorem was extended to serial turbo codes, for outer codes with minimum digtange

In this chapter, we combine two different generalizations of RA codes. The first in-
volves using either a single parity check (SPC) or a terminated convolutional code (TCC) as
the outer code, and we refer to these codes as Parity Accumulate (PA) and Convolutional Ac-
cumulate (CA) codes respectively. The second involves using a cascadatdrleaved rate-1
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“accumulate” codes as the outer code [23], and we refer to these codes as eithePRA or

CA™ codes respectively. Of these classes,"Céodes are the most general and both’Rand

PA™ can also be viewed as CAcodes by choosing the TCC appropriately. He also discusses
repeat accumulate accumulate (RAA) codes in [13], perhaps overlooking their previous work in
[24].

Following the approach pioneered in [10], we then prove a coding theorem for ensem-
bles of CA™ codes on a memoryless channel with maximum likelihood decoding. The theorem
states that if the outer code has minimum distah¢e2 and the channel parameteis less than
some threshold*, then the probability of word error i©(n"), wheren is the block length and
v is determined solely by: andd. The proof, based on the union bound, also gives loose lower
bounds on the threshokd. A new tighter bound by Jin and McEliece [16] allows us to compute
very accurateFy, /Ny thresholds for the additive white Gaussian noise (AWGN) channel. For
m = 3, many of these thresholds are virtually identical to the Shannon limit.

The chapter is organized as follows. In Section 3.2, we review key results relating
to turbo-like codes which will be required for later sections. In Section 3.3, we discuss new
and existing bounds on the weight enumerators of TCCs. In Section 3.4, we consider bounds
on the input output weight transition probabilities of the rate-1 “accumulate” code. In Section
3.5, we apply the bounds of the two previous sections to RA and CA codes with a single rate-
1 “accumulate” code. In Section 3.6, we state and prove our coding theorem fércGdes
and follow up by considering the minimum distance of these codes. In Section 3.7, we discuss
the iterative decoding and density evolution for'CAodes. In Section 3.8, we presdrif/ Ny
and minimum distance thresholds for CAcodes and discuss the numerical methods used to

compute them. Finally, in Section 3.9, we offer some concluding remarks.

3.2 Preliminaries

3.2.1 Weight Enumerators and the Union Bound

In this section, we review the weight enumerator of a linear block code and the union
bound on error probability for maximum likelihood decoding. Timgut output weight enumer-
ator (IOWE), A, 1, of an(n, k) linear block code is the number of codewords with input weight

w and output weight, and theweight enumerato(WE), A4;,, is the number of codewords with
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output weighth and any input weight. Using these definitions, the probability of word error for
maximum likelihood (ML) decoder is upper bounded by

n k n
Py <3 > Aypz" =) Ap2" (3.2.1)
h=1

h=1w=1
because the pairwise error probability between any two codewords differihgpositions is
upper bounded by".
The parameter is known as the Bhattacharyya parameter and can be computed for
any memoryless channel [30, p. 88]. For a binary-input discrete output channeliatitputs,
it is defined as

M—-1

2= S VGRGI,

=0

wherep(j|i) is the probability of outpuj given inputi. For channels with continuous outputs,
the parametet is given by the integral

zzlA@@WMMU@,

wherep(y|i) is the output p.d.f. of given inputi andY” is the set of possible outputs. For the

BSC this gives:gsc(p) = v/4p(1 — p), and for the AWGN channel this givesyy oy (0?) =
e~/ (29%) ‘whereE, /Ny = (k/n)E,/Ny = 1/(202).
Finally, the bit error probability is upper bounded by

Pp <> By, (3.2.2)
h=1

where thebit normalized weight enumeratoBy, , is given by
k w
By = —Auph- 2.
h 2£;k7 w,h (3 3)

3.2.2 Serial Concatenation through a Uniform Interleaver

We now briefly review the serial concatenation of codes through a uniform random
interleaver (URI). Using a URI is equivalent to averaging over all possible interleavers and was
introduced for the analysis of turbo codes by Benedetto and Montorsi [4].
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Consider the serial concatenation of(an, k) outer code and afns, k2) inner code.
Let the IOWES of the two codes bbfj)h andA'? respectively. The average IOWE of the serial

w,h’

concatenationd,, , is given by

. ni A(Q})l ni 9
App =3 AD, 2 =N a0 P (3.2.4)
v=0 (U) v=0
where
‘ A(i)
p — Zwh (3.2.5)

w,h (kz)

w

is known as theénput output weight transition probabilitdOWTP). This definition reflects the
fact thathEi)h is equal to the probability that this code will map a randomly chosen input sequence
of weightw to an output of weight.

Since the form of (3.2.4) witlisz)Q}Z is essentially a matrix multiplication, the definition
of the IOWTP makes a connection between linear algebra and serial concatenation. This was
first observed in [23], where it was used to show that the WE of*@Ades approaches that of
a random code for large: .

3.2.3 Code Ensembles and Spectral Shape

In this section, we review code ensembles and spectral shape as defined in [1]. Let a
code ensemblee a set(, of (n, k) linear codes, each chosen with probability|C|. For any
particular code¢C € C, we group the codewords by weight and defitygC) to be the number
of codewords with output weigtit and A,, ;,(C) to be the number of codewords of input weight

w and output weight. This allows theaverage weight enumeratoo be defined as

theaverage input-output weight enumeratorbe defined as

— 1
Aw,h(c) = 1 Z Aw,h(c)a
I ceC

and theaverage bit normalized weight enumeratorbe defined as

k
BAC) = 7 2 3 FAun(©).

CeCw=1
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Finally, thespectral shap®f an ensemble is defined to be

r(6;0) = = In A5, (C),

for0 <4 < 1.

We also consider sequence{é?ni}izo, of code ensembles, where edch, is an en-
semble of(n;, k;) codes. We assume that the sequen¢es};.., and{k;},.,, are unbounded
and lead to a well-defined rat® = lim;_,~,(k;/n;). This leads us to define trgpectral shape

sequence
i (8:C) = n%lnzwm [(Co), (3.2.6)

and theasymptotic spectral shape,
r(6; C) = limsup ry, (6; C). (3.2.7)
In general, we will abuse our notation slightly by writingy,(n) andr,(§) when it is clear

which sequence of code ensembles in being considered. Furthermore, all limits takgoess

to infinity are assumed to be along the subsequéngg;.

Remark 3.2.1lt is worth considering the validity of the limit, (3.2.7). Suppose, we have a code
ensemble where, is odd for alli and A (C,,,) is zero for oddh. It is eays to construct an
ensemble sequence of regular low-density parity-check (LDPC) codes, with odd row weight,
which has these properties. Choosing- 1/2, we find thaﬁtnim((]m) = 0 for all 4, which
means that(1/2,C) = —oo. In general, this is not a problem because one typically deals with
a sequence of continuous functioifs, (h), which upper boundl; (C,,,) at integerh. To avoid
technical problems with the limit, however, one could deffpgh) to be the linear interpolation
of the non-zero terms ofl;,(C,,,). Let hyin(n;) be the smallesk > 1 such thatA, (C,,,) > 0
and leth,,...(n;) be the largest < n; such thatd, (C,,,) > 0. This allows the spectral shape to
be defined as

7(6;C) = limsup ni In f,,, (dn;)
for any d,min < 6 < Gpmaz WHEred i = lim; oo hanin () @Nddpee = 1im; oo homaz (124).
For many codes, including turbo and LDPC codes, we believe that-thig”') will also be

continuous and differentiable fér,,;, < 6 < dmaz.
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Remark 3.2.2 Another problem with the definition of asymptotic spectral shape is that subsets
of codes with exponentially vanishing probability may still affect the value(é§. We believe
that

7(6;C) = limsup — ]C\ Z lnAme C).

i—o0 CeC;

may be a better definition of spectral shape because it does not have this problem. This is
becaus%l—i In A|5,,1(C) is upper bounded bgk; /n;) In 2, so that subsets of codes with vanishing
probability will contribute nothing ta (J; C).

For many sparse graph codes, including turbo-like and LDPC codes, we also believe
that7(9; C') is the mean of a tightly concentrated probability distribution. Consider the proba-
bility,

P.(5) = Pr (‘i In A5, (C) — 76, 0)‘ > e) ,
n;

when the codeg, is chosen randomly from the ensemlilg, For any0 < § < 1 and anye > 0,
we believe thatim;_, ., P;(J) = 0.

These observations are purely academic, however, because we know of no general
method of computing*(§; C). All may not be lost, however, because some physicists have
started approximating this quantity using something known as the replica method [29]. Iron-
ically, we note that the most straightforward approach to analyz{ngC') is probably upper
bounding it byr(¢; C), since the concavity of the logarithm implies thés; C) < r(5; C).

3.2.4 Asymptotic Order of Functions

This chapter makes frequent use of the standard asymptotic notation, as defined in
[19]. Specifically, the notatio®(-), ©2(-), O(-), o(+), andw(-) is defined in the following manner.
The expressioy(n) = O(f(n)) means that there exist positive constanendn, such that
g(n) < cf(n) for all n > ng. Similarly, the expressiog(n) = Q(f(n)) means that there
exist positive constants andng, such thaty(n) > cf(n) for all n > ngy. The termg(n) =
©(f(n)) combines these two and implies that that) = O(f(n)) andg(n) = Q(f(n)). For
strict bounds, we have the expressiagtis) = o(f(n)) andg(n) = w(f(n)) which mean that

limsup,, . |g(n)/f(n)| = 0 andlimsup,,_,, | f(n)/g(n)| = 0, respectively.
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3.2.5 The IGE Conjecture

The Interleaver Gain Exponent (IGE) conjecture is based on the observations of
Benedetto and Montorsi [4] and is stated rigorously in [10]. It was also considered for dou-
ble serially concatenated codes in [3]. The conjecture considers the growth ragéof for
fixed h, for an ensemble sequenceiages to infinity. Following [10], we define

a(h) = limsuplog,, Ay (n) (3.2.8)
and
By = I}Illgiia(h)- (3.2.9)

Essentially, the IGE Conjecture [10] predicts that there exists a threshold channel partameter
such that, for any: < z*, the probability of word error iy = O (nﬁM). Another com-
monly cited variation of the IGE Conjecture also predicts that, under the same conditions, the
probability of bit error isPg = O (nf»~1).

This conjecture was first proven for repeat accumulate (RA) codes in [10], then ex-
tended to a range of more general turbo codes [9]. In this paper, the IGE conjecture f6t GRA
codes is resolved in the affirmative by Theorem 3.6.4.

3.2.6 Noise Thresholds

Many modern coding systems exhibit a threshold behavior, whereby on one side of the
threshold, the probability of decoding error is bounded away from zero, and on the other side
of the threshold the probability of error approaches zero rapidly as the block length increases.
In particular, most derivatives of turbo and LDPC codes, including"Gfdes, exhibit this
behavior. In this section, we provide a framework for discussing this phenomenon, and the
corresponding noise thresholds. We note that, in general, the threshold depends both on the code
and the decoder.

Definition 3.2.3. Suppose we have a binary-input channel with parameteand a sequence
of code ensembleqC;},-,. Let P(C; ) be the probability of a particular error type for a
particular decoder. For example, one might witg ..y (C'; «) to represent the word error rate
under ML decoding. Th&’, noise thresholda,, of this ensemble sequence is the largestuch



49

that
limsup P (C;) = 0
forall 0 < a < a,. Although o, is well-defined as long a&,(C;;0) = 0, we will generally
be dealing withP, (C;; «) functions which are strictly increasing in Furthermore, we say that
the ensemble has B, decay rateof at leastf(n) if we have P,(C;; ) = O (f(n;)) for all
0 < a < a,. We also note that upper bounds on the probability of error can be used to provide
lower bounds on the threshold,.

The Bhattacharyya union bound, (3.2.1), can be used to derive lower bounds on the
maximum likelihood word error noise threshold;z. This approach was first used for turbo
codes in [10]. While thresholds based on the union bound are generally quite pessimistic, the
simplicity of the union bound enables one to analytically show the existence of noise thresholds
for all channels simultaneously. The Bhattacharyya parameter threshold is giverby “vs,
wherecy g is

cyp = sup (r(5;C)/9). (3.2.10)
0<6<1

For the AWGN channel, the Viterbi-Viterbi Bound [31] is always tighter. In fact, it can be used
to prove that the ensemble sequence achieves capacity as the rate approaches zero. The Viterbi-
Viterbi E; /N, threshold is given by

cyy = sup ((1—=0)r(5;C)/9). (3.2.11)
0<6<1

There are quite a number of other bounds for the AWGN channel, and [8][27] give hice overviews
of the subject. In the next section, we discuss typical set decoding bounds which can be used on

any memoryless symmetric channel and give quite good results.

3.2.7 Typical Set Decoding Bound

The typical set decoding bound on word error probability is very tight because it breaks
the problem into two parts. First, it considers the probability that the noise is atypical. Second, it
considers the probability of error given that the noise is typical. The probability of a memoryless

channel having atypical noise decays rapidly with the block length, so we can essentially ignore
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this probability. It turns out that the probability of error given typical noise lends itself to a very
nice combinatorial analysis [1][16].

Consider a discrete memoryless symmetric channel Witloutputs wherep; is the
probability of theith output given a zero input. Let the input to the channel be a sequence of
zeros, and assume that output statistics are collected by lettitg the number of times thith

output is observed.

Definition 3.2.4. For anye > 0, we say that the noise sequencayigical if |m;/n — p;| <
n~1/2tefori =1,... , M. We also say that any other output sequengeiigly typical with the

all-zero sequence if its frequency statistics satisfy the same condition.

Definition 3.2.5. Consider the probabilityP;, (7,,; «), that a codeword of weighit and length
n is jointly typical with the all-zero codeword after being transmitted through a memoryless

symmetric channel with parameter Thetypical set decoding exponert (4, «), is defined by

K(,a) = — lim llnPMnJ (Th; ).

n—oo n
Lemma 3.2.6. For anye < 1/4, there exists am such that for alln > n, the probability that

the noise sequence is atypical is upper boundee fy.

Proof. First, we notice that the distribution of eash; is binomial with mearp;n and variance
np;(1—p;). Since the test for typicality allows variations in the frequency statistic(ef/2+¢)

and the central limit theorem holds for variationso¢fi®>/*), we can use Gaussian tail bounds

for ¢ < 1/4. Using the standard exponential bound for the Gaussian@&it) < ¢=*"/2),

we see that the probability that any; fails the test is upper bounded By*o("%). Since all

M bins must pass the test, the probability that a sequence is not typical is upper bounded by

2Me=9™*) For large enough, this can be upper bounded by™". O

Consider a sequence of code ensembles with averageANE,), spectral shapes,(5), and
asymptotic spectral shape(d). The following conditions characterize the code ensemble well

enough to give a fairly general coding theorem. We note that these results are taken mainly from
[1].

Condition 3.2.7. There exists a sequence of integefs,, },,~.,, and a function,f(n), which
satisfy L,, = w(lnn) and .
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foranyz < 1.

Condition 3.2.8. The spectral shape converges to the asymptotic spectral shape fast enough that

™ (6;C) <r(0;C) +o (ﬂ>

n

and the behavior af(d) near zero is such that

lim r(%:0) < 00
d—0t 1)

Now, consider any memoryless symmetric channel, with parametahose Bhat-
tacharyya parameter iga)) and whose typical set decoding exponenkig), «). We define the
typical set decoding threshotd be

= inf (), 3.2.12
ars og,{gla (N ( )

where
miz(A) = sup {a € RT[r(6;C)/6 < —Inz(a),d € [0,A] andr(6;C) < K(5,a),8 € (A, 1]}.

Theorem 3.2.9 ([1]). Suppose Conditions 3.2.7 and 3.2.8 hold. Leiny real number if{0, 1]

and suppose also that the channel parametés greater than the thresholdy,,,;,.(A). In this
case, there exists an> 0 such that the probability of word error for the ensemble sequence,
Py, is given by

Py =0 (f(n))+0 (ne=t") + 0 (e™™). (3.2.13)

In general, the first term will dominate but this also depends on the particular choitg ahd
f(n).
Sketch of ProofWe start by breaking up the probability of word error with

Py = PP 4 P,

wherePI(AgB) is the contribution of the small output weights handled by the union bound and

PV(I?S) is the contribution of the large output weights handled by the typical set bound. Using
(3.2.1), we can write

Lnp—1 An
BUD < Y Tyt + 3 ehlralt/mO/h/m+ins(a))
h=1 h:Ln
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for any z < 1. Condition 3.2.7 shows that first term 3 (f(n)). Combining Condition
3.2.8 with the fact thatv > ;i (\), shows that there exists any ande > 0 such that
SUPg<s<rTn(6;C)/6 +Inz(a) < —efor0 < § < A and alln > ng. Since the terms
of the second sum are decreasing, we can upper bound the valugirbgs the first term or
0O (ne‘Lne).

Next, we write

(TS) - - - n[r(8;C)— K (8,0)+o(1)]
Py, 7’ < Pr(noise atypical + n max e ,

and use Lemma 3.2.6 to show that (noise atypical < O (e") for somee > 0. If o >
amiz(A), then there also exists any ande > 0 such thakup,s<; 7(6;C) — K(d,a) < —e¢
for all n > ny. This means that the second term decays @ké=~"¢) and can be ignored.

CombiningPI(A,UB) andPV(VTS) completes the proof. O

Corollary 3.2.10. Suppose the conditions of Theorem 3.2.9 hold, and that there also exists a
g(n) < f(n) such that

L,—1

Y Bi(n)2* = O(g(n)),
h=1

for anyz < 1, whereB},(n) is the bit normalized WE defined in (3.2.3). In this case, there exists

ane > 0 such that the probability of bit erroi’z, is given by
P =0(g(n))+0O (ne_EL”) +0 (e_”e) :

Proof. The proof is identical to that of Theorem 3.2.9, except that (3.2.2) is used for the union
bound portion of the bound. O

Remark 3.2.11Since Theorem 3.2.9 essentially applies the union bound ford < X and the

typical set decoding bound for < ¢ < 1, it is easy to see that separate spectral shapes could

be used for each bound. For example, a simple upper bound on the spectral shape could be used
for 0 < § < A, while numerical evaluation of the exact spectral shape and typical set decoding
bound could be used for < § < 1. This would allow the typical set decoding threshold to be
treated rigorously without considering Condition 3.2.8 for the exact spectral shape.

Remark 3.2.121t is also worth noting that the quantitym;_,y+ (r(5;C)/6), which equals
r'(0; C') by I'HOpital’s rule, seems to play an important role in noise thresholds (0t C') < oo,
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then a bit error rate noise threshold usually exists, while ensembles-{tC') = 0 usually
admit a word error rate threshold. Furthermore;’{0; C) = 0, then the noise threshold is
usually determined by the typical set decoding bound (i.e., there exiss>a 0 such that
ars = supy,<x<1 1a|r(6;C) < K(6, ), A <6 < 1}).

3.3 Terminated Convolutional Codes

In this section, we consider the WEs of terminated convolutional codes. In particular,
we focus both on useful analytical bounds on the WE and exact numerical methods for com-
puting the spectral shape of a CC. The analytical bound is a generalization of [18, Lemma 3],
while the formula for the spectral shape can be seen as a generalization of Gallager's Chernov

bounding technique [12, Egn. 2.12] or as an application of [21].

3.3.1 Analytical Bounds

Now, we consider a useful bound on the weight enumerator of the block code formed
by terminating a CC. This bound is essentially identical to [18, Lemma 3], which was proven for
any rate-1/2 recursive systematic TCC. The major contribution of our result is that all constants
are computable from the derivation. All previous derivations prove only the existence of bounds

of this form. We also provide a proof which is valid for any TCC.

Theorem 3.3.1. Let 7 be the numbers of bits output by a CC per trellis step and consider the
(n, k) block code formed by terminating a CC to a lengtgf trellis steps. We denote the free
distance of the CC by, the transfer function of the CC Wy(D), and the smallest real positive
root of the equatior¥’(D) = 1 by D*. The number of weight codewords in the block code,
Agf) (n), is upper bounded by

Lh/d] n/r
YIOESS < / >gh, (3.3.1)

whereg = 1/D*.
Furthermore, if a non-catastrophic convolutional encoder is used, then there exists a
constantp > 0 such that the input weighty, can be upper bounded with < ph. In this case,
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the bit normalized weight enumerat(B(O), can be upper bounded by

(0) ph Ln/d) n/t
B,”(n) < — > ( . )gh. (3.3.2)
t=1
Proof. Proof of this theorem is provided in Appendix 3B.1. O

Various upper bounds can also be applied to the binomial sum in (3.3.1) to make this bound
more useful. The next corollary boundéf) in a manner which makes it easy to upper bound
3 Ago)xh by an exponential.

Corollary 3.3.2. The binomial sum in (3.3.1) can be upper bounded with (3A.7) to get

(/7 + )M
DR

whereg = 1/D*. If 7 > d, then this result also requires that'/7¢*724/7 > 2R and
(de/7)"/? (\/27m)71/n g > 27, whereR is the code rate.
If a non-catastrophic encoder is used, then the bit normalized weight enuméi’%ﬁ)or,

Aglo) (n) < (333)

can also be upper bounded by

Lh/d]—1
© ) <« /T H1) h
By’ (n) < C (h7d] =1 J", (3.3.4)
whereC' = 24247 andg = 1/D*.
Proof. Proof of this corollary is provided in Appendix 3B.2. O

The bound presented in the next corollary was originally stated in [24] without proof. We present
it here mainly because of this and because it follows easily from Theorem 3.3.1 and Corollary
3.3.2.

Corollary 3.3.3. Using (3A.6) to upper bound the binomial sum instead, gives
o n\ Lh/d]
A9m) < c (ﬁ) g, (3.3.5)

whereC = (3) V" andg = (&) (%)l/d. If 7 > d, then this result also requires that
21/7g1-88d/7 > 9k and (de/T)'/4g > 2%, whereR is the code rate.

If a non-catastrophic encoder is used, then the bit normalized weight enuméi’%ﬁ)or,
can also be upper bounded by

. ny Lh/d)-1
B (n) < % (ﬁ) . (3.3.6)
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Proof. Proof of this corollary is provided in Appendix 3B.3. O

Remark 3.3.4.The basic ideas behind this theorem were introduced by Kahale and Urbanke in
[18]. Their treatment, however, focused solely on rate-1/2 recursive systematic CCs. The gen-
eralization to arbitrary convolutional codes, (3.3.5), was given in [24] without proof. Recently,
a bound similar to (3.3.1) was given without proof by Jin and McEliece in [17]. Using our

notation, their result can be written as: there exisgssach that

. n/t
AP < (Lh/d;‘;}ee J)gh-

Unfortunately, this bound does not hold for general convolutional codes. Consider, as a coun-
terexample, the memory 0 CC formed by usin@at) Hamming code for each trellis step (i.e.,
T=38 anddﬁee

in the mistaken conclusion thﬂtﬁf) < 0, when in factAy- is growing exponentially with.

= 4). Choosingh* = n/2 + 4 forces the binomial coefficient to 0 and results

Remark 3.3.5.Consider the additional conditions required by Corollaries 3.3.2 and 3.3.3 for
T > d. First, it is worth noting that we have not found any CCs which do not satisfy these
conditions. Second, if a CC is found which does not satisfy these conditions, the paramneter,
can always be artificially inflated so that the conditions are satisfied. This results is a weaker, but
provably accurate, bound of the same form. Furthermore, the conStacdén also be removed

by inflating g.

3.3.2 Analytical Bound Examples

Now, we consider three different TCCs and compare the true WE of each with (3.3.1)
and (3.3.3), which are referred to as upper bound 1 and 2 respectively. In general, we see that
(3.3.1) is tighter than (3.3.3) and that both bounds are reasonably tight for small output weights.

The (7,3) Hamming Code

This code can be thought of as a TCC with= 7, d = 3, andT(D) = 7D3 + 7D* +
D". Solving the equatioff’(D) = 1 with Mathematica gives the resul* ~ 0.46012. Figure
3.3.1 shows the WE of this code far= 1400 and the corresponding bounds.
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Figure 3.3.1: The true WE and upper bounds for the Hamming (7,3) code.

The (9,8) Single Parity Check Code

This code can be thought of as a TCC with= 9, d = 2, andT'(D) = 36D2 +
126D* + 84D% + 9D8. Solving the equatio’(D) = 1 with Mathematica gives the result
D* =~ 0.15959. Figure 3.3.2 shows the WE of this code for= 1080 and the corresponding
bounds.

The Convolutional Code with Generator G(D) = [1,1 + D]

This is really the only non-trivial memory-1 rate-1/2 CC, and it has parameterg,
d = 3, andT(D) = D3/(1 — D). Solving the equatio’(D) = 1 with Mathematica gives
the resultD* ~ 0.68233. Figure 3.3.3 shows the WE of this code fer= 1400 and the
corresponding bounds. We note that this bound can also be computed by Adkatigs steps
at a time (e.g.7 = 2k). This has the effect of decreasitg’, however, and the combination
improves the bound only marginally.
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Figure 3.3.2: The true WE and upper bounds for the single parity check (9,8) CC.

3.3.3 The Exact Spectral Shape

In this section, we generalize the Chernov type WE bound of [12, Eqn. 2.12] to convo-
lutional codes (CCs). A more general treatment of the underlying math problem was completed
by Miller in [21]. Since the bound is exponentially tight, it enables the exact numerical com-
putation of the spectral shape of block codes constructed from CCs. Furthermore, the spectral
shape does not depend on the method of construction (e.g., truncation, termination, or tailbiting)
used.

Theorem 3.3.6. LetG(x) be theM x M state transition matrix of a CC which outputsymbols
per trellis step. For example, we have

for the two-state CC with generator matrik, 1/(1 + D)]. If the the state diagram of the CC is
irreducible and aperiodic, then we find that, foer> 0, the matrixG(x) has a unique eigenvalue,

A1(z), of maximum modulus. In this case, the spectral shapg, TCC), of the block code
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Figure 3.3.3: The true WE and upper bounds for@{&®) = [1,1 + D] CC.

formed by terminating the CC is given parametricallydfy) = «\} (z)/(7A1(z)) and
r(0(x); TCC) = e In[A(z)] —0(z) Inz. (3.3.7)
T
Furthermore, both the function(§(z); TCC) and the parametric curve are strictly convex.

Proof. Proof of this theorem is provided in Appendix 3B.4. O

Remark 3.3.7lt also turns out that this formula can be evaluated numerically without resorting
to numerical estimation of) (x). Let the characteristic polynomial € (z) be

FOz) =det(AI - G(x)) = > fisNa?,

and recall that the eigenvalues, for a particulaare the roots of the equatiofi\, ) = 0. Now,
we can use implicit differentiation to solve fdi\/dz. We start by computing the differential

form of f(\, z) = 0, which is given by
D Fi(ANT AN + N 2T dr) = 0.
Next, we solve forl\/dz as a function o\ andz to get

ax = >ij fijgNal !
dx N Zij fijiAifl.Tjd)\'
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This allows a point on the(é; TCC) curve to be computed by choosing any> 0
and numerically computing the eigenvalug{z). Next, we compute the derivativé)/dz, for
the (A, z) pair and use (3.3.7) to compuiér) andr(d(z); TCC).

3.4 The Accumulate Code

In this section, we consider the “accumulate” code which is generated byl a- D)

differential encoder.

3.4.1 A Simple Bound on the IOWTP

In this section, we consider the IOWTP of the “accumulate” code. The exact IOWE
of the “accumulate” code was published first in [10] and [22], and this allows the IOWTP to be

written as

n—h h—1
Ml w>1landh > 1

n
w

0 otherwise

It is also worth noting that the “accumulate” code never maps an input word of weighen
output word of weighth < [w/2]. This property is quite useful, so we summarize it in the

following condition.

Fact 3.4.1. Consider the IOWTP of the “accumulate” code,, ;,(n), forw > 1 andh > 1. In
this case,P,, ,(n) is non-zero if and only itk > [w/2] andn — h > |w/2|. This can be seen
easily by noticing that one of the binomial coefficients in the numerator of (3.4.1) will be zero if

either condition is not met.

Now, we derive a new upper bound on the IOWTP of the “accumulate” code. This
bound is quite useful in analysis because of its simplicity, yet it is also tight enough to reproduce
various gualitative results for RA codes. The result is presented as a corollary of Theorem 3C.2,

which is stated and proven in Appendix 3C.

Corollary 3.4.2. The IOWTP of the “accumulate” codé),, ,(n), is upper bounded by

Fu/2] (/2]
Pyn(n) < 0/ g (ﬁ> <” - h> (3.4.2)

h n n
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and

fw/2l o lw/2)
Pyn(n) < 2v (ﬁ> <” h> . (3.4.3)

n n

While some care should be taken when applying this boundwith0, h = 0, or h = n, we
note that using the definitiod? = 1 makes the bound valid for< w < n and0 < h < n.

Proof. Proof of this corollary is provided in Appendix 3C.2. O

3.4.2 An Exponentially Tight Bound on the IOWTP

The exact exponential form d?,, ,(n) is very useful for computing tight numerical
bounds on the WE of codes based on the “accumulate” code. It is defined by

1
plz,y) = lm —log Pl yn)(1)
X x

and the limit can be evaluated by using the upper and lower bounds given by (3A.2). When
the argument of any entropy function is greater than one, the true valpe: of) is negative
infinity. This can be seen by applying Fact 3.4.1 t0 B8, .o P|zp),|yn|(n) = 0if y < 2/2

ory >1—x/2.

Remark 3.4.3lt turns out that there is a remarkable similarity between (3.4.3) and the Bhat-
tacharyya bound on pairwise error probability for the BSC, which is giveipyl —p))h/Q.

This might seem accidental at first, but we believe that there is something deeper to this con-
nection. In fact, the exponential form of the IOWTP of the “accumulate” code, (3.4.4), and the
typical set decoding exponent for the BSC, [1, Egn. 2.8], are actually identical.

The fact that these two quantities are mathematically identical has at least one very
interesting consequence. Suppose that we have any ensemble sequence whose noise threshold
for typical set decoding on the BSCji&. If we serially concatenate this code with an interleaved
“accumulate” code, then the typical minimum distance of the new ensemble willsheThis
observation is based on the fact that the BSC typical set decoding threshold and this typical
minimum distance are both given by the same expression. Namely, they are both given by the
smallesty > 0 which satisfiesnax, r(z) + p(x,d) = 0, wherer(9) is the spectral shape of the
ensemble sequence ap(:, y) is given by (3.4.4).



61

3.4.3 A Simple Bound on the Cumulative IOWTP

Now, we derive a new upper bound on the cumulative IOWTP (CIOWTP) of the “ac-
cumulate” code. This bound is quite useful in analysis because of its simplicity, yet it is also
tight enough to reproduce various qualitative results for RA codes. The result is presented as a

corollary of Theorem 3C.2, which is stated and proven in Appendix 3C.

Corollary 3.4.4. The CIOWTP of the “accumulate” codé, <;(n), is defined by

~—

Ezhzl (\_:lu_/gj (ﬁu}}g]l—l)

1 w>1landh >1
Pw,gh(n) = pr,i(n) = h>w=0

w>h=0

~~
—|

S =

This quantity can be upper bounded with

B\ [w/2]
Py <p(n) <2% (—) . (3.4.5)
- n
Using the definitiord® = 1 makes the bound valid for< w < n and0 < h < n.
Proof. Proof of this theorem is provided in Appendix 3C.3. O

Corollary 3.4.5. The CIOWTP of the cascade wof “accumulate” codes,PzE)";)h(n), is upper
bounded by

2m_1 (2m+lh> E;,n;l |7w/22—‘
Py (n) < ( Zm+1h>m_1 : (3.4.6)
1—
for h < n/2m+L,
Proof. Proof of this corollary is provided in Appendix 3C.4. O

Remark 3.4.6.The upper bound provided by Corollary 3.4.5 is actually quite loose, but it suf-
fices for our purposes. We believe the weakness is mainly due to the fixed upper gognd

2Mhpeq fori=1,...  m used to derive it.
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3.5 Single Accumulate Codes

3.5.1 Repeat Accumulate Codes

A Repeat Accumulate (RA) code is the serial concatenation of a repeat code and an
interleaved rate-1 “accumulate” code. The elegant simplicity of these codes allowed their inven-
tors, Divsalar, Jin and McEliece, to rigorously prove a coding theorem in [10]. In this section, we
derive a new closed form bound on the WE of an RA code with repeat grdére quality and
simplicity of this new bound is mainly due to the new bound on the IOWTP of the “accumulate”
code given by (3.4.3).

Starting with the general formula for serial concatenation,

_RA Z A(O) o n)
we can substitute the WE of the repeat code,

n/9) if b /q integer

9

0 otherwise

and apply (3.4.3) to get

—RA Z (n/Q> 2qz h/n) fqz/ﬂ( h/n) Lqi/QJ'

Next we defined = h/n to normalize the output weight and simplify the notation. Faven,

the binomial theorem can be used to simplify this sum to

e < (”/q) (2021 — )2

i=1

= (14 @0 - 5))q/2>”/q —1 (3.5.1)

IN

For ¢ odd, we can sum the odd and even terms separately by defining the function

(1+2)F+ 01 —z)F
2 )

Z5(x, k) =

sinceZ ™ (x, k) gives even terms in a binomial sum afd (z, k) gives the odd terms in a bino-

mial sum. Using this, we write

A0 ) < 27 (60— )2 nfa) ~ 1+ =2z (450152 n/q) . (352)
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Figure 3.5.1: An upper bound on the spectral shape of RA codes.

Applying (3.2.7) to (3.5.1) and (3.5.2), it is easy to verify that the asymptotic spectral
shape of an RA code is upper bounded by

r(@(§5;RA) < ~In (1 +(48(1 — 5))q/2) (3.5.3)

1
q
for ¢ > 2 and0 < § < 1. Figure 3.5.1 compares the actual spectral shape of two RA codes with

the upper bounds. Fgr= 30, one can see that the upper bound matches the true spectral shape
very well foré < 0.3. While, for ¢ = 3, the bound matches only for very small

3.5.2 Convolutional Accumulate Codes

A Convolutional Accumulate (CA) code is the serial concatenation of a terminated
convolutional code with an interleaved rate-1 “accumulate” code. These codes generally perform
well with iterative decoding and have very good ML decoding thresholds. Their discovery in [11]
actually predates RA codes as well. In this section, we derive a general upper bound on the WE
of a CA which captures some of the important properties of CA codes.

Starting with the general formula for serial concatenation,
—CA = o acc
A () = > AL ()P (),
i=d

we can derive an upper bound on the WE of a CA code. Using (3.3.3) to upper bound the WE
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of the CC and (3.4.3) to upper bound the IOWTP of the “accumulate” code gives

() < i n/TLZ—;all Lz/ng< [z’éﬂ 2 () /21 (1 — )12

Using the normalized output weiglit= h/n, and the upper bound,
Sl21 (1 — o L2l < 5721 — 6)/% /(1 - 6),

gives

_ > (n/T li/d] i
Agn(n) < 115 ( /L;;dlj)! (g 45(1—5)) .
i=d

Now, we definey = g1/46(1 — ¢) and simplify the expression to

—CA 1 _ > n7-+]_.7 .
Aan(n)§—<1—|—’y+...+'yd 1) ) (/]%')'yd].
j=1 ‘

Finally, we can write the infinite sum in closed form and use the fac(thaty + ... + %) =

(v*=1)/(y — 1) to get

d

—CA 1 -1 n+7)/T

We can also upper bound the spectral shape using (3.2.7) and (3.5.4) to get

r(5; CA) < ( 45(1—5))d.

3.5.3 Properties of the Bounds

Although the upper bounds, (3.5.1), (3.5.2), and (3.5.4), computed in this section are
quite loose in some cases, they do capture some important characteristics of the underlying
WEs. For example, we will show that they correctly characterizestirethe growth rate of the
minimum distanced,,;, ~ n®. This fact is a straightforward generalization of the well-known
result given in [18]. We will also show that (3.5.3) is tight enough to prove that the ML AWGN
threshold of an RA code approaches -1&9 asq goes to infinity. This fact was originally
proven in [15].

Since the only difference between (3.4.5) and (3.4.3) is the factdr-ef:/n) /2] it

is straightforward to repeat the derivation using (3.4.3) and one finds that the upper bound on the
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WE is converted to an upper bound on the cumulative WE simply by dropping the/n)*/2!
term. Applying this technique to (3.5.4) and substitutiryg: for ¢ gives

Vh/n)d — d
A5 < =57 (éi}?f/n—)) () s

The probability that a randomly chosen code from this ensemble will have a minimum distance

less thart is upper bounded bﬁgﬁ(n) [23, Theorem 4]. Lety be the event that a very long
code from this ensemble has a minimum distance lesstthan= an(?=2)/¢_for some constant
a. We can upper bound the probability &f by consideringzgg\(n) (n) asn goes to infinity,
which gives
pr(E) < lim -— an<c1z—2)/d/n ((2299 C;T:(ddz))//dd//?)d__ 11 (cCoent B eni 1)

— Mgvaylr _ ¢

It is easy to see that this upper bound can be made arbitrarily close to zero by decreasing
Therefore, almost all of the codes in the ensemble will have a minimum distance which grows
like n(d-2)/d,

Now, let us consider the ML decoding threshold of an RA code in AWGN by applying
Viterbi-Viterbi bound. It was shown in [15], using a great deal of analysis, that this threshold
approaches -1.58B (i.e., the low-rate Shannon limit) asgoes to infinity. It turns out that
(3.5.3) is tight enough to reproduce the same result almost trivially. Substituting (3.5.3) into
(3.2.11) and normalizing for the rate (i.e., multiplyinggyshows that the Viterbi-ViterbE;, / Ny

threshold of a ratd-/¢ RA code is given by
Ty = max fo(9),
where
fa(8) = (1-9) @D (5;RA) = (1=0) (1 +(46(1 — 5))‘1/2) :
0 5
Since we are interested in the limit @}, as ¢ goes to infinity, we start by noting that, for
d €[0,1/2)U(1/2,1], f,(0) decreases strictly t0 asq increases (i.e.f,(6) > 0 implies that
fa+1(0) < fq(0) forallé € [0,1/2)J(1/2,1]). Thisimplies thatim, .o T < limg—.o fq(1/2).
Furthermore, it is easy to see thah, .., 7, > lim, . f;(1/2) because we can lower bound

the maximum over an interval by choosing any point inside. Combining these two results shows
thatTh, = limg—.o0 f4(1/2) =In2 = —1.59dB.
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3.6 Convolutional Accumulatesn Codes

3.6.1 Description

A CA™ code is the multiple serial concatenation of a TCC anthterleaved rate-1
“accumulate” codes [24]. Any CA code is completely defined by its outer TCC, andrits
interleavers. Therefore, a random ensemble of'@Ades is formed, for a particular outer TCC,
by choosing each interleaver randomly from the set of all permutations. This type of ensemble
lends itself nicely to the average analysis introduced by [4] for turbo codesZEﬁéP (n) be
the ensemble averaged WE after itie“accumulate” code, then we have

—(m+1) m
”:;1 Z A ) H Phi7hi+1 (TL), (361)
=1

1yeer

whereP,, ,(n) is given by (3.4.1) anﬁg) equals the WE of the outer TC(A,,(f). This WE can

also be written in an incremental form,
—( +1)
Z1+1 Z Ah Ph h1+1( ) (362)

which highlights the Markov nature of the serial concatenation.

Definition 3.6.1. The tuple,hy, ... , h,,+1, corresponds to the codeword weight at each stage
through then + 1 encoders. We refer to this tuple awaight paththrough the encoders. Using

this definition, one can think of (3.6.1) as a sum over all weight paths. Furthermore, we say that
a weight path is valid if it does not violate basic conditions such as Fact 3.4.1. For example, the
weight path,hy, ... , hpmt1, isvalid if by > d andh;y1 > [hy/2] fori =1,... ,m — 1. All

weight paths which are not valid provide no contribution to the sum.

3.6.2 The IGE Conjecture for CA™ Codes

Now, we can apply the IGE conjecture to (3.6.1) by defining

a(hm+1) = limsup (logn Z A;lll)(n) Hth,hiJrl(n)) . (3.6.3)
i=1

n—oo
Ri,... ,hm

Of course, the sum in (3.6.3) is lower bounded by its largest term. Using Definition 3.6.1, it is
easy to verify that all valid weight paths endingigt, obeyh; < 2™h,,+1 fori =1,...m
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This means that the number of non-zero terms in the sum is upper boundgd by, )™, and
that
S AP HPh“hM < (2" B )" max AV (n HPh by (n
By shim
These upper and lower bounds, along with fact that, . log,,(2™hy,+1)™ = 0,
for fixed h,,+1, allow us to replace the sum over weight paths in (3.6.3) by a maximum over
weight paths. The results of Appendix 3D.1 show that

Jim <logn thz,hlﬂ ) <a(hi,... s hmy1)

wherea(hy, ... ,hmi1) = |h1/d] — Zi:l [hi/2]. We also note that the bound holds with
eqaulity if 2y is an integer multiple ofl. This implies only thaty(h,,1) will be upper bounded
by the maximum ofa(hy,... , 1) over all valid weight paths. In fact, we will find that
a(hm1) is equal to this quantity because the maximum occurs wihda an integer multiple
of d.

The following Lemma provides a few results on the maximization(@f;, . . . , ~p41)-

Lemma 3.6.2. Let the set of valid paths starting dt;, V(h1), be the set of all tuples,
hiy... hmy1, Whereh; > 0fori=1,...m+1andh;41 > [h;/2] fori=1,... ,m — 1. Let
the functiona(hy, ... , hymy1), be defined by

a(hy, ... hmyt) = |hy/d] — Z[h/Q

The maximum af(hy, ... , hy,+1) over the seV (hq) W|th h1 > 2isequalto
v(hy) = [ln/d] = [h1/2]. (3.6.4)

i=1
Also, the maximum of(h;) for h; > d > 2 is equal tov(d). Finally, ford > 3 orm > 2, we
also show thav(h) < v(d) — 1 for all h > 4d.

Proof. Proof of this lemma is given in Appendix 3D.2. O
Sincea(hq,... ,hn4+1) does not depend oh,,,1, we can apply Lemma 3.6.2 to show that

a(hmy1) = v(d). Furthermore, it is clear thaty; = maxy, > a(hni1) = v(d), so the

maximum exponenty, is given by = v(d) or

v=1- zm: [d/2"] . (3.6.5)

=1
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3.6.3 The Worst Case Minimum Distance

Using Fact 3.4.1, we can compute the minimum possible output weight, of a
GRA™ code. This worst case minimum distance is found by minimiZipg.; subject to the
constraints thak; 1 > [h;/2]| andh; > d. Itis easy to see that picking, as small as possible
allows us to pickh, as small as possible, and so on. Therefore, the weight path which minimizes
hm+1 1S given byh, = d andh;+1 = [h;/2]. One might notice from the previous section that
this weight path also maximizes the exponent of the IGE conjecture. Simplifying the expression

for h,,11 gives

i, = [d)2™] . (3.6.6)

3.6.4 Weight Enumerator Bound

In this section, we derive an upper bound on the cumulative WE of ‘& @Bich will
be used to prove the main theorem of the chapter, Theorem 3.6.4. The cumulative WE of a
CA"™ code can be written in terms of the WE of the outer TCC and the CIOWTR cdscaded
“accumulate” codes with

erl Z A PU(UTn<h

Forh < n/2™*! this can be upper bounded by using (3.3.5) and (3.4.6) to get

m—1 Lw/dJ m+1 ity |7w/2i-‘
A < E . .6.7
<h (n) < (1 2m+lh>m 1 Lw/d g ( n (3.6.7)

We note that the upper limi2™h, of the sum is due to the fact thﬂgmg)h =0 for w > 2™h.
For the next step, we need the boun” | [w/2'] > d(1 — 27™) [w/d], which is
easily verified by noticing that
Z w/2] >wd 27 =w(l-27")
=1 =1

andw > d |w/d]. Using this bound, we can write the cumulative WE as

_ w m cl_w/dJ
—(m+1) n/T + 1 /d) om+lp,
A < E
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wherec = d(1 — 27™). Now, we can change the index of summation freno : = |w/d| and
extend the upper limit of the sum to get

2m—1

—(m+1 S\ = (/T + 1) (2 “
A(gh )(n)§ — <l—l—g—|—...+gd 1)2(/| )gd .
(1 - —2m+1h> i=1 v

Evaluating the sum and applying the ident@,fu;lO g¥ = (¢*—1)/(g — 1), gives

2m71 gd -1
(1 _ _2m+1h)m‘1 g—1

n

Zgﬂ) (n) < (egdmm“h/n)cmw)/f _ 1) , (3.6.8)

for h < n/2m+1, Writing the logarithm of the cumulative WE as
mA% M m) < 0() + ggd(2m+1h/n)d(172‘m)7 (3.6.9)
for h < n/2™+1, makes it easy to see that the spectral shape is given by
rmHD(5: CA™) < %gd(zmﬂa)d(k?"”), (3.6.10)

forg < 1/2m+1,

3.6.5 The Main Theorem

Almost all of the pieces are now in place to consider the main theorem of the chapter.
Before continuing, however, with the statement of the main theorem, we state the following
lemma, which will be used in its proof.

Lemma 3.6.3. Consider the serial concatenation of a TCC, with free distafy@nd an “accu-
mulate” code. The probability that the resulting code has a codeword of minimum weight (i.e.,
h = [d/2]) is Py(n) = ©(n'~[%/21) wheren is the block length.

Proof. Proof of this lemma is given in Appendix 3D.3. O

The following theorem is the main theorem of the chapter and essentially extends the results of
[10][14] to CA™ codes.
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Theorem 3.6.4. Consider the average performance of a sequence d¢f €éde ensembles,
based on a particular outer TCC with minimum distante> 2, transmitted over a memo-
ryless channel with Bhattacharyya channel parameterThere exists a positive threshold
such that, for any < z*, the probability of word error under maximum likelihood decoding is
Py = ©(n"), wherev = 137", [d/2"]. Furthermore, if a non-catastrophic encoder is used
for the CC, then the probability of bit error iBg = ©(n"~1).

Proof. The proof can broken into four main parts. The first part uses (3.6.7) to verify that the
WE of a CA™ code satisfies Condition 3.2.7. This also includes finding the error decay rates,
which arePyy = O(n*) and Pz = O(n"~1). The second part uses the upper bound, (3.6.9), to
verify that the WE of a CA" code satisfies Condition 3.2.8. The third part uses Theorem 3.2.9
and Corollary 3.2.10 to establish the basic coding theorem. The final part uses Lemma 3.6.3 to
lower bound the probability of error and establish tRgt = Q(n”) andPg = Q(n"~1).

First, we choosd.,, = (Inn)? and verify that Condition 3.2.7 holds. To do this, we
consider an upper bound on cumulative WE, (3.6.7), for small output weightsk,,). In this

case, we can upper bound (3.6.7)3%h times the largest term to get

(m+1) 2 h (n/7 +1)lw/dl <2m+1h> Tt [w/2]

A <
<h (n) —= (1 B 2m+1h> 1-m dﬁrlilg%{mh Lw/dJ'

n

(3.6.11)

It should be clear that the exponentroin this expression plays the crucial role for langend
h=0 ((ln n)2). This exponent is the same as that given in the IGE conjecture with the help of
Lemma 3.6.2. For simplicity, we restate it as

m

v(w) = w/d] =Y [w/2'].

=1
For large enough, the maximum in (3.6.11) will be determined first by the set«# which
give the maximum exponent of. If this set has more than member, then the term which
also maximizes the exponent éfwill be chosen becausk = O ((lnn)2). So we apply
Lemma 3.6.2 to show that the maximum exponent.pfvhich we denote by, is given by
v = max,,>q ¥(w) = v(d). Now, we can consider all weight paths which achieve the maximum
exponent ofn, and find the path in this set with the maximum exponent.oOnce again, we
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apply Lemma 3.6.2 to show thafw) < v — 1 for all w > 4d. Itis easy to verify that the ex-
ponent ofk in (3.6.11) is given byl + > | [w/2"]. Since this value is non-decreasing with
we find that the maximum exponent/fs upper bounded by+ >~ | [4d/2ﬂ <1+4d+m.
This means that

Z(Sﬂ;:rl)(n) —0 (nyh4d+m+l> ’ (3.6.12)

for h = O ((Inn)?). We note that the second part of Lemma 3.6.2 does not hold for the case of
d = 2 andm = 1, and this case will be dealt with separately.

Now, ford > 3 orm > 2, we can upper bound the probability of error associated with
small output weights. Combining (3.2.1) and (3.6.12) allows us to upper bound the probability
of word error associated with small output weights by

Ly,
ZO (nuh4d+m+1> Zh — O(nu)’
h=1

for anyz < 1. We note that the sum can be evaluated by taking derivatives of the geometric sum
formula. This proves that the WE of any CAcode withd > 3 or m > 2 satisfies Condition
3.2.7 withL,, = (Inn)? and f(n) = n”. The probability of bit error can also be upper bounded
by revisiting the entire derivation of (3.6.7), and starting \Aﬁijﬁ) instead ofAﬁf). If the encoder
of the outer code is non-catastrophic, then we find that the result is scaled by a constant and the
exponent is reduced by one. Therefore, the bit error rate condition of Corollary 3.2.10 is satisfied
with g(n) = n¥~1.

Ford = 2 andm = 1, we can bound the probability of error more directly. The WE
bound, (3.5.4), can be simplified for the caselof 2 andh = O ((Inn)?), and it is easy to
verify that

AR (n) < O(1)ete™ /T,

Using this, the probability of word error, (3.2.1), can be upper bounded by

Ln
S0t T = 0(1),
h=1
as long asz < e=49°/7 It is worth noting that this is exactly the same threshold that will be

predicted by the bound of large output weights. This proves that the WE of afiyddde with
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d = 2 orm = 2 satisfies Condition 3.2.7 witlh,, = (Inn)? and f(n) = 1. As before, the
probability of bit error, (3.2.2), can be upper bounded by revisiting the derivation of (3.5.4) and
starting WithB,(f) instead ofAﬁlo). If the encoder of the outer code is non-catastrophic, then we
find that the the exponent is reduced by one. Therefore, the bit error rate condition of Corollary
3.2.10 is satisfied witg(n) = n~!. Since the exponent, is zero ford = 2 andm = 1, both of
these decay rates satisfy the theorem.

Next, we can verify that Condition 3.2.8 holds by first using (3.2.6) and (3.6.9) to show
that

Pt (5, CA™) = LI A () = Lgd(omity pyai-2m 4 o <1> .
n - T n

Combining this with the fact that,, = (Inn)? shows that the first part of Condition 3.2.8 holds

because: = o (%) Now, we can use (3.6.10) to verify thiatn; o+ (r™+1(5; CA™)/5)
< o0. Itis easy to verify that the limit is given by

_ rmED(5 cA™) 492 /7 ifd=2andm =1
lim < .
50t d 0 ifd>30rm>2

This proves that the WE of any CAcode withd > 2 satisfies Condition 3.2.8.

Now that we have established the validity of Conditions 3.2.7 and 3.2.8, we can apply
Theorem 3.2.9 and Corollary 3.2.10. Using only the union bound, rather than the tighter typical
set bound, corresponds to choosikg= 1 and makes the noise threshold equatig(1). Us-
ing the definition, (3.2.10), gives the same threshold in terms of the Bhattacharyya parameter,
namely that:* = e~<vz. Sincer(§) < oo andlims o+ (r™m*+1(5;CA™)/5) < oo, itis clear
thatcy p < oo and this proves that there exists a positive threshold such that, far any*, the
probability of word error under ML decoding 13y = ©(n”). The corollary extends this result
to the probability of bit error with a decay rate B = O(n"~1).

Finally, we consider a lower bound on the probability of error associated with small
output weights. Consider the weight path of the worst case minimum distance, which is given by
hiv1 = [d/2"] fori =0,... ,m. The probability of picking a code, from the ensemble, which

has a codeword of this distance is lower bounded by

m
P]V[(n) H Phi7hi+1 (n)7
=2
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where Py;(n) is the probability that there is a codeword of weigh{/2] after the first inter-
leaver. We note that this is a lower bound because it does not take into account the effect
of multiple codewords of minimum weight at each stage. Now, we can combine the fact that
Phi hiyy(n) = ©(n~1"/21) with the result of Lemma 3.6.3 (i.eRy = Q(n'~[%/21)) to show

that the probability of picking a code with worst case minimum distance is

Q (nlfzzll (d/ﬂ) =Q(n").

Since the probability of word error is a constant for codewords of fixed output weight, this means
that the probability of word error iQ(n"). Furthermore, the number of bit errors generated by
such a word error is a constant, so the probability of bit errex(is”~!). Combining these lower
bounds with the previously discussed upper bounds completes the proéfithat©(n”) and

Pp = ©(n"71). O

3.6.6 The Exact Spectral Shape

Let »(+1)(z) be the spectral shape of the WE after itte“accumulate” encoder. It
turns out that we can comput€ 1) (z) exactly by noting that (3.6.1) can be upper and lower
bounded with

max A HPh hia(n) < Agﬁﬁ)(n) <n™ max A HPh i (0

17'7771 17'7771

Using these bounds, it is easy to verify that the asymptotic spectral shape is given by

(m+1) -CA™) —
r (xm-i-l? ) ml{r}ax [ + Zp Tiy Tit1 ] )
wherep(x, y) is given by (3.4.4). This can also be computed using the incremental form,
(+1) (. CA™) — (@) (. .
P (@0 CA™) = max [r0(e) + plai, i) (3.6.13)

The functional form of (3.6.13) makes it quite amenable to analysis. It turns out
that (3.6.13) is simply a linear transform in the max-plus semiring [5]. We start by show-
ing that the functionH (x) + C, is a left eigenvector op(z,y), which essentially means that
maxo<z<1 [H(z) + C + p(z,y)] = H(y) + C. Using (3.4.4) to expand th&z, y) on the LHS
of this expression gives

Jnax [H(x) + C + p(a,y)] = max, [0 +yH <2y> +(1-yH (ﬁ)] .
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It is easy to verify thatr = 2y(1 — y) maximizes the RHS, and that the maximum is given

by H(y) + C. This is really not that surprising, however, because this analysis is quite similar
to the Markov chain approach taken in [23] and gives the same result. On the other hand, we
believe that a more detailed analysis of this operation may also allow one to bound the rate of

convergence. In fact, we make the following conjecture.

Conjecture 3.6.5. Let (1) (z; CA™) be the spectral shape of any CAode of rateR, and
let 7(>)(z; CA™) be the stationary spectral shape as goes to infinity. We conjecture that
(%) (2;CA™) = [H(z) + 1 — R]", where[z]" = x for z > 0 and zero otherwise, and that
D) (1, CA™) — () (g CAm)‘ =0 (i> .

m
Remark 3.6.6.1t is worth noting that the floor of the spectral shape at zero is basically due
to the fact thatp(0,y) = 0. This means that inputs of small output weight are mapped by
the accumulate code to outputs of arbitrary weight with a probability that does not decay ex-
ponentially in the block length. This essentially sets up the lower botitd) (y; CA™) >
r+1(0; CA™) 4 p(0,y) = 0. Also, this result implicitly assumes that grows independently

of the block length because of the order in which limits are taken.

3.6.7 The Typical Minimum Distance

Now, we prove that the typical minimum distance of GRAodes grows linearly with
the block length form > 2. We do this by first proving this result fen. = 2, and then showing
that it must also hold for any finites > 2. The basic method involves bounding the cumulative

WE of the code and then using the fact that
Pr(dmzn < h) < Zgh'

First, we simplify the WE for CA codes. Starting with (3.5.4), we can drop-thend

separate the exponential to get

_ 1 ~4-1 1 ~4-1
e e

Sincey = g/46(1 — §) < g andg > 1, we can simplify the constant using the fact that

d d
ed" < gled”.

d d
'y—levd<g—1
v—1 —g-—1



75

Ford > 2, we can also bound thg/n /7 term in the exponential using
vin/r = g% (46(1 — 6) Y2 n/7 < g% (46(1 — 6)) n/7 < 49h/T.
Combining these bounds together gives

d_g¢
—CA g7 e’ aginr
A < =Y . .6.14
The remainder of the derivation must be handled separately for codeg withand codes with
d>3.

Convolutional Accumulate-2 Codes withd = 2

Now, we derive an upper bound on the cumulative WE of @ades withd = 2 by
combining (3.6.14) and (3.4.5) to get

o

—CA? 2 g? L agwyr fw/2]

A < g%ef gPw/T(y .
<n (n) <g'e wz:ll_w/ne (4h/n)

Using the factthat /(1 — w/n) < 1/(1 — 2h/n) for 1 < w < 2h, we can rewrite this sum with
w = 2i to get

—CA? 2 " 2 ;

A2y (n) < (797 +1)> " T (4h /) (3.6.15)

=1

for h < n/2. Upper bounding this sum by the infinite sum and letting Jn gives

oA 292€g2 (456892/7-)

<
A<on(n) < 1—201 —45e89°/7’

foro <1/ <4e892/7). Now, we point out that for any > 0 there exists & > 0 such that

— 2
Agﬁn(n) < e. Therefore, almost all of the codes in the ensemble will have a minimum distance
growing linearly with the block length. Since the geometric sum in (3.6.15) also grows expo-

nentially inn for 6 > 1/ (46892/T>, one might conjecture that the minimum distance is almost

always equal td / (4e892/ T). Numerical evidence suggests otherwise, however.

L 2
Remark 3.6.7 Let §* be the smallest such thatAg?n(n) grows exponentially im. Numerical

evidence suggests thiat,, Zg@i(n) = f(9) is a well-defined function af for 0 < 6 < §*.
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This function can be used as an upper bound on the cumulative distribution function of minimum
distance ratio for the code ensemble. Simple analytical arguments shof(dhatarts atf (0) =

0 and is strictly increasing towardg(6*) = oc. Finally, the largest minimum distance ratio
provable via the average WE is given by thevhich solvesf(§) = 1. Unfortunately, while the
numerical methods of Section 3.8 may be used to estidiatere are not aware of any simple
method for computing (9).

Convolutional Accumulate-2 Codes withd > 3

Ford > 3, we can boundqg,i(n) differently for small and large output weights. Using

(3.6.12) for small output weights and (3.6.14) for large output weights gives

—cA O (n=14/21p4d+3)  p < (Inn)?
Agh(n) S gdegd 4 dh/ . .
me? T otherwise

Now, we can upper bound the cumulative WE of C#odes withd > 3 by combining this with
(3.4.5) to get

(Inn)? o g
_CA2 _ w d e g w/T w
A < Y o(n1 W/?Ww4d+3) (4h/n)[/2) 4 gles” 3 l_w/n(4h/n)f /21,
w=1 w=(Inn)2

It is easy to verify that the first sum @ (n'~1%/21), for h/n < 1/4, by taking derivatives of
the geometric sum formula. The second sum can be rewrittemwith2i by using the fact that
1/(1 —w/n) <1/(1 —2h/n)for1 < w < 2h. This gives

h
—CA? _ 2ges” 3 4i/r i
A<h (TL) < O (nl (d/ﬂ) + m 689 / (4h/n) .
i=(Inn)2/2

Upper bounding this sum by the infinite sum and letting: én gives

)(11171)2/2

a (46eB9"/7
—CA? =21\ , 29 (
<
A<on(n) = O (n ) + 1—26 1—46e89%/7

Since this expression © (n!~1%/21) for § < 1/ (4e892/7>, almost all of the codes in the

ensemble will have a minimum distance rati01¢f<46892/7> or larger.

Remark 3.6.8 Again, we leté* be the smallest such that the true_ﬂlg;jl(n) grows exponen-

tially in n. In this case, we conjecture that almost all codes in the ensemble have a minimum
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distance ratio ob*. Assuming this is true, we can calculate the minimum distance ratio using
the numerical methods of Section 3.8.

Convolutional Accumulate-m Codes

Suppose we serially concatenate any code, whose minimum distance grows,like
with an interleaved “accumulate” code. Using Fact 3.4.1, it is clear that that the minimum
distance of the new code is greater than2. This means that if the minimum distance(ién)
for anymg then it isQ(n) for any finitem > my. This concludes the proof that the minimum
distance of any CR& code, withm > 2 (andm < oo), grows linearly with the block length.
Although the minimum distance growth rate guaranteed by this argument decreases thith
does not imply that the actual growth rate decreases:witin fact, analytical evidence strongly
suggests the growth rate increases monotonically to the limit implied by the Gilbert-Varshamov
bound.

3.7 lterative Decoding of CA"” Codes

3.7.1 Decoding Graphs

The iterative decoding of CA codes is based on a message passing decoder which op-
erates on a graph representing the code constraints. This approach was introduced by Gallager in
[12], and then generalized by Tanner in [28] and Wiberg in [32]. We refer to the resulting graph-
ical representation of code constraints as a Gallager-Tanner-Wiberg (GTW) graph. The GTW
graph of a code is not unique, however, and different graphs representing the same constraints
may have very different decoding performances.

Belief propagation (BP) is a general algorithm for distributing information on a graph
representing local constraints. Most message passing decoders described in the literature im-
plement some form of BP on a code’s GTW graph [20]. If the graph has no cycles, then BP is
equivalent to the optimal soft output decoding, knowragmosterioriprobability (APP) decod-
ing. This is sometimes cited as the reason why these decoders work quite well if the GTW graph
does not have too many short cycles.

The GTW graph of the rate-1 “accumulate” code is shown in Figure 3.7.1. The nodes

drawn as circles represent equality constraints (e.g., all edges attached to these nodes represent
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E; E; E; E; E; E; E; Input Bit Nodes
State/Output Bit Nodes
Figure 3.7.1: A GTW graph for the rate-1 “accumulate” code.

the same bit), and the nodes drawn as squares represent parity constraints (e.g., all edges attached
to these nodes must sum to zero modulo-2). it . . , u,, be the input bits from left to right
and letz,,... ,z, be the output (state) sequence. We note that all addition between bits is
assumed to be modulo-2. The outputs of the “accumulate” code can be computed using the
recursive formulagz,;.1 = x; + u;, with the initial conditionzy = 0. This recursive formula
can also be seen in the structure of the graph. Assuming all of input bits are known, an encoder
can step from left to right on the graph computing the next output bit each time. The recursive
update equation can also be rewrittervas- z; + x;41 = 0, and the graph reflects this in that
each parity check involves an input bit and two adjacent output bits. It is also worth noting that
the output sequence is equal to the encoder state sequence.

A GTW graph for general CAcodes, shown in Figure 3.7.2, is the concatenation of
the outer code constraints with two “accumulate” GTW graphs mapped through permutations.
From an encoding point of view, the outer code generates the input bits at the top of the graph
and they are encoded by each “accumulate” GTW graph as they travel downward. When they
reach the bottom, they are transmitted through the channel. From a decoding point of view, the
channel starts the process with noisy estimates of the transmitted codeword at the bottom of the
graph. Belief propagation can then used to propagate messages through the graph until all of the

messages satisfy the constraints or some maximum iteration number is reached.

3.7.2 Message Passing Rules

The message passed along any edge in Figure 3.7.2 is the probability distribution of
the edge’s true value given the subgraph below that edge. If the true edge values are binary, then
the log-likelihood ratio (LLR) can be used to represent the distribution. Similar to the notion of
a probability, we define thé L R function of a binary random variable to be

Pr(X =1[Y)

LLR(X|Y) = log X =0T’



79

The message passing decoder propagates LLRs around the graph by assuming that all input
messages arriving at a constraint are independent. Using the input messages from all but one
edge, the constraint can be combined with Bayes’ rule to calculate an output message for the
edge left out. This rule is used to calculate all of the output messages for that constraint node,
and generally all of these messages will be different.

Consider an equality constraint wijhedges. In this case, the true value of each edge
must be the same and we will hayeLLRs for a single random bit. It is clear that the true
bit, which we refer to as{, must either be a one or a zero. The output passed to each edge is a
function only of the othelj — 1 edges, so computing the output message involves combjririg
independent LLR messages. e, ... , M; be the LLR input messages, and M, . .. ,Mj
be the output messages. This means fiat= LLR(X|My,... , M;—1,Mitq,...,M;), and
using the product rule for independent observations gives

= 0| M},)
logH SSTIA ZMk (3.7.1)

Consider a parity constraint withedges. In this case, the modulo-2 sum of true bits
must be zero. Let the true bits associated with edg&pe. . , X;. Itis clear that the modulo-2
sum of anyj — 1 of these bits must equal the bit which was left out. The same idea can be
applied to LLRs using a soft-XOR operation. Given two independent binary random variables,
A and B, we define their soft-XOR to b LR(A + B). Itis easy to verify that this function is
given by

LLR(A+ B) =2tanh™! <tanh (%) tanh <%(B)>> :

and this can be found in [26]. L&t1, ... , M; be the LLR input messages, and i, . .. ,Mj
be the output messages. If we lebe the modulo-2 sund,_, ; X;, then this means that

M; = LLR(Z|My,... ,M;_y, Miq,... , M;).

Writing M; in terms of the soft-XOR function gives

. M
M; = 2tanh™! Htanth . (3.7.2)
ki

Now, we consider the constraints imposed by the outer code. If the outer code is a

repeat or single parity check code, then these constraints are easily represented using the equality
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Outer Code Constraints

U Permutation el

< Permutation il

Messages from the Channel

Figure 3.7.2: A Tanner graph for an arbitrary €ode.

and parity constraints discussed above. If the outer code is a more general TCC, then the GTW
graph for the code will include state variables and belief propagation is very similar to the BCJR
algorithm [2]. We refer to soft-output variations of the BCJR algorithm as APP algorithms. A
thorough discussion of this can be found in [20].

3.7.3 Message Passing Schedule

The message passing schedule is the order in which the messages are updated on the
graph. While there are almost an unlimited number of message passing schedules, there are two
in particular worth mentioning. We will refer to them as as turbo style decoding and LDPC style
decoding.

In turbo style decoding, each horizontal slice of the GTW graph, shown in 3.7.2, is
treated as an independent APP algorithm. So starting at the bottom with subgraph representing
the “accumulate” code, messages are passed left and right until the APPs are computed for that
slice. Since this subgraph is cycle free, the message passing algorithm computes the exact APPs.
Next, the output messages are passed upwards to the next stage, where another APP decoding is
done. Finally, the process reaches the outer code at the top and reverses itself by stepping back
down the graph. This is identical to the standard turbo decoding of serially concatenated turbo
codes.

In LDPC style decoding, the messages for all edges are computed at the same time.
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This implicitly results in a two step process where bit nodes first pass messages to the check
nodes, and then the check nodes pass messages back to the bits nodes. There appears to be no
significant performance difference between these two message passing schedules if a large num-
ber of iterations are performed. Also, while the LDPC style decoder requires more operations
per iteration, all of these operations can be done in parallel.

3.7.4 Density Evolution

Density evolution (DE) is a very useful technique that can be used to analyze the ex-
pected performance of a message passing decoder. The basic idea is that, by assuming that
all messages arriving at a constraint node are independent, one can easily track the probability
density functions of the LLR messages being passed around the graph. The independence as-
sumption is theoretically justified for large sparse graphs and small iteration numbers. This type
of analysis was first performed by Gallager for LDPC codes [12], and later generalized (and put
on firm theoretical ground) by Richardson and Urbanke [26].

Since LLRs are simply summed up at equality constraint nodes, the density of the
output message is simply the convolution of the density of the input messages. So, if the input
messages are all drawn i.i.d. from a LLR density function, then the output messages will also be
i.i.d. but with a different distribution. LeP(x) be the density function ok andQ(y) be the
density function oft’, then we write the density function & = X + Y as(P ® Q)(z). The
effect of the parity constraint on message densities is much more complicated, so we write the

Z = 2tanh™! (tanh (%) tanh (g))

as(P @ Q)(z). Itis easy to verify that both of these operators are commutative, associative, and

density function of

distributive over the addition of densities. Furthermore, the identity &f the delta function at
zero,Ay, and the identity ofp is the delta function at infinityA ..

Now, we consider a general CA code and focus on the message density on the edges
out of the equality constraint for the “accumulate” code. Let the message density of these edges
after [ decoding iterations bé&;, where I is the initial LLR density of the channel. Let the
output of the APP decoder for the outer code have LLR derfgify) when the inputs have LLR
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density@. Tracking one cycle of thé’ message around the graph gives the density evolution,
Py=(f(ReP)aP)e P. (3.7.3)

For a memoryless symmetric channel, with parameteve define the DE threshold,p z, to be

the largesty such thafim; .., P, = A (i.e., the fraction of incorrect messages goes to zero).
Numerical methods can be used to show tHats approaching)., as! increases, but actual
convergence requires also that, be a stable fixed point of the iteration. This is known as the
stability condition, and can be understood by examining the iteration Wwhen(1—e) Ay, +€Q

for smalle and anyQ).

We start by expanding the density update function of the outer code with
F((1=6Ax +€Q) = (1 — ke) Ao + keQ + O(€). (3.7.4)

We can compute the coefficient, by analyzing the APP decoder. For any bit in the outer code,
consider all of the codewords which have a one in that position. Ignoring the chosen bit, the
probability of more than one bit in the remaining bits of the codeword receiviggressage is

O(€?). If exactly one other bit in the codeword receive@ anessage and the rest receive the
message, then we can compute the output of the APP decoder exactly. For code bits which do
not support a weight-2 codeword, this output will alwaysthg because the perfect knowledge

of the other bits corrects the error. For code bits which support weight-2 codewords, the output
will receive messages from th@ density. Since each weight-2 codeword involving the output

bit will contribute onec(), the average output will bee) wherex is the average number of bits
involved in weight-2 codewords per input bit. This means that

2
k= lim —A(QO)(n), (3.7.5)

n—oo n
whereAgo) is the number of weight-2 codewords in the outer code.
Proposition 3.7.1. Consider a CA code whose outer code has the M\é@(n), and letz(«) be

the Bhattacharyya parameter of a memoryless symmetric channel with parameldre DE

threshold is upper bounded by the stability condition, which states that

1
< Mt <
aDE_sup{ae |z(a)_2’€+1},

wherex is given by (3.7.5).
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Proof. We start by expanding (3.7.3) abalit= (1 — €) A + €@ for smalle, and this gives
P = (f((1 —26)Ax +26Q + O(6%)) ® (1 — €) A + €Q)) ® Py.
Using (3.7.4), we can simplify this to
Pii=(1—2r+1)e) A + (26 + 1)eQ ® Py + O(€?).

If we considerP,,, for largen, we can apply a large deviation principle to the repeated convo-
lution to show that the contribution @j to P,,, is essentially given by

(26 +1)"z(a)"e@,

wherez(«) is the Bhattacharyya parameter of the channel [26]. Clearly this will tend to zero if
and only ifz(a) < 1/(2k 4 1). O

Example 3.7.2. For parity accumulate codes, the APP decoder for the outer code is given simply
by a parity check node. So the decoding graph is equivalent to a particular LDPC code and the
stability condition can be derived without considering general outer codes. Assuming a rate
(k —1)/k code is used on the AWGN channel, we have

/et oL
—2k—-1

which implies thatt, /Ny > 7% log(2k — 1). Using Proposition 3.7.1, we find that the number
of weight-2 codewords in the outer code is given/bg)ol) (n) = (n/k)(k)(k —1)/2. This makes
k = k — 1 and gives exactly the same condition.

The generalization of (3.7.3) to CAcodes is straightforward and the details are left to the
reader. We do note, however, that CAodes are unconditionally stabledf> 3 orm > 2.

If d = 2 andm = 1, the stability of iterative decoding depends on the channel parameter and
therefore may determine the DE threshold. For example, the true DE threshold of all PA codes
is determined by the stability condition. Furthermore, the DE threshold computed via stability
condition for PA codes is actually identical to the ML decoding threshold.

For LDPC codes, Richardson and Urbanke also proved a concentration theorem which
shows that, for albe > ap g, the true probability of bit error probability can be made arbitrarily
small by increasing the block length and the number of iterations [26]. We believe this result can
be extended to a very general class of sparse graph codes which inclutfeso@és. The DE

thresholds of various CA codes have been computed and are given in Table 3.1.
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Figure 3.8.1: Typical set decodirfg, /N, thresholds for RA" and PA™ codes in AWGN.

3.8 Numerical Methods for the Spectral Shape

In this section, we outline our numerical method for computing exponentially tight
bounds on the spectral shape of'C&odes. These bounds can be used to compute very good
bounds on the noise threshold and minimum distance ratio. These noise thresholds are based on
the typical set decoding bounds described in [1] and [16], which can be applied to any binary-
input symmetric channel. The minimum distance ratio bounds are based on finding the smallest

output weight such that the WE is growing exponentially.

3.8.1 The Quantized Spectral Shape

Our numerical method for computing the spectral shape of*@Ade is based on
quantizing the normalized output weight to the gbid\, 2A,... , NA whereA = 1/N. Let
7 (jA; CA™) be an estimate of®) (jA; CA™) based on this quantization. We use the recursive
update,

(D) (L A CATY L(i41) (AL AT ,
7 (kA; CA™) Ogaéer (JA;CA™) + p(JA, kA),
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Figure 3.8.2: The spectral shape of a (2,1) single parity code and the associdteddr#s with
m=1,2,3.

which is based on (3.6.13) and (3.4.4). The only difficulty lies in estimaiifiyjA; TCC)
from the parametric representationnﬁf)(é;TCC) given by (3.3.7). We do this by calculating
r(0(x); TCC) and d(z) on an z-grid and then interpolatingr(é(x); TCC) onto the
0,A,2A,... ,NA grid. One problem with this method is that a uniforrrgrid may require
a very large number of points for reliable estimatiorr@?(&; TCC). We have had more success
using a non-uniforme-grid, wherex = /y andy is uniform on|0, 1].

In general, we have observed that the spectral shape of’ac@ée is continuous and
smooth whenever it is positive. Under this assumption, we believe that the error due to quanti-
zation, |[r(F1) (jA; CA™) — #HD (i A; CA™) |, will be O(1/N). The results of this method are
shown in Figures 3.8.2 and 3.8.3 for two particular outer codesrand1, 2, and3.

3.8.2 Noise Thresholds

Consider a binary-input symmetric channel with a single parameteifhe typical
pairs decoding thresholdyr, is given by (3.2.12) of Theorem 3.2.9. It can be computed nu-
merically by finding thex-root of the equatiomaxg< <y 7™+ (jA; CA™) — K (jA, o) = 0.
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Figure 3.8.3: The spectral shape oflal + D] CC and the associated C/Acodes withm =
1,2,3.

Standard root finding methods such as bisection can be used to solve this problem. Since the
most time consuming part of this calculation is computiigjA, «), one can precompute this
quantity on arw-grid of sufficient accuracy, for eagh

We have also found that AWGN thresholds computed using 1000 typically do not
change by more thaih005 dB for N > 1000. Also, thresholds computed using this method for
m = 1 match other published results in all significant digits [16]. Finally, we note that the thresh-
olds of CA™ with d = 2 andm = 1 are usually determined Hym;_,+ 7®) (§; CA) /8 and will
not be correctly estimated using this method. In this case, thresholds can and should be calcu-
lated by analytically expanding® (§; TCC) abouts = 0 and computindimg_ o+ #(? (§; CA) /&
analytically.

This method was applied to RAand PA™ codes on the AWGN channel. THg,/N,
thresholds are shown in Figure 3.8.1 and listed in Table 3.1. In the tgbienotes the Shannon
limit and ~,,, denotes the typical set decoding threshold. The table also lists thresholds’for CA
whose outer codes are tl® 4) Hamming code and thig, 1 + D] CC.



87

3.8.3 Minimum Distance Ratio

In Section 3.6.7, it was shown that the minimum distance of &@Ade grows lin-
early with the block length fom > 2. Letd?*, be the smallest > 0 such that-("*+1) (§; CA™) >
0. Except for the case af = 2 andm = 2, we believe that the growth rate of the minimum
distance with block length will be at least,. The case ot/ = 2 andm = 2 is discussed
more thoroughly in Remark 3.6.7. Since we can use our numerical method to estjmatth
arbitrary accuracy, this provides a useful method for considering the minimum distance ratios of
CA™ codes. Furthermore, the minimum distance ratios computed using this method are quite
close to the empirical growth rates observed via the exact calculation of the average WE for finite

block lengths [23]. Thé}, value form = 2,3 is given in Table 3.1 for each code considered.

3.9 Concluding Remarks

In this chapter, we give a fairly complete analytical picture of the properties and per-
formance of CA® codes. While the iterative decoding of these codes cannot compete with that of
turbo codes or optimized LDPC codes [25], their ability to approach channel capacity under ML
decoding is quite astounding. Theoretically, these results offer some insight into the structure
of CA™ codes, and a number of new mathematical tools of more general use. From a practical
point of view, this work shows that the future of CAcodes depends on either improving their
performance with iterative decoding or, more ambitiously, finding new decoding methods which
approach the performance of ML decoding.
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C R v " V2 V3 by | 05 03 | a1 | a2 | a3

RA 1/8 | -1.207| -1.102| -1.206 | -1.207| .295| .291 | .295| 0.29 | 3.86 | 6.85
RA 1/7 | -1.150| -0.905| -1.149| -1.150| .281| .275 | .282| 0.19| 3.52| 6.41
RA 1/6 | -1.073| -0.742| -1.072| -1.073| .264 | .255 | .265| 0.11| 3.13| 5.9
RA 1/5 | -0.964| -0.494| -0.962 | -0.963| .243| .229 | .243| 0.06 | 2.69| 5.31
RA 1/4 | -0.794| -0.078| -0.790| -0.794 | .215| .192 | .215| 0.12| 2.20| 4.61
RA 1/3 | -0.495| 0.739 | -0.478| -0.495| .174| .133 | .174| 0.50| 1.65| 3.76
PA 1/2 0.187 | 3.419 | 0.327 | 0.188 | .110| .0287| .104 | 3.42| 1.23| 2.72
PA 2/3 1.059 | 3.828 | 1.224 | 1.062 | .061 | .0101| .054 | 3.83| 1.83| 2.86
PA 3/4 1.626 | 4.141 | 1.794 | 1.630 | .042| .0052| .035| 4.14 | 2.27| 3.12
PA 4/5 2.040 | 4.388 | 2.206 | 2.044 | .031| .0032| .031| 4.39| 2.62| 3.36
PA 5/6 2.362 | 4590 | 2.526 | 2.366 | .025| .0021| .019| 4.59| 2.89 | 3.57
PA 6/7 2.625 | 4.760 | 2.785 | 2.629 | .020| .0015| .016| 4.76 | 3.12 | 3.75
PA 718 2.845| 4906 | 3.001 | 2.849 | .017| .0011| .012| 4.91| 3.32| 3.90
PA | 8/9 3.033 | 5.034 | 3.187 | 3.037 | .015| .0009| .011| 5.03| 3.49| 4.04
PA | 9/10 | 3.198 | 5.148 | 3.349 | 3.202 | .013| .0007| .009 | 5.15| 3.63 | 4.16
PA | 10/11| 3.343 | 5.249 | 3.492 | 3.348 | .012| .0006| .008 | 5.25| 3.76 | 4.27
PA | 11/12| 3.474 | 5.341 | 3.620 | 3.478 | .010| .0005| .007 | 5.34 | 3.88 | 4.37
PA | 12/13| 3.591 | 5.425| 3.736 | 3.596 | .009 | .0004 | .006 | 5.43 | 3.99 | 4.46
PA | 13/14| 3.699 | 5.502 | 3.841 | 3.703 | .009 | .0004 | .006 | 5.50 | 4.08 | 4.55
PA | 14/15| 3.797 | 5,572 | 3.938 | 3.801 | .008 | .0003| .005| 5.57 | 4.17 | 4.63
PA | 15/16| 3.887 | 5.638 | 4.027 | 3.892 | .007 | .0003| .005| 5.64 | 4.26 | 4.70
PA | 16/17| 3.971 | 5.700 | 4.109 | 3.976 | .007 | .0002| .004 | 5.70 | 4.33 | 4.77
HA 4/8 0.187 | 0.690 | 0.191 | 0.187 | .110| .090 | .110| N/A | N/A | N/A
CA 1/2 0.187 | 0.909 | 0.199 | 0.187 | .110| .084 | .110| N/A | N/A | N/A

Table 3.1: Numerical results for various CAcodes. (C = outer code, R = code ratés Shan-
non limit, ~,,,= typical set decoding threshold with accumulates§;.,,= Gilbert-Varshamov
bound, §;,= normalized distance threshold with accumulates, and.,,,= density evolution
threshold withm accumulates)
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3A Binomial Coefficient Bounds

3A.1 The Product Bound

First, we consider the following well-known upper and lower bounds on the binomial
coefficient,

n\k n ne\k
— < < -
(k) = (k> = ( k) ' (3A.1)
Although these bounds are somewhat loose, their simplicity makes them surprisingly useful. The
proof of the lower bound is based on the fact that
ny nn-1)---(n—-k+1) (E)kkﬁl 1—i/n
k) k(k—1)---(1) - \k 1—i/k’

1=0

and that(1—:/n) > (1—1i/k). The proof of the upper bound is based on the trivial upper bound

n nk
< PR
(k) = %l

and a corollary of Stirling's formula that saysk! > [ In(z) de = In(kFe*).

3A.2 The Entropy Bound

Let the binary entropy function bl (z) = —z log, z — (1 — x) logy(1 — ), then we
have

Tl < (Z) < gnH(k/n), (3A.2)

for 0 < k < n. A simple information theoretic proof of this can be found in [6, p. 284]. The
more detailed analysis of MacWilliams and Sloane can be used to improve these to

1 nH(k/n) n 1 nH (/)
NN §<k>§¢2m<k/n><1_k/n>2 - (A3

3A.3 Sums of Binomial Coefficients

In this section, we consider bounds on the sum of binomial coefficients,

S(n, k) = zk: <Z> (3A.4)

=0
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In general, there is no closed form expression for this sum and it arises quite frequently.
The most straightforward bound simply uses a generating function bound (a.k.a. Cher-
nov bound). Starting with the binomial theorem, we have
1+a2)" = z”: <n>:1:2 > Zk: <n>xz,
=0 L =0 L

for any0 < x < 1. Lower boundingz? by z* and rearranging terms gives
S(n,k) < (14 z)"z~ "
for any0 < z < 1. Minimizing this bound over: gives the final result of
S(n, k) < 2 k/m), (3A.5)

for 0 < k£ < n. We can simplify (and weaken) the bound further by applying(1 — z) <
—x/1n2 to the entropy function. This results H(z) < —zlogz — (1 — z)(—z/1n2) and

dropping the-z2/1n 2 term results in the very simple bound

S(n, k) < (%)k (3A.6)

It turns out that even though (3A.5) is only valid for< k < n, the weakened version of this
bound allows it to hold fof) < k£ < 1.88n. This can be verified by solving for the largéssuch
that (3A.6) is greater than or equal28. Furthermore, it is easy to verify that this upper bound
is concave ink because the second derivative is negative:for 0.

Finally, we give the bound,

k n n k
> (1) = (3A.7)

=0

which distinguishes itself from the rest via thedenominator even though it is numerically very
similar to (3A.6). The proof of this bound is via induction, so we define
(n+ 1)F

ko
and begin by listing the base casgd,0) = 7(0,0) = 1 andS(n,1) = T'(n,1) = n + 1.
Next, we prove thaf'(n, k) > S(n, k) assuming thal’(n,k — 1) > S(n,k — 1). To do this,

we observe that

T(n,k) =

S(n,k) = S(n,k —1) + (Z)
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and

(n+1DFn—-k+1)

T(n,k)=T(n,k—1)+ o

SinceT'(n,k — 1) > S(n,k — 1) by assumption and

n+1)*'n—k+1) _nn—1)---(n—k+1) (n
Kl Kl _<k>

v

for 0 < k < n, itis clear thatT'(n,k) > S(n, k). It turns out that this version of this bound
actually holds fol0 < k < |1.72n|, sinceT'(n, |1.72n|) > 2™. This can be verified by plotting
logT'(n,|1.72n|) — nlog 2 for n > 1. Furthermore, this upper bound is concave: ibecause

the second derivative dbg T'(n, k) is given by

P (1) Tt 1) = -5
R R =ACETE

=1

which is negative fok > 0.

3B Convolutional Code Bounds

3B.1 Proof of Theorem 3.3.1

Proof of Theorem 3.3.1Following [18], this proof is based on breaking the output sequence into
non-overlapping segments, known as detours, which can be placed in the block independently
of each other. Adetouris defined to be any output sequence generated by a state sequence
which starts in the zero state, ends in the zero state, and does not otherwise visit the zero state.
Furthermore, all of the weight in an output sequence is contained in the detours. Consider any
output sequence consistingofietours. This output sequence can be uniquely specified by the

r detour starting positions and by theletour output sequences.

So we can count the total number of output sequences by counting the number of
ways of choosing the detour starting positions, the detour output sequences, and the number of
detours. The number of ways to choasdistinct detour starting positions from/ possible
starting positions is given by the binomial coefficiéﬁf). Let T,ET) be the number of ways to
chooser detour output sequences such that the total weight of all detotirsSsce each detour

produces an output weight of at leastthe number of detours is at mdst/d|. Therefore, the
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number of output sequences of wei@htAEf) (n), is upper bounded by

(0) & (r)
A (n) < > ( )T,f. (3B.1)

r
r=1
The transfer function7’(D), of a CC is a formal power series which enumerates all
detours by weight, and is given by

x
T(D) = Z T, D",
h=1

whereT}, is the number of distinct detours of weight Using basic combinatorics, the formal

power series which enumerates distindtiples of detours by total weight is given by

) = 1D
h=1

whereT,E’”) is the number of ways of independently choosindetours which have total weight
h.

Using these definitions, it is clear th&{(D) will be analytic in the neighborhood of
D = 0 and therefore have a Taylor series which converges foabalt Dg, where D, is the
radius of convergence. Since expansion will also be non-negativd ,and 0, it is also clear
that7'(D) is monotonic increasing for alD < Dy. So we can upper bouﬁlj&” using standard
asymptotic methods. Starting with

T(D)" =Y 1D = 1" D",
=1

we can rearrange terms to get
7" < [1(D)]" D" (3B.2)

Let D* be the unique real positive root of the equatibfiD) = 1 in the domaird < D < Dj.
Since (3B.2) holds for any < D < Dy, we chooseD = D* to get the final bound

(r) L\
T S(D*> : (3B.3)
Combining (3B.1) and (3B.3) gives the bound

w3 () (&)

t=1
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This bound is generally quite useful in the small output weight regime (&.gs, dn/(27)).
It does become quite weak for larger output weights, however. We note that the trivial bound,
Aﬁlo) (n) < 2"E, whereR is the rate of the CC, may improve the bound somewhat for large
output weights.

The bound onB}(ZO) (n) follows from combining our bound omﬁf) (n) with a bound
on input weight,w, for a given output weighth. Let p be the smallest number such that the
input weight,w, satisfiesw < ph for all codewords. Since every codeword can be represented
by a closed cycle in the state diagram of the encoder, the constam be computed by finding
the maximum value ofv/h over all cycles in the state diagram with > 0. If the encoder is
non-catastrophic, them < oo because there will be no cycles with= 0 andw > 0. We note
that findingp is a standard combinatorial optimization problem known as the minimum cycle
ratio problem [7]. Starting with (3.2.3), it is easy to verify that

- w4 < PPy
Substituting the WE bound foﬁ,(f) (n) completes the proof. O

3B.2 Proof of Corollary 3.3.2

Proof of Corollary 3.3.2.We start by using (3A.7) to upper bound the binomial sum in (3.3.1).
We define the result as
(n/7 + 1)/

D

whereg = 1/D*. Atfirst, it seems rather straightforward that

f(h7n) =

A ) < f(h,n), (3B.4)

because we have simply upper bounded the binomial sum. Unfortunately, the binomial sum
bound, (3A.7), is designed for cases where the second argument is less than the fifét., For
this corresponds to the condition thdt/d| < n/7. If d > 7, this means that (3B.4) holds for
the entire rangel, < h < n. If d < 7, we can show, with the aid of a few additional assumptions,
that (3B.4) also holds far < h < n.

We start by noting that (3B.4) actually holds for< h < h*, with h* = 1.72dn /T,
because (3A.7) holds fdr < 1.72n. Let R be rate of the CC, and recall that we always have
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the trivial upper boundﬁlgo) (n) < 2"E, So, if we can show that(h,n) > 2"% for h* < h < n,
then this implies that (3B.4) holds fdr < h < n. Indeed, we show thaf(h,n) > 2" for
h* < h < n by showing thatf(h*,n) > 2" and f(n,n) > 2"% and then using the concavity
of f(h,n) in h for fixed n.
First, we show thaff (h*,n) > 2"F follows from the assumption that/7g!-724/7 >
27, We begin by raising the LHS to theth power and noting that
(/1)
T(hjd+1) 7
becausé’(n,1.72n) > 2". Since the LHS is a decreasing function/of/d in this range (i.e.,

* > 2n/7'g1.72dn/7'

h*/d > n/T), we also have the bound

(n/T—l—l)Lh*/dJ < (n/T—l—l)h*/d B

Fm) = = an 2 Torja+ 0 ¢

Combining these bounds gives the desired resuft(af, n) > 27,
Assuming thatde/7)"/? (\/27m)_1/”g > 21 we show now thaf (n,n) > 2"%. We
begin by raising the first expression to thilh power and noting that

n/d n n/d de n/d
(’I?,/T—i-l) no (T) TL_(T) gn22nR'

9 = 9
Vamn ()" V()T Ve

n

Using the fact thal'(n + 1) < v/27n(n/e)”, we substitute terms to get

(n/T+ 1™ (/T + 1M
T(njd+1) Y = (ﬂ)n/d

de

Since the LHS is a decreasing functiorofd in this range (i.e.n/d > n/7), we also have the
bound
(n/7 + 1)ln/dl (n/7 4+ 1)™/d "
|n/d]! L(n/d+1)
Combining these bounds gives the desired resuft(efn) > 2", This completes the proof of
the WE bound.
Using the WE bound to upper bound the bit normalized \BE,)(n), gives

f(n7n) = gn >

@ Ph/T+ )W pnr b (nfr+ 1)/
B S Y T R i (g o Y

Forh > d > 2, we use the bound/ |h/d| < 2d, to obtain (3.3.4). This completes the
proof. O
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3B.3 Proof of Corollary 3.3.3

Proof of Corollary 3.3.3.We start by using (3A.6) to upper bound the binomial sum in (3.3.1).
Let f(h,n) be the resulting bound, which gives

Pl = (GLQ//;J ) Lh/d] n

whereg = 1/D*. Atfirst, it seems rather straightforward that

A n) < f(h,n), (3B.5)

because we have simply upper bounded the binomial sum. Unfortunately, the binomial sum
bound, (3A.6), is designed for cases where the second argument is less than the fifét., For

this corresponds to the condition thdt/d| < n/7. If d > 7, this means that (3B.5) holds for

the entire rangel, < h < n. If d < 7, we can show, with the aid of a few additional assumptions,
that (3B.5) also holds for < h < n.

We start by noting that (3B.4) actually holds for< h < h*, with h* = 1.88dn /T,
because (3A.6) holds fdr < 1.88n. Let R be rate of the CC, and recall that we always have
the trivial upper boundﬁlgo) (n) < 2"E, So, if we can show that(h,n) > 2"% for h* < h < n,
then this implies that (3B.4) holds fdr < h < n. Indeed, we show thaf(h,n) > 2"% for
h* < h < n by showing thatf(h*,n) > 2" and f(n,n) > 2"% and then using the concavity
of f(h,n) in h for fixed n.

First, we show thaf (h*,n) > 2"% follows from the assumption that/7g'-884/7 >
27, We begin by raising the LHS to theth power and noting that

R —

becausdne/(1.88n))"%*" > 2", Since the LHS is a decreasing function/sf/d in this range

(i.e.,h*/d > n/T), we also have the bound

o= () = () o

Combining these bounds gives the desired resuft(f, n) > 2n%.

Next, we show thaif (n,n) > 2" follows from the assumption thétle/7)"/¢ g >
27, We begin by raising the LHS to theth power and noting that

nexn/d [ d\"™? de\™?
(G = (5) e
T n T
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Since the LHS is a decreasing functioniofd in this range (i.e.n/d > n/7), we also have the

o () ()

Combining these bounds gives the desired resuft(af n) > 2”7,

bound

Finally, we can simplify the form of (h, n) by lettingh = i | h/d] +r and noting that

ne/T il ny\~— e —h/d PN/ T\T" T _
(Lh//dJ> ) (d_> = (1 ) ()" < ()

, . , . ne/r \ /4l
fori > 1 (i.e.,h > d). Using this to upper bounéth/do gives

o n\ Lh/d]
Aﬁz )(n) <C (E) gh,

whereC = (7)Y ? andg = () (%)l/d. This completes the proof of the WE bound.

Using the WE bound to upper bound the bit normalized \Bg,)(n), gives

o< 20 (2)" o= e ()"

and proves (3.3.6). O

3B.4 Proof of Theorem 3.3.6

Proof of Theorem 3.3.6After treating this problem as a generalization of Gallager's Chernov
bounding technique for LDPC codes [12, Egn. 2.12], a literature search turned up a very mathe-
matical and complete treatment by Miller [21]. We retain our proof of the upper bound since it
treats the problem from a coding perspective. For the lower bound and convexity, we refer the
reader to [21].

Let A(x,p) be the state transition matrix farsteps through the trellis be defined by
G(z). Itis well-known that trellis sections may be combined by multiplying state transition
matrices, and this gives

= > A(p)a”, (3B.6)
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where eachA,(p) is an M x M non-negative matrix. For any > 0, we can lower bound
(3B.6) by any single term in the sum with, (p)z" < >0 A;(p)z*. Solving for A, (p) and

rearranging terms gives the element-wise matrix inequality
An(p) <27 [G(a))". (3B.7)

One can construct a block code from a CC in a number of ways. Two common methods
which preserve the free distance of the code (as the minimum distance of the block code) are
trellis termination and trellis tail-biting. We denote the WEs of these two method&!B(p)
and A7 B(p) respectively, and point out that

M

AL = [Anp)y < AP =D T [AR®)); = Tr (An(p)) .- (3B.8)
=1

Let \;(x) beith eigenvalue of(z) in decreasing order by modulus (foe= 1, ... , M). Using

the well-known eigenvalue-sum formula for the trace, we can combine (3B.7) and (3B.8) to get

M
AP () < Tr (a7 [G@)) =27 Y (@)
=1
Now, we can upper bound the spectral shape with
1
C(5) < lim —In ALB(p).
r(0) = lim =2 n Asy (p)

This limit can be evaluated by writing

o M () \P
S e+ (155 ().

i=1 =2

and noting that the last term i§1) because\; (z) > \;(x) fori = 2,... , M. Using that fact
results in the upper bound,

1
r¢C(6) < =In Ay (z) —dlnz.
T

This upper bound is valid for any > 0 and can be minimized over. Setting the derivative

with 2 equal to zero and solving gives

~xN(x)
o) = 7')\1(3:)’

and concludes the proof of the upper bound. O
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3C “Accumulate” Code Bounds

3C.1 Lemma 3C.1 and Theorem 3C.2

Lemma 3C.1. Then term Riemann sum of a functiofi(x), on the intervala, b] is given by

b an 1
(a—l—z
n 0

) . (3C.1)

=
If f(x) is convex and non-decreasing on the interjeab], then the sequencgl, },,~, is also
non-decreasing. Furthermore, ff(x) is concave and non-increasing on the inter\alb], then

the sequencéR, }, -, is non-increasing

+ L4l — 1 we have

f<a—|—ib;a> < n;if<a+zb+1> + f<“+““>zri>'

Now, we can upper boun&,, with a linear combination of (a + zn—H) to get

b aniln—z b b—a
)+ 1 .
- Z - (a—i—z +1>+ f(a—i—(z—l— )n+1>

=0

Rearranging the terms in the sum gives

Rngly—_a[M+ n_—1f<a+ib—a> (3C.2)
n n — n n+1
Sincef(z) is non-decreasing, we can upper boyfitd) with
) < ) :
< Z f ( ) (3C.3)

Substituting the RHS of (3C.3) faf(a) in (3C.2) and rearranging terms gives

n—l—lzf( >:Rn+1'

This completes the proof fof(x) convex and non-decreasing.

If f(z) is concave and non-increasing on the intefwab], then— f(z) is convex and
non-decreasing on the same interval. In this case, the original proof can be used to show that

—R, < —R,+1. Therefore, the sequence is non-increasing. O
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Theorem 3C.2. Let a, b,i,j be integers obeying < i < aand0 < j < b. We have the
following inequality,

(()i(jg)) = (aiby (aib)j <ztj> <zj‘7>j

In the case ofi = 0 or b = 0, we use the convention thatt = 1 so that the expression remains

well-defined.

Proof. We start by expanding the binomial coefficients in terms of factorials and rearranging

terms to get

(a)i(b); (a+b)* < _@0i(h); (i +j)t
(@+0b)iv; a7 (i+G)iyy i

i

where the falling factorial is defined biy:); = a(a — 1)---(a — i + 1). Next, we define the
function

(a)i(b); (a+0b)*
(a + b)z-i—] a'b’

fl]( )

for real numbers:, b satisfyinga > i andb > j. It is easy to verify that the original inequality
is equivalent to the statemeyfif; (a,b) < f;;(4,7). Sincefi;(a,b) = f;i(b,a), we assume that
a > bi/j without loss of generality. We proceed by showing tfigfci, cj) is non-increasing
for ¢ > 1 and thatf;;(a, b) is non-increasing foe > bi/j. Since the logarithm preserves order,
we will actually consider the logarithm of the function,

i+j—1
h—
log fij(a,b) Zlog( > +Zlog< ) Z log <%> .
z=0

First, we show that the derivative fg f;;(ci, cj) with respect ta: is negative for all

¢ > 1. We start by noting that

5 il j—1 y itj—1 B
9 og fi(ci, cf) = Ny 3C.4
Cac og fij(ci, cj) ;)Ci—x+yzocj—y ;) ci+cj—z ( )

Now, we note that the first sum can be written as

i—1

S e =L
- ia
a—z c—x/z

=0
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whereR,, is given by (3C.1) withf(z) = z/(c — x), a = 0, andb = 1. In fact, each sum in
(3C.4) can be rewritten in this form to give

0
C% log fij(ci,cj) = iRi —|-jRj - (Z +j)Ri+j,

and rearranging terms gives

0 . . .
5. 108 fij(ciscj) = i(Ri — Ritj) + j(Rj — Riyj)-

Sinceg(z) is convex and increasing far € [0,1) andc > 1, Lemma 3C.1 shows thag,, is
non-decreasing. Therefore, the derivative is upper bounded by zerb@id(ci, cj) is non-
increasing for alk > 1.

Next, we show that the derivative dg f;;(a,b) with respect toa is negative for

a > bi/j. We start by noting that

i—1 it+j—1

0 x z
—log fij(a,b) =y ———— — .
da o8 fij(a;0) ;)a(a—:):) ;) (a+b)(a+b—=z)
Sincez/(a + b — z) is convex and increasing far € [0,a + b) andi < i + j, Lemma 3C.1
shows that
SRR TS L (R Z
— (a+b)latb—2) " i ‘Z(a+bla+b—=z(i+))/i) =l

with ¢ = (a 4+ b)i/(i + j). Incorporating this bound gives

i—1 i—1

0 x z
%lngij(a’b) = Za(a—x) _Zc(c—z)'

=0

The RHS of this expression will be non-positive as long:as ¢ (or equivalentlya > bi/5).
Therefore, we have shown tha f;;(a, b) is non-increasing fot > bi/j.
The conclusion of the theorem follows from the inequality,

fijla,b) < fij(bi/5,b) < fi;(3,7),

where the RHS holds becaugg(ci, cj) is non-increasing for > 1 and the LHS holds because

fij(a,b) is non-increasing foe > bi/j. This completes the proof. O
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3C.2 Proof of Corollary 3.4.2

Proof of Corollary 3.4.2.This inequality can be verified by hand for the case® 0t w = 0
andw > h = 0. Forw > 1 andh > 1, we start with (3.4.1) and note that
n—h h—1 n—h h [w/2]
Py n(n) = (Lw/zj)([w/zpl) _ (Lw/QJ)([w/Q])—h
h () () ’

w w

Applying Theorem 3C.2 to this the RHS gives

ro <SR 0) (G) (Em)

and the log-sum inequality can be used to show that

<U:)W>LW2J <R:)W>fwm§2w.

Sinceh > [w/2] wheneverP,, ;(n) > 0, dropping the/w/2] /h only weakens the bound. This

completes the proof. O

3C.3 Proof of Corollary 3.4.4

Proof of Corollary 3.4.4.This inequality can be verified by hand for the case® 0t w = 0
andw > h = 0. Forw > 1 andh = 1, the sum has no effect and we must simply verify that

1 /2]
ooy <2 (1)

n

This result is easily reproduced by combining (3.4.3) with the fact(that- 1)/n)!*/? < 1.
Forw > 1 andh > 2, we start by writing (3.4.1) as

(ﬁf/g 1) ((w};g]lfl)

L(nl)

L)-(02))=

Applying Theorem 3C.2 to this upper bound gives

b (m B R P g g e
‘“’h(”)—ﬁ(nﬂ) (n—1> (wm) ((Wﬂ—l) ’

Pw,h(n) =

because
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and the log-sum inequality can be used to show that
w— 1\ /2=t w—1 [w/2]—1 )
—_— —_— < 2%,
(Lw/%) (fw/ﬂ —1> -

n—h n-—1
<
n—1"7 n

Next, we note that

)

for h > 2. This means that the cumulative IOWTP can be upper bounded by

n n
i=1

h . [w/2]-1
Pw,fh(n) S Z E2w—1 <h 1) ’

for w > 1 andh > 2. Sincez* is strictly increasing withx, the sum can be upper bounded with

z

> (i1 sz</ aFdr <

1=1

Finally, we have
[w/2]
w1 (D
< - _
Poa < 2 (5)
which is easily reduced to (3.4.5) by noting that [w/2] < 2. O

3C.4 Proof of Corollary 3.4.5

Proof of Corollary 3.4.5.Combining the definition oP,E:”)Sh(n) with the standard formula for

serial concatenation through a random interleaver, we get

Pét?;h<n>: Z ZH

25 m lhm 1:=1

Using Fact 3.4.1, we can see that all non-zero terms mustiahey> [h; /2] fori=1,... ,m.
Furthermore, we can upper bound edgh ., , (n) with Py, <., (n) and drop the sum oveér,,

to get

2h3 2hi11 2hm Ahyey [hi/2]
GUNCESD SIRTED DRSS DN 1 () N
h

2=[h1/2] hi=[h;—1/2] hm—1=[hm—2/2] i=1
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Since all non-zero terms have,; > [h;/2] fori = 1,... ,m, we have the inductive upper
boundh; < 2m*!1=ip,. ., for non-zero terms. For simplicity, we apply the weaker bound,

h; <2m 1h,, 1 fori=2,...,m,toget

2h3 2h;41 2hum, m gm+1p, ) [hi/2]
P s Y o Y Y H( m+> |

h2="h1/2—| h¢=[hi,1/2—| hm_lz[hm_g/Q] =1

n
Each sum in this expression is essentially a geometric sum which can be upper bounded using
2hi11

Z 2m+1hm+1 [hi/2] <o (2m+1hm+1/n) [hi—1/2]
n - 1— 2m+1hm+1/’n ’

hi=[hi—1/2]

for h,,p1 < n/2™TL. We note that the troublesomé; /2] is handled by repeating each term
twice and therefore results in the factor of 2. Applying this bound tasthe 1 sums results in
the expression (3.4.6). O

3D Proof of CA™ Code Bounds

3D.1 WE Bounds for the IGE Conjecture

We use upper and lower bounds to evaluate the lifit,, . log,, P, 1(n), where
P, »(n) is defined by (3.4.1). Applying (3A.1) t&,, ,(n) gives the upper and lower bounds

<(L7Zu_/gJ)> " ((15751131) e [w/2] /21

()" ()"

Computing the limit oflog,, of these upper and lower bounds is simplified by noticing that alll

(n_h)e>tw/2J ( (h—1)e )fw/ﬂ—l

< Pyp(n) < (

terms not involvingn will vanish. Taking only these non-zero terms shows that the two bounds
are identical and equal to

lw/2] ( lim log, (n — h)) —w=—[w/2].

n—~oo

Now, consider the limitlim,, ., An(n), whereAy(n) is the WE of a TCC. Using the
upper bound, (3.3.1), we can upper bound the limibgf, with

Tim log,, Ax(n) < lim log, (% J) — h/d].
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If we assume thakb is an integer multiple ofl, then we can also lower bound the number of

codewords of weight in a TCC. We start by assuming that each codeword consists of exactly

|h/d| minimum distance detours. The number of ways to choose starting positions on these

()

because there are at leastr — h unused trellis steps. This gives a lower bound on the limit of

detours is greater than

log,, which is equal to the upper bound.

3D.2 Proof of Lemma 3.6.2

Proof of Lemma 3.6.2For any integef; > 0, it is clear that the functiom(hy, ... , hyy1) =
|hi/d| — S Thi/2] is maximized by minimizingha, ... , hy,. Lethy, ..., hyy be some

(but not any) weight path which maximizes the function. Since the maximization is performed
over the set of valid weight paths startingiat this means thdts, . .. , i, can be determined by

the constraints and thag, ; = Fu/ﬂ fori=1,...,m — 1. Using the fact thaf [z /2] /2] =
[2/4], this can be inductively reduced i = Fll/ﬂ' Therefore, rewritingv(hy, ... , Apmt1)

as a function ofy with h; 1 = [h;/2],fori=1,... ,m — 1, gives

v(hi) = h1/d] = > [h1/2']
=1

which is the maximum as a function bf.
Now, we consider the maximum of h;) for hy > 2. Suppose we start with; = id
(i.e., at some integer multiple @) and consider the sequenke = id,id + 1,... ,id +d — 1.
Each increase by one cannot increa$k; ) because the positive term is non-increasing while
the negative terms are non-decreasing. Now, we can try increasiby integer multiple of
d. In this case, the positive term increases by one while the negative sum contributes a change
of [id/2] — [(i + 1)d/2]|. Ford > 2 even, it is easy to verify thatid/2] — [(i + 1)d/2]| =
—d/2 < —1. Ford > 3 odd, itis also easy to verify thaid/2] — [(i + 1)d/2] < —1. Choosing
i = 1 as our starting point, this implies thath;) < v(d). This completes the proof that the
maximum ofv(hy) = v(d) for hy > 2. Itis also worth noting thaizmﬂ is not constrained by

this maximization because it does not appeat(ify, ... , hpi1).
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Now, we would like to show, forl > 3 or m > 2, thatv(4d) < v(d) — 1. This will
be useful for bounding the number of terms which achieve the maximum exporefit)ofVe
note that this does not hold far= 2 andm = 1, however, because k) achieves the maximum
of zero if h is even.

Form > 2, we show that(4d) < v(d) — 1 by writing

v(Ad) —v(d) = (4 — 1)+ [d/27] =) [4d/2"].
j=1 i=1

Cancelling the terms whetie= j + 2 gives

v(4d) — v(d) = 3 — 3d + i [d/2'] .

m—1
For anym > 2 andd > 2, it can be verified tha}_. | [d/2"] < d, and using this bound gives
the final result,
v(4d) —v(d) <3—-2d < —1.
Form = 1 andd > 3, we start by writing
v(4d) — v(d) = 4+ [d/2] — [4d/2] .

Next, we verify by hand that(4d) — v(d) < —1 for d = 3. Applying the boundy < [z] <

x + 1, gives
v(4d) —v(d) <4 —3d/2,

which proves that(4d) — v(d) < —1for d > 4. O

3D.3 Proof of Lemma 3.6.3

Proof of Lemma 3.6.3This proof is based on sequentially choosing the random interleaver and
counting the number of ways a minimum weight codeword may be produced during each choice.
We start by pointing out that all TCCs ha¥&(n) non-overlapping codewords of minimum
weight. For example, if we let be the output length of the shortest detour of minimum weight,
then there are at leasy/ .« non-overlapping codewords of minimum weight.

Now, consider all mappings af > 1 bits through an “accumulate” code which result

in the minimum output weight ok = [d/2]. Ford even, these mappings consist of breaking
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thed bits intod/2 pairs of bits and placing these pairs independently.daid, the same basic
process is used except that there is a leftover bit. This bit must be placed at the end of the block
for the minimum output weight to occur.

Now, consider the sequential process of choosing the random interleaver. We assume
that the process is applied t9/ ;. non-overlapping codewords of weigfit In theith step, we
choose thel bit positions, from the remaining unused positions, whereithecodeword of
weightd will be mapped. Consider the event that the placemeithistep supports a minimum
weight output given that no previous step has resulted in a minimum weight codeword. We de-
note this event a&’;;; and the overall probability that a minimum weight codeword is produced
by thesen /1. codewords is

n/pu—1

Py(n)=1- J] a-Pr(E)). (3D.1)
1=0

We can lower bound the probabilitlyr( E;) by counting the number of possible way
it may occur. Afteri steps, exactlyli bits have been placed and so there are exactly

<n - di>

d
ways to place the next bits. Since a minimum weight output is only generated by breaking the
input into pairs, we can lower bound the number of ways this may occur as well. Initially, there
are exactlyn — 1 ways to place a pair of bits adjacent to each other. Afsteps, there are still at
leastn — 2di — 1 ways to do this because each bit placed eliminates at most two possible pairs.
The number of ways to place tthé/2] pairs can be computed in the same manner as a binomial
coefficient, with the exception that each placed pair eliminates at most three of the total possible

pairs. There aréd/2]! orders that the pairs may be placed in as well, so the number of ways to
place|d/2| adjacent pairs is greater than

L= o — 3% — 1)
Ld/2]!

Since the last bit position is special, we only allow the leftover bit to be placed in this

position if there is still a chance that a minimum weight codeword may be created. This only
reduces the number of ways a minimum distance output may be created and maintains the lower

bound. The-1 in the last expression reflects this change and makes it valid foroaks well,
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since there is only one way to place the leftover bit in the last position. This gives the lower
bound,

Pr(E) > L= 9di — 3F — 2)

Now, we can simplify this expression by weakening the bound to

(n—2di =3 |df2] + )42 _ (1/2)142

PT(E’L) > nd = n(d/ﬂ ) (3D2)
for i < n/4d + 2. Combining (3D.1) and (3D.2) gives the lower bound
min[n/4d,n/u] 1d/2)
Py(n)=1- [ (1 — %) = Q(nt=[42]),
=0 "
]
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