
Chapter 4

The Capacity of Finite State Channels

4.1 Introduction

Determining the achievable rates at which information can be reliably transmitted

across noisy channels has been one of the central pursuits in information theory since Shannon

invented the subject in 1948. In this chapter, we consider these rates for the class of channels

known as finite state channels (FSC). A FSC is a discrete-time channel where the distribution

of the channel output depends on both the channel input and the underlying channel state. This

allows the channel output to depend implicitly on previous inputs and outputs via the channel

state.

In practice, there are three types of channel variation which FSCs are typically used

to model. Aflat fading channel is a time-varying channel whose state is independent of the

channel inputs. Anintersymbol-interference(ISI) channel is a time-varying channel whose state

is a deterministic function of the previous channel inputs. Channels which exhibit both fading

and ISI can also modeled, and their state is a stochastic function of the previous channel inputs.

A number of other authors have dealt with FSCs in the past, and we review some of

their important contributions. Since it is easy to construct degenerate FSCs, most of these results

are limited to a particular set of well behaved FSCs. A FSC in this particular set is referred to as

an indecomposable FSC (IFSC). Blackwell, Breiman, and Thomasian introduced IFSCs in [7]

and proved the natural analogue of the channel coding theorem for them. Birch discusses the

achievable information rates of IFSCs in [5], and computes bounds for a few simple examples.

In [14, p.100], Gallager gives an elegant derivation of the coding theorem and provides a method
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to explicitly compute the capacity when the receiver has perfect channel state information. This

method cannot be applied, however, when the receiver only has imperfect state estimates com-

puted from the previous channel outputs. Hirt considers linear filter channels with additive white

Gaussian noise (AWGN) and equiprobable binary inputs in [16], and develops a Monte Carlo

method for estimating achievable rates. In [15], Goldsmith and Varaiya take a different approach

and provide an explicit method of estimating the capacity of flat fading IFSCs (i.e., where the

state sequence is independent of the transmitted sequence). In this chapter, we provide a simple

Monte Carlo method of estimating the achievable information rates of any IFSC and we focus

on the problem of estimating the capacity of IFSCs with ISI (i.e., where the state sequence is a

deterministic function of the transmitted sequence).

It is worth noting that this method, reported in [24], was discovered independently by

Arnold and Loeliger in [1] and by Sharma and Singh1. It is quite surprising, in fact, that this

method was not proposed earlier. It is simply an efficient application of the famous Shannon-

McMillan-Breiman theorem. Nonetheless, [1], [27]1, and [24] represent the first publications

where the achievable information rates of a general IFSC are computed to 3 or 4 digits of ac-

curacy. Furthermore, these advances stimulated new interest in the subject which led Kavčić to

formulate a very elegant generalization of the Arimoto-Blahut algorithm for finite state channels

in [19].

The achievable information rate of an IFSC, for a given input process, is equal to the

mutual information rate between the stochastic input process and the stochastic output process.

This mutual information rate,I(X ;Y), is given by

I(X ;Y)=H(X )+H(Y)−H(X ,Y), (4.1.1)

whereH(X ), H(Y), andH(X ,Y) are the respective entropy rates of the input process, the

output process, and the joint input-output process. The symmetric information rate (SIR) of an

IFSC is the maximum rate achievable by an input process which chooses each input indepen-

dently and equiprobably from the source alphabet. The capacity of an IFSC is the largest rate

achievable by any input process.

Our simple Monte Carlo method is based on estimating each of the entropy rates in

(4.1.1). These entropy rates are estimated by simulating a long realization of the process and
1While the Monte Carlo method is introduced correctly in [27], it appears that most of the other results in their

paper, based on regenerative theory, are actually incorrect. A correct analytical treatment can be found in Section
4.4.4.
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Channel Transfer Function Normalized Response

Dicode (1 −D) [1 -1]/
√

2

EPR4 (1 −D)(1 +D)2 [1 1 -1 -1]/2

E2PR4 (1 −D)(1 +D)3 [1 2 0 -2 -1]/
√

10

Table 4.1: The transfer function and normalized response of a few partial response targets.

computing its probability using the forward recursion of the well known BCJR algorithm [2].

The fact that this probability can be used to estimate the entropy rate is a consequence of

the Shannon-McMillan-Breiman theorem [10, p. 474]. Furthermore, this approach is general

enough to allow the mutual information rate to be maximized over Markov input distributions of

increasing length, and thus can be used to estimate a sequence of non-decreasing lower bounds

on capacity.

This chapter is organized as follows. In Section 4.2, we introduce a few example

finite state channels which are discussed throughout the chapter. Mathematical definitions and

notation for the chapter are introduced in Section 4.3. In Section 4.4, we address the problem

of estimating entropy rates. In particular, this section discusses our simple Monte Carlo method,

a general analytical method, and an interesting connection with Lyapunov exponents. Section

4.5 uses the results of the previous section to discuss upper and lower bounds on the capacity of

finite state channels. In Section 4.6, we give the numerical results of applying the Monte Carlo

method to the example channels. Exact information rates are derived for the dicode erasure

channel in Section 4.7. A pseudo-analytical method of estimating information rates based on

density evolution, which is quite efficient for two state channels, is also described. Finally, in

Section 4.8, we provide some concluding remarks.
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4.2 Channel Models

4.2.1 Discrete-Time Linear Filter Channels with AWGN

A very common subset of IFSCs is the set of discrete-time linear filter channels with

additive white Gaussian noise (AWGN), which are described by

yk =
ν∑

i=0

hixk−i + nk, (4.2.1)

whereν is the channel memory,{xk} is the channel input (taken from a discrete alphabet),{yk}
is the channel output, and{nk} is i.i.d. zero mean Gaussian noise with varianceσ2. Bounds on

the capacity and SIR of this channel have been considered by many authors. In particular, we

note the analytical results of Shamaiet al. in [26] and the original Monte Carlo results of Hirt in

[16]. Some examples of these channels are listed in Table 4.1, and were chosen from the class of

of binary-input channels which are used to model equalized magnetic recording channels. The

state diagram for the noiseless dicode channel (i.e., before the AWGN) is shown in Figure 4.2.1.

A formal mathematical definition of these channels is given in Appendix 4A.1.

Computing the achievable information rates of these channels can also be simplified

by writing the mutual information rate (4.1.1) as

I(X ;Y) = H(Y) −H(Y|X ).

This is because the second term is simply the entropy of the Gaussian noise sequence,{nk},

which can be written in closed form [10, p. 225] as

H(Y|X ) =
1
2

log(2πeσ2).

Therefore, estimating the SIR of these channels reduces to estimatingH(Y), and estimating the

capacity of this channel reduces to estimating the supremum ofH(Y) over all input processes.

4.2.2 The Dicode Erasure Channel

Since it is difficult, if not impossible, to derive a closed form expression for the entropy

rate of the dicode channel with AWGN, we also consider the somewhat artificial dicode erasure

channel (DEC). This is a simple channel based on the1 −D linear ISI channel whose noiseless

state diagram is shown in Figure 4.2.1. The DEC corresponds to taking the output of the dicode
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Figure 4.2.1: The state transition diagram of the dicode channel.

channel, (+1, 0,−1), and either erasing it with probabilityε or transmitting it perfectly with

probability 1 − ε. The state diagram for the noiseless dicode channel is shown in Figure 4.2.1.

A formal mathematical definition of the DEC is channel is given in Appendix 4A.2.

The properties of this channel are similar to the dicode channel with AWGN, and again

the mutual information rate can be simplified to

I(X ;Y) = H(Y) −H(Y|X ).

In this case, the second term is simply the entropy of the erasure position sequence which can

be written in closed form asH(Y|X ) = −ε log ε − (1 − ε) log(1 − ε). Therefore, the SIR and

capacity of this channel can also be determined by considering onlyH(Y).

4.2.3 The Finite State Z-Channel

The Z-channel is a well-known discrete memoryless channel (DMC) which models

a communications system with one “good” symbol and “bad” symbol. The “good” symbol is

transmitted perfectly by the channel and the “bad” symbol is either transmitted correctly (with

probability 1 − p) or swapped with the “good” symbol (with probabilityp). Consider a finite

state analogue of this channel in which the “good” and “bad” symbols are not fixed, but depend

on the previous input symbol. One trellis section for such a channel, which we call the finite

state Z-channel is shown in Fig. 4.2.2. The edges are labeled with the input bit and the output

bits, whereB(p) stands for the Bernoulli distribution which produces a one with probabilityp.

A formal mathematical definition of this channel is given in Appendix 4A.3.
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Figure 4.2.2: The state transition diagram of the finite state Z-channel. The symbolB(p) refers
to a binary random variable which equals1 with probabilityp and0 with probability1 − p.

4.3 Definitions

4.3.1 The Indecomposable Finite State Channel

A finite state channel (FSC) is a stochastic mapping from a sequence of inputs,

{Xt}t≥1, chosen from the finite input alphabet,X, to a sequence of outputs,{Yt}t≥1, chosen

from the (possibly infinite) output alphabet,Y. Let{St}t≥1 be the state sequence of the channel,

which takes values in the finite setS = {0, 1, . . . ,NS − 1}. When the output alphabet is count-

able, the channel statistics are completely defined by the time-invariant conditional probability,

fij(x, y) , Pr(Yt = y, St+1 = j|Xt = x, St = i). For uncountableY, we abuse this notation

slightly and let, for eachj, fij(x, y) be a continuous density function of the output,y, given

starting statei and inputx. In this way, we formally define a finite state channel by the triple,

(X,Y,F(·, ·)), where[F(x, y)]ij = fij(x, y). Each example channel in Section 4.2 is defined

formally using this notation in Appendix 4A.

Since many properties of a FSC can be related to the properties of a finite state Markov

chain (FSMC), we start by reviewing some terminology from the theory of FSMCs. A FSMC

is irreducible if there is a directed path from any state to any other state. If the greatest com-

mon divisor of the lengths of all cycles (i.e., paths from a state back to itself) is one, then it is

aperiodic. A FSMC is ergodic orprimitive if it is both irreducible and aperiodic. These ideas

can also be applied to a non-negative square matrix,A, by associating the matrix with a FSMC

which has a path from statei to statej if and only if [A]ij > 0. Using this, we say that a FSC is

indecomposableif its zero-one connectivity matrix, defined by

[F(∗, ∗)]ij =

 1 ∃x ∈ X, y ∈ Y s.t. fij(x, y) > 0

0 otherwise
,

is primitive.
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Figure 4.3.1: The state diagram of a two state input process which sends a 1 with probabilityp
from the 0 state and with probabilityq from the 1 state.

4.3.2 The Markov Input Process

When computing achievable information rates, it is typical to treat the input sequence

as a stochastic process as well. Let{Tt}t≥1 be the state sequence of an ergodic FSMC taking

values in the finite setT = {0, 1, . . . ,NT − 1}. The statistics of the input process,{Xt}t≥1,

are defined by the transition probabilities of the chain,θij , Pr(Tt+1 = j|Tt = i), and the edge

labels,φij, withXt = φTt,Tt+1. We refer to this type of input process as a Markov input process,

and denote it by the pair(Θ,Φ), where[Θ]ij = θij and[Φ]ij = φij .

For example, the state diagram of a general two state Markov input process in shown

in Figure 4.3.1. The formal definition of this same process is given by(Θ,Φ) whereθ0,1 =

1 − θ0,0 = p, θ1,1 = 1 − θ1,0 = q, φ0,0 = φ1,0 = 0, andφ0,1 = φ1,1 = 1.

4.3.3 Combining the Input Process and the Finite State Channel

When the channel inputs are generated by a Markov input process, the channel output,

{Yt}t≥1, can be viewed as coming from stochastic process. In this case, the distribution ofYt

depends only on state transitions in the combined state space of the channel and input. Let

Q = {0, 1, . . . ,NTNS − 1} and, for anyq ∈ Q, let theT -state ofq ber(q) = bq/NSc and the

S-state ofq by s(q) = q mod NS . Using this, we can write the state transition probabilities of

the combined process as

pij , Pr(Qt+1 = j|Qt = i) = θr(i),r(j)

∫
Y

fs(i),s(j)(φr(i),r(j), y)dy,

where the integral is taken to be a sum ifY is countable. We also define the conditional obser-

vation probability ofy, given the transition, to be

gij(y) , Pr(Yt = y|Qt+1 = j,Qt = i) = fs(i),s(j)(φr(i),r(j), y).

We refer to the stochastic output sequence,{Yt}t≥1, as a finite state process (FSP) and define it

formally in the next section.
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Figure 4.3.2: The combined state diagram for a general two state Markov input process and the
dicode channel.

As an example, we show in Figure 4.3.2 the state diagram formed by combining a

general two state Markov input process with the dicode channel. The edge labels on the left side

of the figure give the input symbol, the output symbol, and the transition probability for each

edge. Each state is labeled by itsQ-value, and the correspondingS andT values are also shown

on the right side of the figure.

Remark 4.3.1.One problem with joining the state spaces of the input and channel processes

is that the resulting Markov chain may no longer be primitive. Suppose that the input process

and the channel keep the same state variable (e.g., the input process remembers its last output

and the channel remembers its last input). The state diagram for the combined process of this

type is shown in Figure 4.3.2. The resulting Markov chain is reducible, but it still has a unique

ergodic component. Taking only the ergodic component, consisting of states 0 and 3, results in

an ergodic finite state process. In other cases, the state diagram for the combined process may

actually be disconnected. In general, we will require that the Markov chain associated with the

combined process is primitive. Therefore, some care must taken in choosing the input process

and/or reducing the combined process. Another example of this problem is given in Appendix

4A.4.

4.3.4 The Finite State Process

Let{Qt}t≥1 be an ergodic FSMC taking values from the setQ = {0, 1, . . . ,NQ − 1}.

The finite state process (FSP),{Yt}t≥1, is an ergodic stochastic process controlled by{Qt}t≥1

which takes values from the alphabetY. The transition probabilities for{Qt}t≥1 are given
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by Pr(Qt+1 = j|Qt = i) = pij, and the dependence of{Yt}t≥1 on {Qt}t≥1 is given by

Pr(Yt = y|Qt+1 = j,Qt = i) = gij(y). While this notation is precise for countableY,

we abuse it slightly for uncountableY and letgij(y) be the continuous density function of the

output,y, associated with the state transition from statei to statej. The FSP,{Yt}t≥1, is defined

formally by the triple(Y,P,G(·)), wherepij = [P]ij andgij(·) = [G(·)]ij .
We note that any FSP can be stationary if the initial state if chosen properly. Let

π = [ π1 π2 . . . πr ] be the unique stationary distribution of{Qt}t≥1 which satisfiesπj =∑
i πipij . If the initial state,Q1, of the underlying Markov chain is chosen such thatPr(Q1 =

j) = πj , then{Yt}t≥1 is stationary in the sense thatPr(Yk
1 = yk

1) = Pr(Yt+k
t+1 = yk

1) for all

k ≥ 0 and allt ≥ 1. This initialization is assumed throughout the discussion of FSPs.

If Y is a finite set, then an identical process can also be generated as a function of a

FSMC. More precisely, this means that there exists a FSMC,{Xt}t≥1, and a mappingξ, such that

Yt = ξ(Xt). The process{Yt}t≥1 can also described as the output of a hidden Markov model.

We present{Yt}t≥1 as a FSP because it is the most natural represetation when considering the

entropy rate of the process.

4.4 The Entropy Rate of a Finite State Process

Since a number of authors have considered the entropy rate of a FSP in the past, we

review some of the key results. Blackwell appears to have been the first to consider the entropy

rate of a function of a FSMC. In [6], he gives an explicit formula for the entropy rate, in terms

of the solution to an integral equation, and he notes that this result suggests that the entropy

rate is “intrinsically a complicated function” of the underlying Markov chain,{Xt}t≥1, and the

mapping,ξ. Birch [5] derives a sequence of Markov upper and lower bounds for the entropy

rate and shows, under fairly restrictive conditions, that the gap between them converges to zero

exponentially fast. The complexity of computing his bounds also grows exponentially, however,

making them less useful in practice.

Here, we attack the problem first by introducing an efficient Monte Carlo method of

estimating the entropy rate based on the Shannon-McMillan-Breiman theorem. Then, we work

towards analytical approaches of computing the entropy rate (via Blackwell’s integral equation).

We also discuss conditions under which a central limit theorem (CLT) holds for the entropy

rate. Under these same conditions, we prove that the gap between sequences of Markov upper
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and lower bounds on the entropy rate converges to zero exponentially fast. Finally, we describe a

connection between the entropy rate of a FSP and the largest Lyapunov exponent of an associated

sequence of random matrices. It is worth noting that the natural logarithm is denotedln while

the base 2 logarithm is denotedlog.

4.4.1 A Simple Monte Carlo Method

Let{Yt}t≥1 be an ergodic FSP defined by(Y,P,F(·)). We start by using the definition

of the entropy rate for a stationary process [10, Chap. 4],

H(Y) , − lim
n→∞

1
n
E [logPr(Yn

1 )] ,

to define the sample entropy rate as

Ĥn(Yn
1 ) = − 1

n
logPr(Yn

1 ). (4.4.1)

It is worth noting thatĤn(Yn
1 ) is a random variable, and the asymptotic convergence of that ran-

dom variable to the true entropy rate is guaranteed by the Shannon-McMillan-Breiman theorem

[10, p. 474]. Mathematically speaking, this theorem states that

lim
n→∞− 1

n
log Pr(Yn

1 ) = H(Y)

for almost all realizations ofYn
1 (i.e., almost surely). While the original proof only holds for

finite alphabet processes, it was extended to more general processes by Barron [3].

Efficiently applying the Shannon-McMillan-Breiman theorem to our FSP is equivalent

to efficiently computinglogPr(Yn
1 ) for largen. This quantity has a natural decomposition of

the form

log Pr(Yn
1 ) =

n∑
t=1

log Pr(Yt|Yt−1
1 ), (4.4.2)

and it turns out that the forward recursion of the BCJR algorithm [2] is ideal for computing this

quantity. We note that random realizations,yn
1 , of the process,Yn

1 , are generated as a byproduct

of any channel simulation. Let us define the forward state probability vector at timet, α(t), in

terms of its components,

α
(t)
i = Pr(Qt = i|Yt−1

1 = yt−1
1 ), (4.4.3)
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for i ∈ Q. Using this, the forward recursion of the BCJR algorithm can be written as

α
(t+1)
j =

1
At

NQ−1∑
i=0

α
(t)
i Pr(Yt = yt, Qt+1 = j|Qt = i), (4.4.4)

whereAt is the standard normalization factor chosen to ensure that
∑NQ−1

j=0 α
(t+1)
j = 1. We

note that the probability,Pr(Yt = y,Qt+1 = j|Qt = i), required by (4.4.4) depends on the FSP

and can be written as

Pr(Yt = y,Qt+1 = j|Qt = i) = Pr(Yt = y|Qt+1 = j,Qt = i)Pr(Qt+1 = j|Qt = i)

= gij(y)pij .

Proposition 4.4.1. The sample entropy rate of a realization,yn
1 , of the FSP,{Yt}t≥1, is given

by

Ĥn(yn
1 ) = − 1

n

n∑
t=1

logAt.

Proof. From (4.4.4), we see that

At =
NQ−1∑
j=0

α
(t+1)
j

=
NQ−1∑
j=0

NQ−1∑
i=0

α
(t)
i Pr(Yt = yt, Qt+1 = j|Qt = i)


= Pr(Yt = yt|Yt−1

1 = yt−1
1 ),

which means thatlog Pr(Yn
1 ) can be computed using (4.4.2). Combining this with (4.4.1)

completes the proof.

Remark 4.4.2.The complexity of this method is linear in the number of states,NQ, and linear

in the length of the realization,n. Furthermore, if a central limit theorem holds for the entropy

rate, then the variance of the estimate will decay likeO
(
n−1/2

)
.

We believe that the rapid mixing of the underlying Markov chain and the form of (4.4.2) leads

naturally to a central limit theorem for the sample entropy rate. The following conjecture makes

this notion precise. We note that the conclusion of this conjecture is proven, under more restric-

tive conditions, in Section 4.4.6.
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Conjecture 4.4.3. Let{Yt}t≥1 be an ergodic FSP which gives rise to the conditional probability

sequence,{At}t≥1, whereAt = Pr(Yt|Yt−1
1 ). If (i) limt→∞E

[
(− logAt)

2+ε
]
< ∞, then the

sample entropy rate obeys a central limit theorem of the form

√
n
[
Ĥn(Y) −H(Y)

]
d→ N(0, σ2).

The variance,σ2, of the estimate is given by

σ2 = R(0) + 2
∞∑

τ=1

R(τ), (4.4.5)

whereR(τ) = limt→∞E [(logAt +H(Y)) (logAt−τ +H(Y))]. If we also have that (ii)

limt→∞E
[
(− logAt)

4+ε
]
< ∞, then we can estimate the variance using finite truncations

of (4.4.5) withR(τ) set to the sample autocorrelation,

R̂n(τ) =
1

n− τ

n∑
t=τ+1

(
logAt + Ĥn(Y)

)(
logAt−τ + Ĥn(Y)

)
.

Motivation. This conjecture is based on the fact that{At}t≥1 is asymptotically stationary and

our belief that the autocorrelation,R(τ), decays exponentially withτ . These conditions are

generally sufficient to imply a central limit theorem for sums like (4.4.2).

4.4.2 The Statistical Moments of Entropy

While the entropy of a random variable is usually defined to beE [− log Pr(Y )], one

might also consider the random variableZ = − log Pr(Y ). We refer to thekth moment of the

random variable,Z, as thekth moment of the entropy. One reason for examining these quantities

is that most CLTs require that the increments have finite second moments. Here, we show, under

mild conditions, that thekth moment of the entropy is bounded, for all finitek.

Let p(y) be the probability density of any absolutely continuous random variable.

Since the functionp(y) must integrate to one, we know the tails must decay faster than1/|y|.
If we assume the slightly stronger condition thatp(|y|) = O(|y|−1−ε), for someε > 0, then

we find that all finite moments of the entropy are bounded. Recall that all finite moments of a

random variable are finite if the exponential moments,E
[
esZ
]

= E [Pr(Y )−s], are finite for

somes > 0. We can upper bound this expectation with

E
[
Pr(Y )−s

]
=

∫ ∞

−∞
p(y)p(y)−sdy

≤
∫ a

−a
p(y)1−sdy + 2C

∫ ∞

a
|y|(s−1)(1+ε)dy,
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wherea is chosen large enough thatp(y) ≤ C|y|−1−ε for all |y| > a. Using the fact that

p(y) < p(y)1−s wheneverp(y) > 1, it is easy to verify that the first term is less than2a. The

second term will also be finite as long as(s−1)(1+ ε) < 1 which is equivalent tos < ε/(1+ ε).

Since this expectation is finite fors ∈ [0, ε/(1 + ε)), all finite moments ofZ are bounded.

There are also distributions that are poorly behaved with respect to entropy, however.

Consider the probability distribution on the integers given by

Pr(Y = n) =
1

Cn(log n)ρ
,

for n ≥ 3. As long asρ > 1, we can compute a finite

C =
∞∑

n=3

1
n(log n)ρ

which normalizes this distribution. Thekth moment of the entropy for this distribution is given

by

∞∑
n=3

1
Cn(log n)ρ

(− log (Cn(log n)ρ))k ,

which can be lower bounded by

∞∑
n=n0

2−k

Cn(log n)ρ−k

if n0 is chosen large enough thatlog (Cn(log n)ρ) ≥ (log n)/2. This lower bound will be finite

only if ρ − k > 1. So for1 < ρ ≤ 2, the distribution is well-defined but the entropy and all

higher moments are infinite. Likewise, the finite variance condition necessary for a CLT requires

thatρ > 3.

Now, let us focus on the value of the entropy increment,− logAt, during a transition

from statei to statej. In this case, the true distribution ofYt is given bygij(y), but the simulation

method computesAt based on the assumed distribution,

P�(y) =
∑
i,j

α
(t)
i hi(y),

wherehi(y) = Pr(Yt = y|Qt = i) =
∑

j pijgij(y). For a particular transition and forward

state probabilities, the expectation of− logAt can now be written as

E [− logAt|Qt = i,Qt+1 = j,α] = Egij(Y ) − [log P�(Y )] .
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This general approach can also be used to upper bound the higher moments,E[− logAt]k, re-

quired by Conjecture 4.4.3. In particular, we consider the bound

Egij(Y )

[
(− logP�(Y ))k

]
≤ Egij(Y )

[(
− log

(
min

i
hi(Y )

))k
]
,

which is based on maximizing the LHS overα.

Suppose that the output alphabet is finite (or a bounded continuous set) and there is

an ε > 0 such thatmini infy hi(y) ≥ ε. In that case, the magnitude of thekth moment can be

upper bounded withE[− logAt]k ≤ (− log ε)k. If the output alphabet is countably infinite (or

an unbounded continuous set) andhi(y) > 0 for all boundedy, then the magnitude of thekth

moment will depend only on the tails of thehi(y). Letg(y) be thegij(y) whose tail decays most

slowly andh(y) be thehi(y) whose tail decays most quickly. The magnitude of thekth moment

will be finite if

Eg(Y )

[
(− log h(Y ))k

]
<∞.

Example 4.4.4. Suppose all of thegij(y) are Gaussian densities with finite mean and variance,

We assume that the particular mean and variance depends on the transitioni → j. In this case,

the tails of each density decay likeO(e−ay2
) wherea depends on the variance. The magnitude

of thekth cross-moment for any two Gaussians is upper bounded by∫ ∞

−∞
C1e

−ay2
(
− log(C2e

−by2
)
)k
dy =

∫ ∞

−∞
C1e

−ay2

(
− logC2 +

by2

ln 2

)k

dy

=
k∑

i=0

(− logC2)i
(

b

ln 2

)k−i ∫ ∞

−∞
C1e

−ay2
y2(k−i)dy.

Since the integral really just computes the2(k − i)th moment of a Gaussian, the expression is

bounded for all finitek.

4.4.3 A Matrix Perspective

In this section, we introduce a natural connection between the product of random ma-

trices and the entropy rate of a FSP. This connection is interesting in its own right, but will also

be very helpful in understanding the results of the next few sections.
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Definition 4.4.5. For anyy ∈ Y, the transition-observation probability matrix,M(y), is an

NQ ×NQ matrix defined by

[M(y)]ij , Pr(Yt = y,Qt+1 = j|Qt = i) = pijfij(y).

These matrices behave similarly to transition probability matrices because their se-

quential products compute then-step transition observation probabilities of the form,

[M(yk)M(yk+1) . . .M(yk+n)]ij = Pr(Yk+n
k = yk+n

k , Qk+n+1 = j|Qk = i).

This means that we can writePr(Yn
1 ) as the matrix product

Pr(Yn
1 ) = πM(y1)M(y2) . . .M(yn)1, (4.4.6)

whereπ is the row vector associated with the unique stationary distribution of{Qt}t≥1 and1 is

a column vector of all ones.

The forward recursion of the BCJR algorithm can also be written in matrix form with

α(t+1) =
α(t)M(yt)∥∥α(t)M(yt)

∥∥
1

, (4.4.7)

whereα(t) = [ α(t)
1 α

(t)
2 . . . α

(t)
NQ

] and‖x‖1 =
∑

i |xi|. This update formula is referred

to as theprojective product, and its properties are discussed at some length in [20]. We note

that the order of the matrix-vector product in (4.4.7) is reversed with respect to [20]. The two

most important properties of the projective product given by Lemma 2.2 of [20] are: (i) it is

Lipschitz continuous if the smallest row sum is strictly greater than zero and (ii) it is a strict

contraction if the matrix is positive. We note that these are really the only properties required for

a self-contained proof of Theorem 4.4.9 which is stated in the next section.

4.4.4 The Analytical Approach

It appears that the most straightforward analytical approach to the entropy rate problem

is the original method proposed by Blackwell [6]. Applying the same approach to this setup gives

an integral equation whose solutions are the stationary distributions of the joint Markov chain

formed by joining the true state and the forward state probability vector,
{
Qt,α

(t)
}

t≥1
. The

entropy rate is then computed with

lim
t→∞E

[
logPr(Yt|Yt−1

1 )
]

= lim
t→∞E

log
NQ−1∑
i=0

Pr(Yt|Qt = i)Pr(Qt = i|Yt−1
1 )

 ,
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wherePr(Yt = y|Qt = i) =
∑

j pijfij(y) is independent oft and the limit distribution,

limt→∞ Pr(Qt = i|Yt−1
1 ), depends on the true state,qt, and is given by a stationary distribution

of the joint Markov chain (cf., a solution of Blackwell’s integral equation). One problem with

this method, besides its general intractability, is the fact that the stationary distribution may not

be unique. This is equivalent to saying that the integral equation may not have a unique solution.

Since many of the probability distributions in this section can be rather badly behaved,

rigorous treatment requires that we use some measure theory. The following analysis is based

on general state space Markov chains as described in [22]. LetΩ = Q × D(Q) be the sample

space of the joint Markov chain, whereQ = {0, 1, . . . ,NQ − 1} andD(Q) is the set of prob-

ability distributions (i.e., the set of non-negative vectors of lengthNQ which sum to one). Let

{µt(q,A)}t≥1 be the probability measure defined byµt(q,A) = Pr(α(t) ∈ A,Qt = q) for any

A ∈ Σ, whereΣ is the sigma field of Borel subsets ofD(Q). The transitions of this Markov

chain are described by

µt+1(j,A) =
NQ−1∑
i=0

∫
D(Q)

µt(i, dx)Pij(x,A),

where the transition kernel,Pij(x,A) = Pr(α(t+1) ∈ A,Qt+1 = j|α(t) = x,Qt = i), is a

probability measure defined onA ∈ Σ. The kernel can be written explicitly as

Pij(x,A) =
∫
{z∈Y|L(x,y)∈A}

pijgij(dz),

whereL(α, y) = αM(y)/ ‖αM(y)‖1 is the forward recursion update.

Before we continue, it is worth discussing some of the standard definitions and notation

associated with Markov chains on general state spaces. Our notation,Pij(x,A), for the transition

kernel is natural, albeit somewhat non-standard, considering the decomposition of our state space

into discrete and continuous components. Then-step transition kernel is denotedP (n)
ij (x,A),

and the unique stationary distribution is denotedπ(i, A) if it exists. The transition kernel can

also be treated as an operator which maps the set of bounded measurable functions back to itself.

The operator notation is given by

P (n)r(i, x) =
NQ−1∑
j=0

∫
D(Q)

P
(n)
ij (x, dz)r(j, z),

and is useful for discussing the convergence of a Markov chain to a stationary distribution.
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A general state space Markov chain isuniformly ergodicif it converges in total vari-

ation to a unique stationary distribution at a geometric rate which is independent of the starting

state [22, p. 382]. This is equivalent to saying that there exists someρ < 1 such that

sup
i,x

∣∣∣∣∣∣P (n)r(i, x) −
NQ−1∑
j=0

∫
D(Q)

r(j, z)π(j, dz)

∣∣∣∣∣∣ ≤ Cρn (4.4.8)

for all bounded measurable functions,r(i, A), which satisfysupi,A |r(i, A)| ≤ 1. This type

of convergence is generally too strong for our problem, however. If (4.4.8) holds only for all

bounded continuous functions (in some topology), then the Markov chain converges weakly2 to

a unique stationary distribution. While this behavior is referred to asgeometric ergodicityin

[21], we say instead that the Markov chain isweakly uniform ergodicto avoid confusion with

the geometric ergodicity defined in [22, p. 354].

Now, we consider the first condition under which the limit distribution,π(s,A) =

limt→∞ µt(s,A), exists and is unique. This is based on a comment by Blackwell describing

when the support ofπ(s,A) is at most countably infinite [7]. Under this condition, Theorem

4.4.7 shows that the joint Markov chain is uniformly ergodic.

Condition 4.4.6. The output alphabet,Y, is countable and there exists a finite output sequence

which gives the observer perfect state knowledge (i.e., the joint Markov chain is in true state

q with αq = 1). Using the DEC for an example, we see that the outputyt = 1 satisfies this

condition because it implies with certainty thatst+1 = 1.

Theorem 4.4.7. If Condition 4.4.6 holds, thenπ(s,A) exists, is unique, and is supported on a

countable set. Furthermore, the joint Markov chain is uniformly ergodic.

Proof. Let z be state of the joint Markov chain after the output sequence which provides perfect

state knowledge. Since this state is reachable from any other state, theψ-irreducibility of this

Markov chain is given by Theorem 4.0.1 of [22]. The state,z, also satisfies the conditions of an

atomas defined in [22, p. 100]. Since any finite output sequence will occur infinitely often with

probability 1, the pointz is alsoHarris recurrentas defined in [22, p. 200]. Applying Theorem

10.2.2 of [22] shows thatπ(s,A) exists and is unique.
2This set of functions provides a metric for the weak convergence of probability measures on a separable metric

space [29].
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Next, we show thatπ(s,A) is supported on a countable set. Since the return time

to statez is finite with probability 1, we assume the joint Markov chain is in statez at time

τ and index any state in the support set by its output sequence,{yt}t≥τ , starting from statez.

Therefore, the support set ofπ(s,A) is at most the set of finite strings generated by the alphabet

Y, which is countably infinite. In particular, for anyε > 0, there is a finite set of strings with

total probability greater than1 − ε.

Since the underlying Markov chain,{Qt}t≥1, is primitive, the path to perfect knowl-

edge can start at any time. So, without loss of generality, we assume the output sequence which

provides perfect state knowledge starts in any state, takesn steps, ends in stateq, and occurs

with probability δ. This means thatP (n)
iq (x, z) ≥ δ for all i ∈ Q and allx ∈ D(Q), which is

also known asDoeblin’s Condition[22, p. 391]. Applying Theorem 16.2.3 of [22], we find that

the joint Markov chain is uniformly ergodic.

This leads to the second condition under which the limit distribution,limt→∞ µt(s,A) = π(s,A),

exists and is unique. This condition is essentially identical to the condition used by Le Gland

and Mevel to prove weakly uniform ergodicity in [21].

Condition 4.4.8. Every output has positive probability during every transition. Mathematically,

this means thatgij(y) > 0 for all y ∈ Y and everyi, j such thatpij > 0. For example, any real

output channel with AWGN satisfies this condition.

Since the joint Markov chain implied by Condition 4.4.8 does not, in general, satisfy

a minorization condition [22, p. 102], we must turn to methods which exploit the continuity of

Pij(x,A). We say that a general state space Markov chain is(weak) Fellerif its transition kernel

maps the set of bounded continuous functions (in some topology) to itself [22, p. 128]. Based

on the properties of (4.4.7), one can verify that the joint Markov chain will be weak Feller as

long as the minimum row sum ofM(y) is strictly positive for ally ∈ Y. Unfortunately, the

methods of [22] still cannot be used to prove that the joint Markov chain is weakly uniform

ergodic because its stationary distribution may not be absolutely continuous. In many cases, it

will be singular continuous and concentrated on a set of dimension smaller than that ofΩ. For

simplicity, we simply adapt the results of [21] to our case. We note, however, that the results of

iterated function systems (or iterated random functions) may also be applied to prove this result

[12][29].
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Theorem 4.4.9 (Le Gland-Mevel). If Condition 4.4.8, thenµ∞(s,A) exists and is unique. Fur-

thermore, the joint Markov chain is weakly uniform ergodic.

Proof. The analysis in [21] is applied to finite state processes whose output distribution is only

a function of the initial state (i.e.,gij(y) = gik(y) for all j, k). There is a one-to-one corre-

spondence between these two models, however. For example, one can map every transition in

our model to a state in their model and represent the same process. Sincegij(y) > 0 for all

y ∈ Y and everyi, j, we find that the output distribution of each state in their model will also be

positive. Along with the ergodicity of the underlying FSMC, this gives the conditions necessary

for Theorem 3.5 of [21]. Therefore, the joint Markov chain is weakly uniform ergodic.

Now, we address the issue of CLTs for the entropy rate. For uniformly ergodic Markov chains,

we use the CLT given by Chen in Theorem II-4.3 of [8]. This CLT is both very general and

has the most easily verifiable conditions. For FSPs which satisfy Condition 4.4.8, we use the

CLT given by Corollary 4.4.14. One could also prove this directly using the exponential decay

of correlation implied by weakly uniform ergodicity, or alternatively, by using the theory of

iterated function systems [4]. Unfortunately, all of these methods break down simultaneously if

the productM(yt)M(yt+1) · · ·M(yt+n) does not become strictly positive for somen.

Theorem 4.4.10 (Chen).Let {Xt}t≥1 be a uniformly ergodic Markov chain with unique sta-

tionary distributionπ(x). Let f(x) be a measurable function andSn =
∑n

t=1 f(Xt). If we

assume that (i)Eπ [f(X)] = 0 and (ii)Eπ

[
f2(X)

]
<∞, then

Sn/
√
n

d→ N(0, σ2),

whereσ2 = R(0) + 2
∑∞

τ=1R(τ) <∞ and

R(τ) = lim
t→∞E [f(Xt)f(Xt−τ )] .

Corollary 4.4.11. Consider the FSP{Yt}t≥1 and its joint Markov chain
{
Qt,α

(t)
}

t≥1
. Sup-

pose (i) the process satisfies the finite variance conditionlimt→∞E
[(

lnPr(Yt|Yt−1
1 )

)2]
and

(ii) the joint Markov chain satisfies Condition 4.4.6. In this case, the sample entropy rate,

Ĥn(Y), obeys

√
n
[
Ĥn(Y) −H(Y)

]
d→ N(0, σ2),

whereσ2 is finite and given by (4.4.5).
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Proof. Using (4.4.4), it is easy to see thatPr(Yt|Y t−1
1 ) = f(Yt,α

(t)) for some measurable

function,f . Now, we introduce the extended Markov chain,
{
Qt, Yt,α

(t)
}

t≥1
, since the func-

tion requires theYt value. Since the random variableYt is conditionally independent of all other

quantities givenQt andQt+1, it follows that the extended Markov chain inherits the ergodicity

properties of the joint Markov chain. Since (i) implies that the joint Markov chain is uniformly

ergodic and (ii) implies the finite variance condition of Theorem 4.4.10, we simply apply Theo-

rem 4.4.10 to complete the proof.

4.4.5 Entropy Rate Bounds

It is well known [10, Chap. 4] that the entropy rate of an ergodic FSP,{Yt}t≥1, is

sandwiched between the Markov upper and lower bounds given by

H(Yk|Yk−1, Yk−2, . . . , Y1, Q1) ≤ H(Y) ≤ H(Yk|Yk−1, Yk−2, . . . , Y1). (4.4.9)

In fact, Birch proves that the gap between these bounds decays exponentially ink for functions

of a FSMC whose transition matrices are strictly positive [5]. The mixing properties of the

underlying FSMC make it easy to believe that this gap actually decays exponentially for all

FSPs.

Since all three of the quantities in (4.4.9) can be written as integrals over a state dis-

tribution of the joint Markov chain, we show that the gap decays to zero exponentially if the

joint Markov chain is weakly uniform ergodic. Letµk(i, A) be the state distribution of the joint

Markov chain. The entropy ofYk can be written as a function ofµk(i, A) with

H(Yk|µk) =
NQ−1∑
i=0

∫
D(Q)

µk(i, dx)V (i, x),

where

V (i,α) =
∫
Y

NQ−1∑
j=0

pijfij(y) log

NQ−1∑
m=0

NQ−1∑
l=0

αlplmflm(y)

 dy.

The functionV (i,α) gives the entropy rate ofY conditioned on the true state beingi and the

state probability vector beingα. While V (i,α) is unbounded asαi → 0, it is a continuous

function of α as long asαi > 0. Fortunately, the probability,Pr(α(t)
i = 0|Qt = i), must be

zero because events with probability zero cannot occur.
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Let π = [ π1 π2 . . . πr ] be the unique stationary distribution of{Qt}t≥1 which

satisfiesπj =
∑

i πipij. The lower bound,H(Yk|Yk−1, Yk−2, . . . , Y1, Q1), is obtained by start-

ing the chain with the distribution

µ1(i,α) =

 πi if αi = 1

0 otherwise
(4.4.10)

and takingk steps, because this initial condition corresponds to stationaryQ-state probabili-

ties and perfect state knowledge. The upper bound is obtained by starting the chain with the

distribution

µ1(i,α) =

 πi if α = π

0 otherwise
(4.4.11)

and takingk steps because this initial condition corresponds to stationaryQ-state probabilities

and no state knowledge. The true entropy rate can be computed by using either initialization and

letting k → ∞, because all initial conditions eventually converge to unique stationary distribu-

tion µ∞(i, A).

If the joint Markov chain is (weakly) uniform ergodic, then the state distribution con-

verges toµ∞(i, A) exponentially fast ink regardless of the initial conditions. Since the upper

and lower bounds are only functions of the state distribution, we find that both of these bounds

converge to the true entropy rate exponentially fast ink.

4.4.6 Connections with Lyapunov Exponents

Consider any stationary stochastic process,{Yt}t≥1, equipped with a function,M(y),

that maps eachy ∈ Y to an r × r matrix. Let Z(Yn
1 ) = M(Y1)M(Y2) . . .M(Yn) be the

cumulative product of random matrices generated by this process and let{yn
1}n≥1 be a sequence

of realizations with increasing length. Now, consider the limit

lim
n→∞

1
n

log ‖xZ(yn
1 )‖ ,

wherex is any non-zero row vector and‖·‖ is any vector norm. Oseledec’s multiplicative ergodic

theorem says that this limit is deterministic for almost all realizations [23]. While the proof takes

a very different approach and is quite difficult, one way of thinking about this is that the matrix

sequence,{Z(yn
1 )}n≥1, can be associated withr eigenvalue sequences which grow (or decay)
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exponentially inn. The normalized exponential growth rate of each eigenvalue sequence almost

surely has a deterministic limit known as the Lyapunov exponent. The Lyapunov spectrum is

the ordered set of Lyapunov exponents,γ1 > γ2 > . . . > γs, along with their multiplicities,

d1, d2, . . . , ds. An earlier ergodic theorem due to Furstenberg and Kesten [13] gives a simple

proof for the top Lyapunov exponent, and says that the limit

lim
n→∞

1
n

log ‖Z(Yn
1 )‖ = γ1

convergences almost surely, where‖·‖ is now taken to the matrix norm induced by the previous

vector norm (see [18, p. 303]).

The connection between Lyapunov exponents and the entropy rate of a FSP is given

by the following proposition.

Proposition 4.4.12. The largest Lyapunov exponent,γ1, of the product of the transition-observat-

ion matrices,M(y1)M(y2) . . .M(yn), is almost surely equal to−H(Y), whereH(Y) is the

entropy rate of the FSP,{Yt}t≥1. Mathematically, we have

lim
n→∞

1
n

log ‖M(Y1)M(Y2) . . .M(Yn)‖ = γ1 = −H(Y)

for almost allYn
1 .

Proof. Using (4.4.6), the probabilityPr(Yn
1 ) can be written in the form

Pr(Yn
1 ) =

r∑
i=1

πi

r∑
j=1

[Z(Yn
1 )]ij . (4.4.12)

Applying the matrix norm induced (see [18, p. 303]) by the vector norm,‖·‖∞, toZ(Yn
1 ) gives

‖Z(Yn
1 )‖∞ = max

i

r∑
j=1

[Z(Yn
1 )]ij ,

because our matrix is non-negative. Now, we can sandwichPr(Yn
1 ) with

min
i
πi ‖Z(Yn

1 )‖∞ ≤ Pr(Yn
1 ) ≤ ‖Z(Yn

1 )‖∞ (4.4.13)

by replacing the second sum in (4.4.12) by its maximum value to get an upper bound, and then

applying the smallestπi to that upper bound to get a lower bound. The ergodicity of the Markov
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chain{Qt}t≥1 implies thatmini πi > 0, and therefore the inequality (4.4.13) can be rewritten

as

1
n

log ‖Z(Yn
1 )‖∞ ≤ 1

n
logPr(Yn

1 ) ≤ 1
n

log ‖Z(Yn
1 )‖∞ +

log mini πi

n
.

Finally, this shows that

lim
n→∞

1
n

log ‖Z(Yn
1 )‖∞ = lim

n→∞
1
n

log Pr(Yn
1 ),

which completes the proof.

The following is a restatement of Theorem 7 from [9] and provides a CLT for the largest Lya-

punov exponent.

Theorem 4.4.13 (Cohn-Nermann-Peligrad).Suppose that{M(Yt)}t≥1 is a strictly stationary

sequence ofr × r non-negative matrices satisfying: (i) there exists an integern0 such that

M(Yt)M(Yt+1) . . .M(Yt+n0) is positive with probability 1, (ii) the process{Yt}t≥1 is geomet-

rically ergodic, and (iii)E
[
min+ (log [M(Yt)])

2
]
< ∞ andE

[
max+ (log [M(Yt)])

2
]
< ∞

wheremin+ (M(Yt)) andmax+ (M(Yt)) are the minimum and maximum over the strictly pos-

itive elements ofM(Yt). Then there exists aσ ≥ 0 such that

n−1/2
[
log
∣∣∣[M(Y1)M(Y2) . . .M(Yn)]ij

∣∣∣− nγ1

]
d→ N(0, σ),

converges in distribution andγ1 is the largest Lyapunov exponent.

The following Corollary provides a CLT for the entropy rate under conditions which

are implied by Condition 4.4.8 and a finite variance condition.

Corollary 4.4.14. Suppose that every observation,y ∈ Y, is possible during every transition.

This implies thatgij(y) > 0 for all i, j such thatpij > 0. Furthermore, suppose that condition

(iii) of Theorem 4.4.13 holds. Then the sample entropy,Ĥn(Y), is asymptotically Gaussian with

asymptotic meanH(Y).

Remark 4.4.15.Using (4.4.7) and the second Lyapunov exponent of the matrixZ(Yn
1 ), we can

also consider the exponential rate at whichα(t) forgets its initial conditionα(1). Consider the

scaled matrix product,Z(Yn
1 )/ ‖Z(Yn

1 )‖∞, whose maximal row sum will always equal one.

The normalized second largest eigenvalue,|λ2|1/n, of this scaled matrix product will almost
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certainly be equal toeγ2−γ1 . This is because the normalized eigenvalues ofZ(Yn
1 ) will almost

surely be given by the Lyapunov spectrum. Therefore, if the largest Lyapunov exponent is simple

(i.e., its multiplicity is one), thenα(t) forgets its initial condition almost surely at the positive

exponential rate given byγ2 − γ1. It is important to note that this is the expected rate at which

α(t) forgets its initial condition. This does not necessarily imply that the probability of rare

events also decays exponentially.

4.5 Capacity Bounds

The capacity of a FSC is given by

C = lim
n→∞

1
n

max
Pr(Xn

1 )
I(Xn

1 ;Y n
1 ),

where the limit always exists and is independent of the initial state [14, Chap. 4]. In terms of

mutual information rates, this capacity can also be written as

C = sup
X

[H(X ) +H(Y) −H(X ,Y)] ,

where the supremum is taken over all stationary ergodic input processes. Unfortunately, the

maximization implied by either formula is over an infinite dimensional distribution and impossi-

ble to carry out in practice. The capacity can be sandwiched between two computable quantities,

however. Using upper and lower bounds on the entropy rates of the FSPs, we illustrate this in

Sections 4.5.1, 4.5.2, and 4.5.3.

4.5.1 Lower Bounds

Lower bounds on the capacity are actually quite straightforward to compute because

any achievable rate is a lower bound on the capacity. For example, we consider the maximum

rate achievable using Markov input distributions with memoryη. These distributions have a

simple representation becausePr(Xi|Xi−1
1 ) = Pr(Xi|Xi−1

i−η). Let Mη be the set of all such

input distributions Then the sequence
{
Cη

}
η≥0

, defined by

Cη = lim
n→∞

1
n

max
Pr(X)∈Mη

I(Xn
1 ;Yn

1 ),
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is a sequence of lower bounds on the capacity. The sequence of bounds is non-decreasing be-

cause any Markov input process inMη is also inMη+1. We also note that the information rate,

Cη, is referred to as the Markov-η rate of the channel.

Using standard optimization techniques these bounds were computed numerically for

linear ISI channels with Gaussian noise in [24] and [1]. The results given in Section 4.6, how-

ever, were generated more accurately and efficiently using Kavčić’s elegant generalization of the

Arimoto-Blahut algorithm [19]. While no rigorous proof exists for the convergence of this al-

gorithm, theoretical and numerical results strongly imply its correctness. In particular, it always

returns a valid information rate and, in all cases tested, it gives results numerically equivalent to

standard optimization techniques.

4.5.2 The Vontobel-Arnold Upper Bound

Upper bounds on the capacity are somewhat more difficult to compute because the

maximization over all input distributions must be treated very carefully. Vontobel and Arnold

propose an upper bound on the capacity of finite state channels in [31]. The first step in this

upper bound can be seen as a generalization of the standard upper bound [14, Theorem 4.5.1]

for DMCs. LetIP (X;Y ) be the mutual information between the inputs and outputs of a DMC

for some input distributionP (x). Then, for any fixed channel (i.e., fixedPr(Y |X)), the upper

bound states that

C = max
P0(x)

IP0(X;Y ) ≤ max
x

IP1(X = x;Y ), (4.5.1)

where

IP (X = x;Y ) = E

[
log

Pr(Y |X)∑
x′∈XPr(Y |X = x′)P (x′)

∣∣∣∣∣X = x

]
.

The natural generalization of this upper bound to channels with memory implies that

C = lim
n→∞

1
n

max
P0(xn

1 )
IP0(X

n
1 ;Yn

1 ) ≤ lim
n→∞

1
n

max
xn
1

IP1(X
n
1 = xn

1 ;Yn
1 ) (4.5.2)

for a fixed channel (i.e., fixedPr(Yn
1 |Xn

1 )) and anyP1(Xn
1 ). Vontobel and Arnold start by

noting that

C ≤ lim
n→∞

1
n

max
xn

1

E

[
log

Pr(Yn
1 |Xn

1 )
R(Yn

1 )

∣∣∣∣∣Xn
1 = xn

1

]
(4.5.3)
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holds for any distributionR(Yn
1 ). By choosing anR(Yn

1 ) which can be factored according to

R(yn
1 ) = RL

1 (yL
1 )

n∏
i=L+1

R(yi|yi−1
i−L),

they are able to make this bound computable as well. This distribution,R(Yi|Yi−1
i−L), is generally

chosen to be the marginal distribution,Pr(Yi|Yi−1
i−L), because this choice minimizes, for any

givenL, the quantity

E

[
log

Pr(Yn
1 |Xn

1 )
R(Yn

1 )

]
.

Their method of making the bound computable is actually quite clever. It is based upon

writing the conditional expectation of (4.5.3) in a form which makes the maximization easy. For

FSCs whose state is defined by the previousν inputs (e.g., any linear ISI channel), we can write

E

[
log

Pr(Yn
1 |Xn

1 )
R(Yn

1 )

∣∣∣∣∣Xn
1 = xn

1

]
= K0(xL+ν

1 ) +E

[
n∑

i=L+ν+1

log
Pr(Yi|Xi

i−ν)

R(Yi|Yi−1
i−L)

∣∣∣∣∣Xn
1 = xn

1

]
,

whereK0(xL+ν
1 ) absorbs the contribution of the neglectedL + ν initial terms of the sum. The

conditional expectation of theith term in the sum only requires knowledge ofxi
i−L−ν . So, using

the definition

K(x) = E

[
log

Pr(Yi|Xi
i−ν)

R(Yi|Yi−1
i−L)

∣∣∣∣∣Xi
i−L−ν = x

]
, (4.5.4)

we have

E

[
log

Pr(Yn
1 |Xn

1 )
R(Yn

1 )

∣∣∣∣∣Xn
1 = xn

1

]
= K0(xL+ν

1 ) +
n∑

i=L+ν+1

K(xi
i−L−ν).

Computing the functionF (xn
1 ) = K0(xk0

1 )+
∑n

i=k0+1K(xi
i−i0

) is equivalent to com-

puting the weight of a path (labeled byxn
1 ) through an edge-weighted directed graph. Therefore,

the Viterbi algorithm can be used to find the maximum of the function overxn
1 . The quantity we

actually want, however, is the limiting value

lim
n→∞

1
n

max
xn

1

F (xn
1 ).

In the literature, finding this quantity is known as theminimum mean cycleproblem [11]. The

connection is based on fact that the maximum (or minimum) average weight path spends most of
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its time walking the same maximum (or minimum) average weight cycle repeatedly. Therefore,

the answer is given by the maximum (or minimum) average cycle weight of the graph.

The practical problem of computing the function value,K(xi
i−L−ν), for each binary

(L + ν)-tuple can be solved by using a simulation to estimate the expectation in (4.5.4). The

complexity of this method linear in the simulation length and exponential inL+ν because we run

one simulation for eachx. In some cases, the trade off between complexity and estimation error

may also be reduced by using one long simulation and using Bayes’ rule to write the conditional

expectation as

K(x) = E

[
Pr(Xi

i−L−ν = x|Yi−1
i−L)

Pr(Xi
i−L−ν = x)

log
Pr(Yi|Xi

i−L−ν = x)

R(Yi|Yi−1
i−L)

]
.

The major drawback of the Vontobel-Arnold Bound is that it can be quite loose for

channels whose state sequence is not identifiable from a small number of samples. Consider, for

example, a dicode channel with very little noise. The lprobability of observing either a positive

or negative transition, after observingL samples near zero, remains large enough to weaken

the bound significantly. One might think that the small probability of observing long runs of

zeroes at the output would counteract this problem. This is not the case, however, because the

maximization overxn
1 picks the worst-case sequence, regardless of its probability.

4.5.3 A Conjectured Upper Bound

Now, we derive a slightly different expression that we conjecture is also an upper

bound on the capacity of IFSCs. This bound also starts with (4.5.2), but uses different simpli-

fications to make the bound computable. We start by considering an IFSC channel, with state

sequenceSn
1 , driven by a Markov input process with memoryη ≤ L. The channel and input

state can be combined into a single state variable, and that corresponding state sequence isQn
1 .

The basic idea is that we can upper bound the mutual information by considering a genie-aided

decoder which has perfect knowledge of the statesQi−L andQi+L+1 when it is decoding the in-

putXi. This expression remains a conjectured upper bound because of a subtle gap that remains

in our proof.

We begin by upper boundingI(Xn
1 ;Yn

1 ) using the chain rule for mutual information



137

and a genie-aided decoder. The chain rule gives

I(Xn
1 ;Yn

1 ) =
n∑

i=1

I(Xi;Yn
1 |Xi−1

1 )

and, neglecting edge effects, the genie-aided upper bound for each term in the sum is given by

I(Xi;Yn
1 |Xi−1

1 ) ≤ I(Xi;Qi−L,Yn
1 , Qi+L+1|Xi−1

1 ).

For any input distribution,P (xn
1 ), we define the genie-aided mutual information to be

JP (Xn
1 ;Yn

1 ) =
∑
xn

1

P (xn
1 )JP (Xn

1 = xn
1 ;Yn

1 ), (4.5.5)

whereJP (Xn
1 = xn

1 ;Yn
1 ) is defined with

JP (Xn
1 = xn

1 ;Yn
1 ) =

n∑
i=1

E

[
log

Pr(Xi|Xi−1
1 , Qi−L,Yn

1 , Qi+L+1)
Pr(Xi|Xi−1

1 )

∣∣∣∣∣Xn
1 = xn

1

]
.

The Markov nature of the input distribution and the channel allow us to write

JP (Xn
1 = xn

1 ;Yn
1 ) =

n∑
i=1

E

[
log

Pr(Xi|Xi−1
i−L, Qi−L,Yi+L

i−L, Qi+L+1)

Pr(Xi|Xi−1
i−η)

∣∣∣∣∣Xi+L
i−L = xi+L

i−L

]
,

and this provides an upper bound onI(Xn
1 ;Yn

1 ) which is computed as the sum of local functions.

The obvious generalization of the Vontobel-Arnold Bound would imply thatC ≤
limn→∞ maxxn

1
JP (Xn

1 = xn
1 ;Yn

1 ). Unfortunately, this does not follow directly from the results

thatC ≤ limn→∞ maxxn
1
I(Xn

1 = xn
1 ;Yn

1 ) andIP (Xn
1 ;Yn

1 ) ≤ JP (Xn
1 ;Yn

1 ). This is because

it is possible that the the genie-aided mutual information could be larger when averaged over

all sequences, even though its largest per-sequence value is smaller. Our proof of this bound

requires that the chain of inequalities,

max
P0(xn

1 )
IP0(X

n
1 ;Yn

1 ) ≤ max
P1(xn

1 )
JP1(X

n
1 ;Yn

1 ) ≤ max
xn

1

JP2(X
n
1 = xn

1 ;Yn
1 ),

holds for allP2(xn
1 ). The LHS inequality indeed holds becauseJP (Xn

1 ;Yn
1 ) is an upper bound

on IP (Xn
1 ;Yn

1 ) for all P (xn
1 ). We conjecture that the RHS inequality holds as well. Numeri-

cal results for the dicode channel are encouraging, however, because our lower bounds on the

capacity are quite close to the conjectured upper bound but do not surpass it.
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Following the Vontobel-Arnold approach, we make the conjectured upper bound com-

putable by writing it as the sum of local functions. For ISI channels whose state sequence is a

deterministic function of the input sequence, we can simplify the functionJP (Xn
1 = xn

1 ;Yn
1 ) to

F (xn
1 ) =

n∑
i=1

E

[
log

Pr(Xi|Qi−1,Yi+L
i , Qi+L+1)

Pr(Xi|Xi−1
i−η)

∣∣∣∣∣Xi+L
i−η = xi+L

i−η

]
.

The simplification uses the facts thatXi is conditionally independent of the past givenQi−1 and

Qi−1 is computable fromQi−L andXi−1
i−L. Letν be the memory of the channel,η be the memory

of the input, and assume thatη ≥ ν (without loss of generality). This allows us to write

F (xn
1 ) = K0(x

L+η
1 ) +

n−L∑
i=η+L+1

K(xi+L
i−η ) +K1(xn

n−η−L),

where

K(x) = E

[
log

Pr(Xi|Qi−1,Yi+L
i , Qi+L+1)

Pr(Xi|Xi−1
i−η)

∣∣∣∣∣Xi+L
i−η = x

]
.

The termsK0(x
L+η
1 ) andK1(xn

n−η−L) are asymptotically irrelevant and will be ignored. Since

F (xn
1 ) = JP (Xn

1 = xn
1 ;Yn

1 ), the conjectured upper bound on capacity is given by

C ≤ lim
n→∞

1
n

max
xn

1

F (xn
1 ).

Once again, the functionF (xn
1 ) can be computed as the weight of a path (labeled by

xn
1 ) through an edge-weighted directed graph. In this case, the states are labeled byxi+L−1

i−η and

the edge weights are estimated by stochastic averaging of the expectation inK(x). As with the

Vontobel-Arnold bound, the conjectured upper bound is given by the maximum average cycle

weight of the graph.

4.6 Monte Carlo Results

4.6.1 Partial Response Channels

We start by giving the results for the power normalized binary-input channels listed

in Table 4.1. These channels are known as partial response (PR) channels and are sometimes

used to model magnetic recording channels. First, we show the SIR of these channels along with

binary-input AWGN capacity in Figure 4.6.1. For each channel, the achievable rate is plotted
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Figure 4.6.1: The SIR for various partial response channels, estimated withn = 107.

versus both the SNR (Es/N0) and the SNR per information bit (Eb/N0). Notice that increasing

the severity of the ISI monotonically decreases the SIR in both cases.

Next, we consider the results attained by optimizing the input distributions for these

channels. The elegant generalization of the Arimoto-Blahut algorithm due to Kavčić is used

for all of these results [19]. Figure 4.6.2 shows the results for the dicode channel and plots

the achievable rate versusEs/N0 andEb/N0. Figure 4.6.3 shows the results of optimizing

input distributions for the EPR4 channel. All of these results show that optimizing the input

distribution provides significant gains at low SNR.

Figure 4.6.4 compares the dicode channel lower bound with the Vontobel-Arnold

Bound and our own conjectured upper bound. We would like to acknowledge P. Vontobel for

providing the data points for the Vontobel-Arnold Bound. Both upper bounds are somewhat

loose at low rates, but the conjectured upper bound is actually quite tight at high rates. The con-

jectured upper bound has an intrinsic advantage at high rates because it is always upper bounded

entropy of the input process. We also note that this comparison is not entirely fair because

the conjectured upper bound was numerically optimized over the input distribution while the

Vontobel-Arnold Bound was not. In fact, without optimization the performance of the conjec-

tured upper bound at low rates does not surpass the Vontobel-Arnold Bound. In the future, we

plan to make a fair comparison by optimizing the Vontobel-Arnold Bound as well.

It is worth noting that at low enough SNR, all of the optimized rates actually exceed

the capacity of the binary-input AWGN channel. Depending on your perspective, this is either
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Figure 4.6.2: Monte Carlo lower bounds on the achievable information rate of the dicode channel
using optimized Markov input distributions.

an interesting phenomenon or simply a poorly chosen channel normalization. The basic problem

is that there is no single normalization which is fair. By convention, we normalize each channel

so that the power of a white input signal is unchanged by the channel. This approach seems fair

for white input signals such as equiprobable binary inputs. When the channel response is not

flat, however, optimizing the input distribution allows the source to concentrate its power around

the peaks of the channel response. Now, the signal appears to be receiving apower gainfrom the

channel. One solution is to normalize all channels so that the peak of the response is unity. This is

merely a different convention, however, and regardless of the chosen normalization, optimizing

input distribution will always increase the power output of the channel.

Finally, we remark that at low rates these binary-input ISI channels exhibit a threshold

behavior similar to the−1.59 dB limit of the AWGN channel. Essentially, this means that there

is anEb/N0 threshold below which reliable communication is impossible. Conversely, it can be

shown that, at sufficiently low rates, reliable communication is also possible at anyEb/N0 larger

than this threshold. The threshold is known as the low-rate Shannon limit and is discussed in

[28].

4.6.2 The Finite State Z-Channel

The SIR and the Markov-1 rate of the finite state Z-channel are shown in Figure 4.6.5.

It is interesting to note that, as with the original Z-channel, one can avoid transmission errors by
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Figure 4.6.3: Monte Carlo lower bounds on the achievable information rate of the EPR4 channel
using optimized Markov input distributions.

sending a particular pattern. (e.g., 0101...01). So, while optimizing the input distribution to the

dicode channel increases the output power, optimizing the input distribution to the finite state Z-

channel decreases the noise. Therefore, the optimized input distribution chooses transitions (i.e.,

edges from state 0 to state 1 and vice-versa) more frequently than non-transitions (i.e., edges

corresponding to self-loops) and thereby incurs fewer channel errors.

4.7 Analytical Results

In this section, we consider analytical methods for computing achievable information

rates. We start by using the results of Section 4.4.4 to compute exact information rates for the

DEC. This analysis of the DEC is made possible by the fact that the stationary distribution of the

joint Markov chain is supported on a countably infinite set. This follows from Theorem 4.4.7

because the reception of a+ or − symbol gives the observer perfect state knowledge. Next,

we describe a pseudo-analytical method based on density evolution that can be used to estimate

rates more efficiently for arbitrary two state channels.

4.7.1 The Symmetric Information Rate of the DEC

Consider a DEC with erasure probabilityε and equiprobable inputs. LetXn
1 be the

channel input sequence,Sn+1
1 be the channel state sequence, andYn

1 be the channel output

sequence. The input and output alphabets of the DEC are defined so thatXi ∈ {0, 1} and
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Figure 4.6.4: Monte Carlo upper and lower bounds on the achievable information rate of the
dicode channel using optimized Markov input distributions.

Yi ∈ {−, 0,+, e}. In this section, we compute the exact SIR analytically by characterizing the

forward recursion of the APP algorithm, which computesPr(Yt|Y t−1
1 ), in terms of the random

variableα(t)
i = Pr(St = i|Y t

1 ). Parts of this analysis were motivated by a method used to

compute iterative decoding thresholds for turbo codes on the binary erasure channel [30].

Since the channel has only two states, it suffices to consider the quantityα(t) , α
(t)
0 =

1 − α
(t)
1 . The real simplification, however, comes from the fact that the distribution ofα(t) has

finite support whenX ∼ B(1/2). We can observe this fact by writing the APP recursion as

(4.4.7) whereα(t) =
[
α(t) 1 − α(t)

]
and

M(e)=

 ε
2

ε
2

ε
2

ε
2

, M(0)=

 1−ε
2 0

0 1−ε
2

, M(+)=

 0 1−ε
2

0 0

, M(−)=

 0 0
1−ε
2 0

.
Using this, it is easy to verify that we can use instead the simpler recursion,

α(t+1) =



1/2 if Yt = e

α(t) if Yt = 0

0 if Yt = +

1 if Yt = −

.
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Figure 4.6.5: The SIR and the Markov-1 rate of the finite state Z-channel.

Using this, we see that, for allt ≥ min {i ≥ 1|Yi 6= 0}, α(t) will be confined to the finite set

{0, 1/2, 1}.

With the results of Section 4.4.4 in mind, we proceed by finding the stationary distri-

bution of the joint Markov chain,
{
Qt,α

(t)
}

t≥1
. Each state of this Markov chain can be indexed

by the pair(qt, α(t)), and the stationary distribution is supported on the set(0, 1), (1, 0), (0, 1/2),

and(1, 1/2). The first two states correspond to the known (K) state condition, while the second

two correspond to the unknown (U) state condition. The symmetry of the problem allows us to

write Pr(K)/2 = π(0, 1) = π(1, 0) andPr(U)/2 = π(0, 1/2) = π(1, 1/2).

Using a two state Markov chain, we can compute the steady state probabilities of the

joint Markov chain. First, we note that the joint Markov chain transitions from the known state

condition to the unknown state condition only ifY = e. Therefore, we havePr(K → U) =

1 − Pr(K → K) = ε. Secondly, we note that the joint Markov chain transitions from the

unknown state condition to the known state condition only ifY = + or Y = −. This means that

we havePr(U → K) = 1 − Pr(U → U) = (1 − ε)/2. The steady state probabilitiesPr(K)
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andPr(U) can be found using the eigenvector equation,

[
Pr(K) Pr(U)

] 1 − ε ε

1−ε
2

1+ε
2

 =
[
Pr(K) Pr(U)

]
,

whose solution isPr(U) = 1 − Pr(K) = 2ε/(1 + ε).

Now, we can compute the exact entropy rate ofY n
1 using the definitionH(Y) =

limt→∞H(Yt|Y t−1
1 ). When the joint Markov chain is in a known state, the observer knows that

one of only two edges can be traversed in the next step. In this case, the conditional entropy of

the next output given the past is denotedH(Y |K) and is given by

H(Y |K) = H

([
ε,

1 − ε

2
,
1 − ε

2

])
= h(ε) + (1 − ε),

whereH ([p1, . . . , pk]) = −
∑k

i=1 pi log2 pi andh(ε) = −ε log2 ε− (1− ε) log2(1− ε). When

the joint Markov chain is in an unknown state, the observer must allow the possibility of that any

of four edges may actually be traversed in the next step. In this case, the conditional entropy of

the next output given the past is denotedH(Y |U) and is given by

H(Y |U) = H

([
ε,

1 − ε

4
,
1 − ε

2
,
1 − ε

4

])
= h(ε) +

3(1 − ε)
2

.

Since the stationary distribution of the joint Markov chain determines how often each

of these events occurs, we can write

H(Y) = Pr(K)H(Y |K) + Pr(U)H(Y |U).

Substituting exact values into this expression and simplifying gives

H(Y) = 1 − 2ε2

1 + ε
+ h(ε).

Since the entropy rate ofYn
1 given Xn

1 , H(Y|X ), is simply the entropy rate of the erasure

process (i.e.,h(ε)), the SIR is given by

H(Y) −H(Y|X ) = H(Y) − h(ε) = 1 − 2ε2

1 + ε
.

4.7.2 The Markov-1 Rate of the DEC

In this section, we derive the achievable information rate of the DEC using a Markov-1

input distribution. Based on the symmetry of the channel, we use an input distribution which
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changes state with probabilityp and remains in the same state with probability1 − p. The

combined state space of the input process and the channel still only has two states, so again it

suffices to consider onlyα(t) , α
(t)
0 = 1 − α

(t)
1 .

In this case, we can write the APP recursion as (4.4.7) whereα(t) =
[
α(t) 1 − α(t)

]
,

M(e)=

 (1 − p)ε pε

pε (1 − p)ε

, M(0)=

 (1 − p)(1 − ε) 0

0 (1 − p)(1 − ε)

 ,

M(+)

 0 p(1 − ε)

0 0

 , andM(−)=

 0 0

p(1 − ε) 0

 .
A simple recursion also exists in this case and is given by

α(t+1) =



α(t)(1 − p) + (1 − α(t))p if Yt = e

α(t) if Yt = 0

0 if Yt = +

1 if Yt = −

.

The major complication in completing the analysis is the fact that the support set ofα(t) is

now countably infinite. For example, theα(t) that results from observing a− first and then ob-

serving a mixture ofk erasures and any number of0’s (but no more+’s and−’s) is given by(
1 + (1 − 2p)k

)
/2. Likewise, if the first observation was a+, then we would have(

1 − (1 − 2p)k
)
/2. These two cases, withk ∈ {0, . . . ,∞}, constitute the entire support set

of α(t). For simplicity, we refer to these values using the shorthand,

γ±k =
1 ± (1 − 2p)k

2
. (4.7.1)

Now, we define the countably infinite Markov chain that will be used to help analyze

the joint Markov chain. Each state in the new Markov chain is labeled by a letter (A or B)

and a non-negative integer. TheAk state corresponds to the event that(St = 0, α(t) = γ+
k )

or (St = 1, α(t) = γ−k ). The symmetry of the system can be used to show these events occur

with equal probability. TheBk state corresponds to the event that(St = 0, α(t) = γ−k ) or

(St = 1, α(t) = γ+
k ). Again, symmetry forces these events to occur with equal probability. The

state probabilities, as a function of time, are defined by

A
(t)
k = Pr(St = 0, α(t) = γ+

k ) + Pr(St = 1, α(t) = γ−k )

B
(t)
k = Pr(St = 0, α(t) = γ−k ) + Pr(St = 1, α(t) = γ+

k ).
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The basic idea of the new Markov chain is to simultaneously track the true state and count the

number of erasures since the last instance of perfect knowledge. In doing this, we find that an

observed0 causes the transitionsAk → Ak andBk → Bk, an erased0 causes the transitions

Ak → Ak+1 andBk → Bk+1, an erased+ or − causes the transitionsAk → Bk+1 and

Bk → Ak+1, and an observed+ or− causes the transitionsAk → A0 andBk → A0. Using the

probabilities of these events gives the recursions

A
(t+1)
0 = A

(t)
0 (1 − ε) + (1 −A

(t)
0 )p(1 − ε)

A
(t+1)
k = A

(t)
k (1 − p)(1 − ε) +A

(t)
k−1(1 − p)ε+B

(t)
k−1pε

B
(t+1)
k = B

(t)
k (1 − p)(1 − ε) +B

(t)
k−1(1 − p)ε+A

(t)
k−1pε.

Solving for the stationary distribution of the new Markov chain gives

Pr(A0) =
p(1 − ε)

p(1 − ε) + ε

Pr(Ak) = Pr(A0)ωkγ+
k

Pr(Bk) = Pr(A0)ωkγ−k

whereω = ε
1−(1−p)(1−ε) . Since the forward state probabilities must give a consistent state

estimate, the events(St = 0, α(t) = 0) and(St = 1, α(t) = 1) must have probability zero. This

also implies thatB(t)
0 = Pr(St = 0, α(t) = 0) + Pr(St = 1, α(t) = 1) = 0. Finally, the the

new Markov chain is uniformly ergodic by Theorem 4.4.7 and converges to its unique stationary

distribution exponentially fast.

Now, we can compute the entropy rate using the limitH(Y) = limt→∞H(Yt|Yt−1
1 ).

When the new Markov chain is in stateAk orBk, the conditional entropy is denoted byH(Y |Ak)

orH(Y |Bk), respectively. These two expressions are given by

H(Y |Ak) = −ε log2 ε− (1 − p)(1 − ε) log2 ((1 − p)(1 − ε)) − p(1 − ε) log2

(
p(1 − ε)γ+

k

)
and

H(Y |Bk) = −ε log2 ε− (1 − p)(1 − ε) log2 ((1 − p)(1 − ε)) − p(1 − ε) log2

(
p(1 − ε)γ−k

)
.

The first term of each expression is associated with the observation probability of an erasure,

the second term with the observation probability of a0, and the third term with the observation
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probability of either a+ or a−. Combining these with the stationary distribution of the new

Markov chain gives final entropy rate

H(Y) =
∞∑

k=0

Pr(Ak)H(Y |Ak) + Pr(Bk)H(Y |Bk)

= D − p(1 − ε)
∞∑

k=0

Pr(A0)ωk
(
γ+

k log2 γ
+
k + γ−k log2 γ

−
k

)
, (4.7.2)

where

D = −ε log2 ε− (1 − p)(1 − ε) log2 ((1 − p)(1 − ε)) − p(1 − ε) log2 (p(1 − ε)) .

While we could find no closed form solution for this infinite sum, we did find a rela-

tively simple approximation. Using (4.7.1), we can write

log2 γ
±
k = log2

(
1 ± (1 − 2p)k

)
− 1,

and then use the two term Taylor expansion,log2(1 + x) ≈ (x− x2/2)/ ln 2, to get

log2 γ
±
k ≈ ±(1 − 2p)k

ln 2
− (1 − 2p)2k

2 ln 2
− 1.

This lead us to the approximation

γ+
k log2 γ

+
k + γ−k log2 γ

−
k ≈ (1 − 2p)2k

2 log 2
− 1,

which allows the infinite sum (4.7.2) to be approximated in closed form by
∞∑

k=1

a0,∞ωk

(
(1 − 2p)2k

2 log 2
− 1
)

= a0,∞
(

1
2 log 2

ω(1 − 2p)2

1 − ω(1 − 2p)2
− ω

1 − ω

)
.

The resulting entropy rate approximation, which we believe is actually an upper bound, is

H(Y) ≈ D − p2(1 − ε)2

p(1 − ε) + ε

(
1

2 log 2
ω(1 − 2p)2

1 − ω(1 − 2p)2
− ω

1 − ω

)
.

We evaluated the numerical error in this approximation over the rectangle formed byε ∈ [0, 1]

andp ∈ [1/2, 2/3], and found its maximum value to be roughly0.0002.

The results of Sections 4.7.1 and 4.7.2 are shown in Figure 4.7.1, along with the capac-

ity of the binary erasure channel (BEC) and the ternary erasure channel (TEC). While one might

expect that the SIR and Markov-1 rate should be upper bounded by the capacity of the BEC, we

see that this is definitely not the case. This is because the output alphabet of the BEC has only

three symbols, while the output alphabet of the DEC has four symbols. Therefore, the rates of

the DEC should be upper bounded by the capacity of the TEC. Surprisingly, the achievable rates

of the DEC are quite close to the capacity of the TEC whenε is close to one.
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Figure 4.7.1: The SIR and Markov-1 rate of the DEC compared with the capacity of the binary
erasure channel (BEC) and the ternary erasure channel (TEC).

4.7.3 Density Evolution for Finite State Channels

Density evolution is a pseudo-analytical method of analyzing LDPC codes that was

introduced by Richardson and Urbanke in [25]. It analyzes a decoder by tracking the probabilis-

tic evolution of messages passed around the decoder. In general, it is implemented by quantizing

the continuous set of messages to a finite set and then tracking a probability distribution over

that set.

Now, we consider a density evolution approach to the forward recursion of the BCJR

algorithm. Since the state probability vector acts like a message in the BCJR algorithm, the

first step is quantizing these vectors. For a two state channel, the vector is defined by a single

parameter, and therefore we can use any scalar quantizer. We note that this idea was applied to

two state fading channels by Goldsmith and Varaiya in [15]. For more complicated channels, the

natural generalization amounts to using a vector quantizer rather than a scalar quantizer. We note

that density evolution on the quantized vectors can be viewed either as an approximate analysis

of the true algorithm or an exact analysis of the quantized algorithm.
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Let the quantizer,V (x), be a mapping from probability vectors of lengthNQ to the

index set,{1, . . . ,NV }. We abuse notation slightly and define the inverse of this mapping,

V −1(i), to be some generalized centroid of theith quantization cell{x ∈ D(Q)|V (x) = i}.

The forward variable of the quantized algorithm,At, is therefore characterized by the update

equation

At+1 = V

(
V −1(At)M(Yt)

‖V −1(At)M(Yt)‖1

)
, (4.7.3)

which is simply a quantized version of (4.4.7).

Now, we consider the evolution ofPr(At) while the underlying finite state Markov

process transitions from statei to statej. In this case, the output,Yt, is drawn from the distribu-

tion gij(y). This gives rise to the transition matrix,A(i,j), defined by[
A(i,j)

]
kl

= Pr(At+1 = l|At = k,Qt = i,Qt+1 = j).

This matrix can be constructed for channels with a finite output alphabet by evaluating (4.7.3) for

all At ∈ {1, . . . ,NV } andYt ∈ Y and assuming the corresponding probabilities. For channels

with continuous output alphabets, one can either integrate over the appropriate regions ofY

or approximate these probabilities by quantizing the output alphabet. The number of non-zero

entries in eachA(i,j) matrix is also upper bounded byNV |Y|, and will therefore be sparse if

NV � |Y|.
Next, we analyze the quantized algorithm completely by combining theA(i,j) matrices

with the state transition probabilities,pij. This allows us to define the(NQNV ) × (NQNV )

matrix,

A =


p1,1A(1,1) · · · p1,NQ

A(1,NQ)

...
. ..

...

pNQ,1A(NQ,1) · · · pNQ,NQ
A(NQ,NQ)

 ,
and point out that

[A](i−1)NV +k,(j−1)NV +l = Pr(At+1 = l, Qt+1 = j|At = k,Qt = i).

While we expect that the stochastic matrix,A, will generally have a unique stationary distribu-

tion, one can also consider the following pair of stationary distributions. Let the lower stationary
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distribution,v, be defined bylimn→∞ x 1
n

∑n
i=1 Ai wherex is given by quantizing the distri-

bution (4.4.10). Likewise, let the upper stationary distribution,v, be defined by the same limit

except thatx is given by quantizing the distribution (4.4.11). These limits are always well de-

fined and can be computed using the eigenvalue decomposition ofA. We note that the sparsity

of A may also be exploited to reduce complexity.

Consider the probability vectors,v(t), defined byv(t+1) = v(t)A. Based on the

definition ofA, these vectors have the implicit definition,[
v(t)
]
(i−1)NV +k

= Pr(At = k,Qt = i).

Using this, we find that the entropy estimate at timet is given by

H(Yt|Yt−1
1 ,W ) ≈

∑
i,j,k

[
v(t)
]
(i−1)NV +k

pijE
[
log
∥∥V −1(k)M(Yt)

∥∥
1
|Qt = i,Qt+1 = j

]
,

whereW is any random variable which gives rise to the initial distribution,v(1). This same

formula can be used with the stationary distributionsv andv to estimate the upper and lower

entropy rate bounds.

Since we have a valid probabilistic analysis of the quantized algorithm, we can actually

show that any entropy computed in this manner is an upper bound on the same entropy computed

via an exact algorithm. For example, suppose we compute the entropyH(Yt|Yt−1
1 ,W ) where

W is initialized by the vectorv(1). In this case, the entropy computed by the quantized algo-

rithm will always be larger because its state probability estimates are less accurate and therefore

increase the entropy.

While the approximation error of this algorithm is quite dependent on the particular

quantizer used, we can still make a few general statements. We note that all of these statements

are based on the fact that the entropy expression is continuous function on the state probability

vector. This means that one would expect the entropy approximation error from using a uniform

quantizer to decay likeO
(
N

−1/(NQ−1)
V

)
. When using an optimized vector quantizer, one would

expect the error to decay likeO
(
N

−1/d
V

)
, whered is the (possibly fractal) dimension of the true

stationary distribution of the joint Markov chain. This means that this type of analysis may

actually be less efficient than Monte Carlo methods whend > 2.

This method has been applied successfully to the dicode channel with AWGN. In par-

ticular, we used a non-linear scalar quantizer based on the uniform quantization of log-likelihood
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ratios. This type of quantization is widely used in the density evolution analysis of LDPC codes

[25]. For the dicode channel, the Monte Carlo method can easily achieve tolerances of10−3

while the density evolution approach can achieve tolerances around10−6 with some effort. We

note that the density evolution results were in complete agreement with the Monte Carlo results

from Section 4.6. The practical value of achieving tolerances less than10−3 is questionable,

however.

Remark 4.7.1.While this section discusses only the forward recursion of the BCJR algorithm,

the same type of analysis may be applied to the backwards recursion and the output stage. This

gives a valid probabilistic analysis of a quantized BCJR algorithm that can be used to approxi-

mate the log-likelihood density at the output of the BCJR algorithm. In particular, these densities

can be used to optimize LDPC codes and compute information rates for the multilevel coding

approach proposed in [24].

4.8 Concluding Remarks

This chapter discusses a number of issues related to entropy rates and capacity for fi-

nite state channels. All of the results which are not expressly attributed to other authors were

developed independently by us. That said, this field is currently the subject of great interest, and

many of the same ideas have recently been developed independently by other authors. For exam-

ple, the simple Monte Carlo method was published in 2001 by three separate groups [1][24][27].

The formulation of the entropy rate as a Lyapunov exponent was also discovered independently

and reported in [17]. Finally, the quantized density evolution approach for information rates is

quite natural for two state channels was introduced in [15]. The move to vector quantization is a

natural generalization and is also used in a slightly different manner in [32] to help estimate the

feedback capacity of finite state channels.

4A Formal Channel Definitions

4A.1 Discrete Input Linear Filter Channels with AWGN

The formal definition,(X,Y,F(·, ·)), of this finite state channel depends solely onν,

(h0, h1, . . . , hν), σ2, andX. We start by noting that the number of channel states is given by
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NS = |X|ν and defining the output alphabet, in terms of the input alphabet and channel taps,

with

Y =

{
y ∈ R|y =

ν∑
i=0

hixi, (x0, . . . , xν) ∈ X
ν

}
.

Next, we defineNX = |X| and let ξ be any one to one mapping fromX to the set

{0, 1, . . . ,NX − 1}. Although, the channel state is clearly defined by the lastν − 1 inputs,

we would also like an integer representation of this quantity. Using a base conversion fromν−1

digits of X to the integers, we have the integer state,St =
∑ν

i=1(NX)ν−iξ(Xt−i), and the one

step update,St+1 = bSt/NXc + ξ(Xt)(NX)ν . Finally, we define[F(x, y)]ij = fij(x, y) with

fij(x, y) =

 1√
2πσ2

e
−(y−mij )2

2σ2 if j = bi/NXc + ξ(x)(NX)ν

0 otherwise
,

wheremij = hνξ
−1(i mod NX) +

∑ν−1
l=0 hlξ

−1
(⌊
j/(NX )ν−l−1

⌋
mod NX

)
.

4A.2 Dicode Erasure Channel

The formal definition,(X,Y,F(·, ·)), of this finite state channel depends only onε.

The input and output alphabets are defined byX = {0, 1} andY = {+, 0,−, e}, andNS = 2.

The conditional transition-observation probabilities are given by[F(x, y)]ij = fij(x, y) where

fij(x, y) = 0 unless defined byf00(0, 0) = f11(1, 0) = f01(1,+) = f10(0,−) = 1 − ε or

f00(0, e) = f11(1, e) = f01(1, e) = f10(0, e) = ε.

4A.3 Finite State Z-Channel

The formal definition,(X,Y,F(·, ·)), of this finite state channel hasX = Y = {0, 1}
andNS = 2. The conditional transition-observation probabilities are given by[F(x, y)]ij =

fij(x, y) wherefij(x, y) = 0 unless defined byf0,0(0, 1) = f1,1(1, 0) = p, f0,0(0, 0) =

f1,1(1, 1) = 1 − p, or f0,1(1, 1) = f1,0(0, 0) = 1.
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4A.4 The Finite State Z-Channel with Markov-1 Inputs

Consider a finite state Z-channel with a stochastic input sequence. Using the notation

above, we define the input process,(Θ,Φ), with

Θ =

 1 − q q

q 1 − q

 , Φ =

 0 1

0 1

 .
This allows us to define the stochastic output sequence with the triple,(Y,P,G(·)), where

Y = {0, 1},

P =


1 − q 0 0 q

1 − q 0 0 q

q 0 0 1 − q

q 0 0 1 − q

, G(0) =


1 − p 0 0 0

1 0 0 p

1 − p 0 0 0

1 0 0 p

, G(1) =


p 0 0 1

0 0 0 1 − p

p 0 0 1

0 0 0 1 − p

.

In this case, the transition probability matrixP, and therefore underlying Markov

chain, is reducible. Therefore, we simplify our description of the process{Yt}t≥1by removing

any state whose stationary probability is zero. Removing states 1 and 2 results in the simplified

description

P =

 1 − q q

q 1 − q

 , G(0) =

 1 − p 0

1 p

 , G(1) =

 p 1

0 1 − p

 .
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