Chapter 4

The Capacity of Finite State Channels

4.1 Introduction

Determining the achievable rates at which information can be reliably transmitted
across noisy channels has been one of the central pursuits in information theory since Shannon
invented the subject in 1948. In this chapter, we consider these rates for the class of channels
known as finite state channels (FSC). A FSC is a discrete-time channel where the distribution
of the channel output depends on both the channel input and the underlying channel state. This
allows the channel output to depend implicitly on previous inputs and outputs via the channel
state.

In practice, there are three types of channel variation which FSCs are typically used
to model. Aflat fading channel is a time-varying channel whose state is independent of the
channel inputs. Aimtersymbol-interferenc@Sl) channel is a time-varying channel whose state
is a deterministic function of the previous channel inputs. Channels which exhibit both fading
and ISI can also modeled, and their state is a stochastic function of the previous channel inputs.

A number of other authors have dealt with FSCs in the past, and we review some of
their important contributions. Since it is easy to construct degenerate FSCs, most of these results
are limited to a particular set of well behaved FSCs. A FSC in this particular set is referred to as
an indecomposable FSC (IFSC). Blackwell, Breiman, and Thomasian introduced IFSCs in [7]
and proved the natural analogue of the channel coding theorem for them. Birch discusses the
achievable information rates of IFSCs in [5], and computes bounds for a few simple examples.
In [14, p.100], Gallager gives an elegant derivation of the coding theorem and provides a method
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to explicitly compute the capacity when the receiver has perfect channel state information. This
method cannot be applied, however, when the receiver only has imperfect state estimates com-
puted from the previous channel outputs. Hirt considers linear filter channels with additive white
Gaussian noise (AWGN) and equiprobable binary inputs in [16], and develops a Monte Carlo
method for estimating achievable rates. In [15], Goldsmith and Varaiya take a different approach
and provide an explicit method of estimating the capacity of flat fading IFSCs (i.e., where the
state sequence is independent of the transmitted sequence). In this chapter, we provide a simple
Monte Carlo method of estimating the achievable information rates of any IFSC and we focus
on the problem of estimating the capacity of IFSCs with ISI (i.e., where the state sequence is a
deterministic function of the transmitted sequence).

It is worth noting that this method, reported in [24], was discovered independently by
Arnold and Loeliger in [1] and by Sharma and SiAght is quite surprising, in fact, that this
method was not proposed earlier. It is simply an efficient application of the famous Shannon-
McMillan-Breiman theorem. Nonetheless, [1], [27hnd [24] represent the first publications
where the achievable information rates of a general IFSC are computed to 3 or 4 digits of ac-
curacy. Furthermore, these advances stimulated new interest in the subject which dedtiav
formulate a very elegant generalization of the Arimoto-Blahut algorithm for finite state channels
in [19].

The achievable information rate of an IFSC, for a given input process, is equal to the
mutual information rate between the stochastic input process and the stochastic output process.
This mutual information ratel,(X'; ), is given by

I(X;Y)= H(X)+H(Y)~ H(X, ), (4.1.)

where H(X), H(Y), andH (X,)) are the respective entropy rates of the input process, the
output process, and the joint input-output process. The symmetric information rate (SIR) of an
IFSC is the maximum rate achievable by an input process which chooses each input indepen-
dently and equiprobably from the source alphabet. The capacity of an IFSC is the largest rate
achievable by any input process.

Our simple Monte Carlo method is based on estimating each of the entropy rates in
(4.1.1). These entropy rates are estimated by simulating a long realization of the process and

While the Monte Carlo method is introduced correctly in [27], it appears that most of the other results in their
paper, based on regenerative theory, are actually incorrect. A correct analytical treatment can be found in Section
4.4.4,
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D

Channel|| Transfer Function| Normalized Respons
Dicode (1— D) [1-11v2
EPR4 || (1 —D)(1+ D)? [11-1-1]2
E’PR4 || (1-D)(1+D)*| [120-2-1]A/10

Table 4.1: The transfer function and normalized response of a few partial response targets.

computing its probability using the forward recursion of the well known BCJR algorithm [2].
The fact that this probability can be used to estimate the entropy rate is a consequence of
the Shannon-McMillan-Breiman theorem [10, p. 474]. Furthermore, this approach is general
enough to allow the mutual information rate to be maximized over Markov input distributions of
increasing length, and thus can be used to estimate a sequence of non-decreasing lower bounds
on capacity.

This chapter is organized as follows. In Section 4.2, we introduce a few example
finite state channels which are discussed throughout the chapter. Mathematical definitions and
notation for the chapter are introduced in Section 4.3. In Section 4.4, we address the problem
of estimating entropy rates. In particular, this section discusses our simple Monte Carlo method,
a general analytical method, and an interesting connection with Lyapunov exponents. Section
4.5 uses the results of the previous section to discuss upper and lower bounds on the capacity of
finite state channels. In Section 4.6, we give the numerical results of applying the Monte Carlo
method to the example channels. Exact information rates are derived for the dicode erasure
channel in Section 4.7. A pseudo-analytical method of estimating information rates based on
density evolution, which is quite efficient for two state channels, is also described. Finally, in
Section 4.8, we provide some concluding remarks.
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4.2 Channel Models

4.2.1 Discrete-Time Linear Filter Channels with AWGN

A very common subset of IFSCs is the set of discrete-time linear filter channels with

additive white Gaussian noise (AWGN), which are described by

Yk = > hitk—i+ i, (4.2.1)
i=0

wherev is the channel memoryz } is the channel input (taken from a discrete alphalet)}
is the channel output, anfth;, } is i.i.d. zero mean Gaussian noise with varianée Bounds on
the capacity and SIR of this channel have been considered by many authors. In particular, we
note the analytical results of Shanaial. in [26] and the original Monte Carlo results of Hirt in
[16]. Some examples of these channels are listed in Table 4.1, and were chosen from the class of
of binary-input channels which are used to model equalized magnetic recording channels. The
state diagram for the noiseless dicode channel (i.e., before the AWGN) is shown in Figure 4.2.1.
A formal mathematical definition of these channels is given in Appendix 4A.1.

Computing the achievable information rates of these channels can also be simplified
by writing the mutual information rate (4.1.1) as

I(X;Y) = H(Y) — HY|X).

This is because the second term is simply the entropy of the Gaussian noise sedughce,

which can be written in closed form [10, p. 225] as
1 2
H(Y|\X) = 510g(27re0 ).
Therefore, estimating the SIR of these channels reduces to estinta{ig and estimating the
capacity of this channel reduces to estimating the supremuki(®f) over all input processes.

4.2.2 The Dicode Erasure Channel

Since itis difficult, if not impossible, to derive a closed form expression for the entropy
rate of the dicode channel with AWGN, we also consider the somewhat artificial dicode erasure
channel (DEC). This is a simple channel based onitheD linear ISI channel whose noiseless

state diagram is shown in Figure 4.2.1. The DEC corresponds to taking the output of the dicode
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Figure 4.2.1: The state transition diagram of the dicode channel.

channel, 41,0, —1), and either erasing it with probability or transmitting it perfectly with
probability 1 — e. The state diagram for the noiseless dicode channel is shown in Figure 4.2.1.
A formal mathematical definition of the DEC is channel is given in Appendix 4A.2.

The properties of this channel are similar to the dicode channel with AWGN, and again

the mutual information rate can be simplified to
I(X;Y) = H(Y) — H(Y|X).

In this case, the second term is simply the entropy of the erasure position sequence which can
be written in closed form a#l (V|X') = —eloge — (1 — €)log(1 — €). Therefore, the SIR and

capacity of this channel can also be determined by consideringo(ly).

4.2.3 The Finite State Z-Channel

The Z-channel is a well-known discrete memoryless channel (DMC) which models
a communications system with one “good” symbol and “bad” symbol. The “good” symbol is
transmitted perfectly by the channel and the “bad” symbol is either transmitted correctly (with
probability 1 — p) or swapped with the “good” symbol (with probabilip). Consider a finite
state analogue of this channel in which the “good” and “bad” symbols are not fixed, but depend
on the previous input symbol. One trellis section for such a channel, which we call the finite
state Z-channel is shown in Fig. 4.2.2. The edges are labeled with the input bit and the output
bits, whereB(p) stands for the Bernoulli distribution which produces a one with probability

A formal mathematical definition of this channel is given in Appendix 4A.3.
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Figure 4.2.2: The state transition diagram of the finite state Z-channel. The syptefers
to a binary random variable which equalsvith probability p and0 with probability 1 — p.

4.3 Definitions

4.3.1 The Indecomposable Finite State Channel

A finite state channel (FSC) is a stochastic mapping from a sequence of inputs,
{Xt};>1, chosen from the finite input alphabét, to a sequence of output§y; },.,, chosen
from the (possibly infinite) output alphabé, Let{&’t}t21 be the state sequence of the channel,
which takes values in the finite sét= {0, 1,... , Ng — 1}. When the output alphabet is count-
able, the channel statistics are completely defined by the time-invariant conditional probability,
fij(z,y) 2 Pr(Y; = y,Si41 = j|X: = 2, 8; = i). For uncountablé’, we abuse this notation
slightly and let, for eacly, f;;(x,y) be a continuous density function of the outpyt,given
starting state and inputz. In this way, we formally define a finite state channel by the triple,
(X,Y,F(,-)), where[F(z,y)];; = fi;j(z,y). Each example channel in Section 4.2 is defined
formally using this notation in Appendix 4A.

Since many properties of a FSC can be related to the properties of a finite state Markov
chain (FSMC), we start by reviewing some terminology from the theory of FSMCs. A FSMC
is irreducible if there is a directed path from any state to any other state. If the greatest com-
mon divisor of the lengths of all cycles (i.e., paths from a state back to itself) is one, then it is
aperiodic A FSMC is ergodic oprimitive if it is both irreducible and aperiodic. These ideas
can also be applied to a non-negative square mairjphy associating the matrix with a FSMC
which has a path from statdo statej if and only if [A]Z.j > 0. Using this, we say that a FSC is
indecomposablé its zero-one connectivity matrix, defined by

)

1 JzeX,ye Vst fij(z,y) >0
0 otherwise

is primitive.
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Figure 4.3.1: The state diagram of a two state input process which sends a 1 with probpability
from the O state and with probabilityfrom the 1 state.

4.3.2 The Markov Input Process

When computing achievable information rates, it is typical to treat the input sequence
as a stochastic process as well. I{@t}tZI be the state sequence of an ergodic FSMC taking
values in the finite sef = {0,1,... , Ny — 1}. The statistics of the input processX:},,
are defined by the transition probabilities of the chéipn= Pr(T;.1 = j|T; = i), and the edge
labels,;;, with X; = ¢, 1,,,. We refer to this type of input process as a Markov input process,
and denote it by the pai®, @), where[®],; = 0;; and[®],; = ¢;;.

For example, the state diagram of a general two state Markov input process in shown
in Figure 4.3.1. The formal definition of this same process is giveli@y®) wheref,; =

1—6oo=p,011=1-010=q,¢o0=¢1,0=0,andpg1 = ¢11 = 1.

4.3.3 Combining the Input Process and the Finite State Channel

When the channel inputs are generated by a Markov input process, the channel output,
{Y:};>1, can be viewed as coming from stochastic process. In this case, the distribulign of
depends only on state transitions in the combined state space of the channel and input. Let
Q={0,1,... ,NrNg — 1} and, for anyy € Q, let the7 -state ofq ber(q) = |¢/Ns| and the
S-state ofg by s(¢) = ¢ mod Ng. Using this, we can write the state transition probabilities of

the combined process as

pij = Pr(Que1 = jlQ¢ = i) = 0,0 ..(j) /Yfs(i),s(j)(¢r(i),r(j)ay)dya

where the integral is taken to be a sun¥iis countable. We also define the conditional obser-

vation probability ofy, given the transition, to be

9i5(y) = Pr(Yy = y|Qur1 = 4, Qe = 1) = Fo(i),s() (Pr(i) (i) ¥)-

We refer to the stochastic output sequer{de,}tZl, as a finite state process (FSP) and define it

formally in the next section.
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Figure 4.3.2: The combined state diagram for a general two state Markov input process and the
dicode channel.

As an example, we show in Figure 4.3.2 the state diagram formed by combining a
general two state Markov input process with the dicode channel. The edge labels on the left side
of the figure give the input symbol, the output symbol, and the transition probability for each
edge. Each state is labeled bydisvalue, and the correspondifgand?” values are also shown
on the right side of the figure.

Remark 4.3.1.0ne problem with joining the state spaces of the input and channel processes
is that the resulting Markov chain may no longer be primitive. Suppose that the input process
and the channel keep the same state variable (e.g., the input process remembers its last output
and the channel remembers its last input). The state diagram for the combined process of this
type is shown in Figure 4.3.2. The resulting Markov chain is reducible, but it still has a unique
ergodic component. Taking only the ergodic component, consisting of states 0 and 3, results in
an ergodic finite state process. In other cases, the state diagram for the combined process may
actually be disconnected. In general, we will require that the Markov chain associated with the
combined process is primitive. Therefore, some care must taken in choosing the input process
and/or reducing the combined process. Another example of this problem is given in Appendix
4A.4,

4.3.4 The Finite State Process

Let{Q:}-, be an ergodic FSMC taking values from the@et {0, 1,... , No — 1}.
The finite state process (FSR):},-,, is an ergodic stochastic process controlled{&},,

which takes values from the alphabgt The transition probabilities fofQ;},., are given
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by Pr(Qw+1 = jlQ: = i) = pij, and the dependence ¢t:},., on {Q:},~, is given by
Pr(Y; = y|Qu1 = J,Q¢ = i) = g;;(y). While this notation is precise for countabig
we abuse it slightly for uncountabié and letg;;(y) be the continuous density function of the
output,y, associated with the state transition from staiestatej. The FSP;{Yt}tzl, is defined
formally by the triple(Y, P, G(+)), wherep;; = [P],; andg;;(-) = [G(")],;-

We note that any FSP can be stationary if the initial state if chosen properly. Let
m=[m m ... m |betheunique stationary distribution ff);},., which satisfiesr; =
>; mipsj. If the initial state,Q,, of the underlying Markov chain is chosen such tRa(Q; =
j) = m;, then{Y;},5, is stationary in the sense thRr (Y} = y}) = Pr(Y{{} = y¥) for all
k > 0 and allt > 1. This initialization is assumed throughout the discussion of FSPs.

If Y is a finite set, then an identical process can also be generated as a function of a
FSMC. More precisely, this means that there exists a FSME},.;, and a mapping, such that
Y: = §(Xy). The procesgY:},., can also described as the output of a hidden Markov model.
We present{Yt}t21 as a FSP because it is the most natural represetation when considering the

entropy rate of the process.

4.4 The Entropy Rate of a Finite State Process

Since a number of authors have considered the entropy rate of a FSP in the past, we
review some of the key results. Blackwell appears to have been the first to consider the entropy
rate of a function of a FSMC. In [6], he gives an explicit formula for the entropy rate, in terms
of the solution to an integral equation, and he notes that this result suggests that the entropy
rate is “intrinsically a complicated function” of the underlying Markov chdi;},, and the
mapping,£. Birch [5] derives a sequence of Markov upper and lower bounds for the entropy
rate and shows, under fairly restrictive conditions, that the gap between them converges to zero
exponentially fast. The complexity of computing his bounds also grows exponentially, however,
making them less useful in practice.

Here, we attack the problem first by introducing an efficient Monte Carlo method of
estimating the entropy rate based on the Shannon-McMillan-Breiman theorem. Then, we work
towards analytical approaches of computing the entropy rate (via Blackwell’'s integral equation).
We also discuss conditions under which a central limit theorem (CLT) holds for the entropy

rate. Under these same conditions, we prove that the gap between sequences of Markov upper
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and lower bounds on the entropy rate converges to zero exponentially fast. Finally, we describe a
connection between the entropy rate of a FSP and the largest Lyapunov exponent of an associated
sequence of random matrices. It is worth noting that the natural logarithm is denoigdle

the base 2 logarithm is denotékgk.

4.4.1 A Simple Monte Carlo Method

Let{Y:},-, be an ergodic FSP defined by, P, F(-)). We start by using the definition
of the entropy rate for a stationary process [10, Chap. 4],

H(Y) = — lim lE[logPr(Y?)],

n—oo N

to define the sample entropy rate as

H, (YD) = —% log Pr(Y7). (4.4.2)

It is worth noting thatf,,(Y?) is a random variable, and the asymptotic convergence of that ran-
dom variable to the true entropy rate is guaranteed by the Shannon-McMillan-Breiman theorem
[10, p. 474]. Mathematically speaking, this theorem states that

lim —% log Pr(YT)=H(Y)

n—o0

for almost all realizations ok 7 (i.e., almost surely). While the original proof only holds for

finite alphabet processes, it was extended to more general processes by Barron [3].
Efficiently applying the Shannon-McMillan-Breiman theorem to our FSP is equivalent

to efficiently computindog Pr(Y?7) for largen. This quantity has a natural decomposition of

the form

log Pr(Y7) =Y log Pr(Y;[Y{™), (4.4.2)
t=1

and it turns out that the forward recursion of the BCJR algorithm [2] is ideal for computing this
quantity. We note that random realizatiog$, of the processY 7, are generated as a byproduct
of any channel simulation. Let us define the forward state probability vector at tice@, in

terms of its components,

o) = Pr(Q, =ilYi !t =yt h, (4.4.3)
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for i € Q. Using this, the forward recursion of the BCJR algorithm can be written as

NQ 1
ol = Z A Pr(Y, = yr, Q1 = §1Q¢ = i), (4.4.4)

where A; is the standard normalization factor chosen to ensure@]a?0 (t“) = 1. We
note that the probabilityPr(Y; = y, Qi+1 = j|Q: = 1), required by (4.4.4) depends on the FSP
and can be written as

Pr(Yi =y, Qi1 =jlQi =1) = Pr(Y; =y|Qi1=7,Q = 1) Pr(Qir1 = j|Q¢ = 1)
= 9ij(Y)pij.

Proposition 4.4.1. The sample entropy rate of a realizatioyy;, of the FSP,{Yt}tZl, is given
by

" 1 o
Hy(yp) === log Ar
t=1

Proof. From (4.4.4), we see that

No-1

A, = Z a§t+1)

J=0

which means thatog Pr(Y7) can be computed using (4.4.2). Combining this with (4.4.1)
completes the proof. O

Remark 4.4.2The complexity of this method is linear in the number of stafés, and linear
in the length of the realizatiom. Furthermore, if a central limit theorem holds for the entropy

rate, then the variance of the estimate will decay {ikén~—1/2).

We believe that the rapid mixing of the underlying Markov chain and the form of (4.4.2) leads
naturally to a central limit theorem for the sample entropy rate. The following conjecture makes
this notion precise. We note that the conclusion of this conjecture is proven, under more restric-

tive conditions, in Section 4.4.6.
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Conjecture 4.4.3. Let{Y;},., be an ergodic FSP which gives rise to the conditional probability
sequence{ A}, whereA, = Pr(Y,[Y{™"). If (i) limy .o E [(— log At)”G] < o0, then the
sample entropy rate obeys a central limit theorem of the form

NG [Hn(y) - H(y)] 4 N(0,02).

The varianceg?, of the estimate is given by
o> =R(0)+2) R(r), (4.4.5)
=1

where R(7) = limy_o F [(log A + H(Y)) (log Ai—- + H(Y))]. If we also have that (ii)
lims o F [(—log At)‘“ﬂ < o0, then we can estimate the variance using finite truncations
of (4.4.5) withR(7) set to the sample autocorrelation,

Ro(r) = — i (105 4 + H,(9)) (tog A—r + ()

n—T
t=7+1

Motivation. This conjecture is based on the fact that; } ., is asymptotically stationary and

our belief that the autocorrelatior?(7), decays exponentially with. These conditions are

generally sufficient to imply a central limit theorem for sums like (4.4.2). O

4.4.2 The Statistical Moments of Entropy

While the entropy of a random variable is usually defined td:de- log Pr(Y’)], one
might also consider the random varialife= — log Pr(Y"). We refer to thekth moment of the
random variableZ, as thekth moment of the entropy. One reason for examining these quantities
is that most CLTs require that the increments have finite second moments. Here, we show, under
mild conditions, that thé&th moment of the entropy is bounded, for all finite

Let p(y) be the probability density of any absolutely continuous random variable.
Since the functiorp(y) must integrate to one, we know the tails must decay faster thgn.
If we assume the slightly stronger condition thdty|) = O(|y|~'7¢), for somee > 0, then
we find that all finite moments of the entropy are bounded. Recall that all finite moments of a
random variable are finite if the exponential momettise*?] = E [Pr(Y)~*], are finite for

somes > 0. We can upper bound this expectation with

E[Pr(Y)™®] = / h p(y)p(y)~*dy

—00

< / p(y)' ~*dy + 2C / ly| D0 gy,

—a
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wherea is chosen large enough thaty) < C|y|~'~< for all |y| > a. Using the fact that
p(y) < p(y)'=* whenevem(y) > 1, it is easy to verify that the first term is less thzm The
second term will also be finite as long@s—1)(1+¢) < 1 which is equivalent ta < /(1 +¢).
Since this expectation is finite fere [0,¢/(1 + ¢)), all finite moments o are bounded.

There are also distributions that are poorly behaved with respect to entropy, however.
Consider the probability distribution on the integers given by

1

PrY’ =n) = Cn(logn)r’

forn > 3. Aslong ap > 1, we can compute a finite

Nt 1
¢= nz;) n(logn)r
which normalizes this distribution. Thgh moment of the entropy for this distribution is given
by

OO;—O nllogn k
> Grliogrys (108 (Cnllogn))

which can be lower bounded by

———
= Cn(logn)r

if ng is chosen large enough thag (Cn(logn)?) > (logn)/2. This lower bound will be finite
onlyif p —k > 1. Soforl < p < 2, the distribution is well-defined but the entropy and all
higher moments are infinite. Likewise, the finite variance condition necessary for a CLT requires
thatp > 3.

Now, let us focus on the value of the entropy incremenlpg A;, during a transition
from statei to statej. In this case, the true distribution ®f is given byg;;(y), but the simulation

method computed; based on the assumed distribution,
Paly) = > o hi(y),
2

whereh;(y) = Pr(Y; = y|Q: = i) = >_; pijgi;(y). For a particular transition and forward
state probabilities, the expectation-efog A; can now be written as

E[-log A|Qr =1,Qy1 = j,a] = Egiov) — [log Po(Y)].
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This general approach can also be used to upper bound the higher momjentsg A,]*, re-
quired by Conjecture 4.4.3. In particular, we consider the bound

By [(~ 108 Pal¥)] < Byyovy [(— g (i hz-m))k] ,

which is based on maximizing the LHS ower

Suppose that the output alphabet is finite (or a bounded continuous set) and there is
ane > 0 such thatmin; inf, h;(y) > e. In that case, the magnitude of thth moment can be
upper bounded withz[— log A;]* < (—loge)*. If the output alphabet is countably infinite (or
an unbounded continuous set) andy) > 0 for all boundedy, then the magnitude of thieth
moment will depend only on the tails of the(y). Letg(y) be theg;;(y) whose tail decays most
slowly andh(y) be theh;(y) whose tail decays most quickly. The magnitude ofttilemoment
will be finite if

Eyvy (—=log h(Y))*| < .

Example 4.4.4. Suppose all of the;;(y) are Gaussian densities with finite mean and variance,
We assume that the particular mean and variance depends on the transitignIn this case,
the tails of each density decay IiI@(e—“yQ) wherea depends on the variance. The magnitude
of the kth cross-moment for any two Gaussians is upper bounded by

o'} k [ee] b 2\ k
/ Cre~’ (— log(Cge_by2)) dy = / Cre~ W’ (— log Cy + %) dy
k

/p \Ft oo - -
= Z(—log@)z (E) / Cre™ W k= gy,

i=0
Since the integral really just computes t& — i)th moment of a Gaussian, the expression is
bounded for all finitek.

4.4.3 A Matrix Perspective

In this section, we introduce a natural connection between the product of random ma-
trices and the entropy rate of a FSP. This connection is interesting in its own right, but will also
be very helpful in understanding the results of the next few sections.
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Definition 4.4.5. For anyy € Y, the transition-observation probability matrixM(y), is an
Ng x Ng matrix defined by

[M(y)];; & Pr(Y: =y, Qus1 = j|Qr = i) = pij fij (y)-

These matrices behave similarly to transition probability matrices because their se-
guential products compute thestep transition observation probabilities of the form,

[M(ys)M(Yk11) - M(Yrin)liy = PrYT™ = v Qrntr = 51Qk = 4).
This means that we can writer(Y7) as the matrix product
Pr(YY) = mM(y1)M(y2) . .. M(yn)1, (4.4.6)

wherer is the row vector associated with the unique stationary distributidi®f ., and1 is
a column vector of all ones.
The forward recursion of the BCJR algorithm can also be written in matrix form with

t+1) _ aM(y,)

( e i A
“ [a®M(y,)][[,”

(4.4.7)

wherea(®) = | agt) agt) OZ%)Q | and||x||; = >, |x;|. This update formula is referred

to as theprojective productand its properties are discussed at some length in [20]. We note
that the order of the matrix-vector product in (4.4.7) is reversed with respect to [20]. The two
most important properties of the projective product given by Lemma 2.2 of [20] are: (i) it is
Lipschitz continuous if the smallest row sum is strictly greater than zero and (ii) it is a strict
contraction if the matrix is positive. We note that these are really the only properties required for

a self-contained proof of Theorem 4.4.9 which is stated in the next section.

4.4.4 The Analytical Approach

It appears that the most straightforward analytical approach to the entropy rate problem
is the original method proposed by Blackwell [6]. Applying the same approach to this setup gives
an integral equation whose solutions are the stationary distributions of the joint Markov chain
formed by joining the true state and the forward state probability ve@t@{, a(t)} 1+ The
entropy rate is then computed with )

No-—1

lim E [log Pr(Yy[Y{™")] = lim E |log > Pr(Y,|@Q = i)Pr(Q; =i[Y{ )|,
t—o0 t—o0 “—o
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where Pr(Y; = y|Q¢ = i) = >_;pi;fij(y) is independent of and the limit distribution,
limy—, oo Pr(Q: = z’\Yﬁfl), depends on the true statg, and is given by a stationary distribution
of the joint Markov chain (cf., a solution of Blackwell’s integral equation). One problem with
this method, besides its general intractability, is the fact that the stationary distribution may not
be unigue. This is equivalent to saying that the integral equation may not have a unique solution.
Since many of the probability distributions in this section can be rather badly behaved,
rigorous treatment requires that we use some measure theory. The following analysis is based
on general state space Markov chains as described in [22)2 lcetQ x ©(Q) be the sample
space of the joint Markov chain, whe@ = {0,1,... ,Ng — 1} and®(Q) is the set of prob-
ability distributions (i.e., the set of non-negative vectors of lenjth which sum to one). Let
{ne(q, A)},>, be the probability measure defined hy(q, A) = Pr(a® € A,Q; = q) for any
A € ¥, whereX is the sigma field of Borel subsets ®/(Q). The transitions of this Markov
chain are described by

Ng-—1

Hi+1 .77 Z /D fL d:l:‘ zg(w A)

where the transition kermnep,;(z, A) = Pr(aY ¢ A, Q1 = jla® = z,Q, = i),is a

probability measure defined oh € X.. The kernel can be written explicitly as

Pij(x, A) = / Pij9ij(dz),
{z€Y|L(z,y)eA}

whereL(a,y) = aM(y)/ ||[aM(y)||, is the forward recursion update.

Before we continue, it is worth discussing some of the standard definitions and notation
associated with Markov chains on general state spaces. Our noftion, A), for the transition
kernel is natural, albeit somewhat non-standard, considering the decompaosition of our state space
into discrete and continuous components. Thstep transition kernel is denotdq(f‘) (z,A),
and the unique stationary distribution is denotdd, A) if it exists. The transition kernel can
also be treated as an operator which maps the set of bounded measurable functions back to itself.
The operator notation is given by

Ng—1

PWr (i, 2) Z/D a:dz(z),

and is useful for discussing the convergence of a Markov chain to a stationary distribution.



126

A general state space Markov chainuisiformly ergodicif it converges in total vari-
ation to a unique stationary distribution at a geometric rate which is independent of the starting
state [22, p. 382]. This is equivalent to saying that there exists gotné such that

No—1
sup P™y(i,2) Z / m(j,dz)| < Cp" (4.4.8)
D(Q)

for all bounded measurable functiongy, A), which satisfysup; 4 |r(i, A)] < 1. This type
of convergence is generally too strong for our problem, however. If (4.4.8) holds only for all
bounded continuous functions (in some topology), then the Markov chain converges fmeakly
a unique stationary distribution. While this behavior is referred tgexsmetric ergodicityn
[21], we say instead that the Markov chainwigakly uniform ergodi¢o avoid confusion with
the geometric ergodicity defined in [22, p. 354].

Now, we consider the first condition under which the limit distributiatis, A) =
lim;—, o p11(s, A), exists and is unique. This is based on a comment by Blackwell describing
when the support of (s, A) is at most countably infinite [7]. Under this condition, Theorem
4.4.7 shows that the joint Markov chain is uniformly ergodic.

Condition 4.4.6. The output alphabety, is countable and there exists a finite output sequence
which gives the observer perfect state knowledge (i.e., the joint Markov chain is in true state
g with oy, = 1). Using the DEC for an example, we see that the output 1 satisfies this

condition because it implies with certainty that; = 1.

Theorem 4.4.7.1f Condition 4.4.6 holds, then(s, A) exists, is unique, and is supported on a

countable set. Furthermore, the joint Markov chain is uniformly ergodic.

Proof. Let z be state of the joint Markov chain after the output sequence which provides perfect
state knowledge. Since this state is reachable from any other statg;itteelucibility of this
Markov chain is given by Theorem 4.0.1 of [22]. The stateglso satisfies the conditions of an
atomas defined in [22, p. 100]. Since any finite output sequence will occur infinitely often with
probability 1, the point is alsoHarris recurrentas defined in [22, p. 200]. Applying Theorem
10.2.2 of [22] shows that(s, A) exists and is unique.

2This set of functions provides a metric for the weak convergence of probability measures on a separable metric
space [29].
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Next, we show thatr(s, A) is supported on a countable set. Since the return time
to statez is finite with probability 1, we assume the joint Markov chain is in statat time
7 and index any state in the support set by its output sequgngk,. ,, starting from state.
Therefore, the support set ofs, A) is at most the set of finite strings generated by the alphabet
Y, which is countably infinite. In particular, for ary> 0, there is a finite set of strings with
total probability greater thah — e.

Since the underlying Markov chailﬁQt}tZI, is primitive, the path to perfect knowl-
edge can start at any time. So, without loss of generality, we assume the output sequence which
provides perfect state knowledge starts in any state, takseps, ends in statg and occurs
with probability 5. This means thaP)” (x,2) > d for all i € Q and allz € D(Q), which is
also known a®oeblin’s Condition22, p. 391]. Applying Theorem 16.2.3 of [22], we find that

the joint Markov chain is uniformly ergodic. O

This leads to the second condition under which the limit distribufiom, .. :(s, A) = 7(s, A),
exists and is unigue. This condition is essentially identical to the condition used by Le Gland
and Mevel to prove weakly uniform ergodicity in [21].

Condition 4.4.8. Every output has positive probability during every transition. Mathematically,
this means thag;;(y) > 0 for all y € Y and everyi, j such thap;; > 0. For example, any real
output channel with AWGN satisfies this condition.

Since the joint Markov chain implied by Condition 4.4.8 does not, in general, satisfy
a minorization condition [22, p. 102], we must turn to methods which exploit the continuity of
P;j(xz, A). We say that a general state space Markov chgiwesk) Fellerif its transition kernel
maps the set of bounded continuous functions (in some topology) to itself [22, p. 128]. Based
on the properties of (4.4.7), one can verify that the joint Markov chain will be weak Feller as
long as the minimum row sum d¥1(y) is strictly positive for ally € Y. Unfortunately, the
methods of [22] still cannot be used to prove that the joint Markov chain is weakly uniform
ergodic because its stationary distribution may not be absolutely continuous. In many cases, it
will be singular continuous and concentrated on a set of dimension smaller than fhafFof
simplicity, we simply adapt the results of [21] to our case. We note, however, that the results of
iterated function systems (or iterated random functions) may also be applied to prove this result
[12][29].
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Theorem 4.4.9 (Le Gland-Mevel).If Condition 4.4.8, them. (s, A) exists and is unique. Fur-
thermore, the joint Markov chain is weakly uniform ergodic.

Proof. The analysis in [21] is applied to finite state processes whose output distribution is only

a function of the initial state (i.eg;;(y) = gix(y) for all j,k). There is a one-to-one corre-
spondence between these two models, however. For example, one can map every transition in
our model to a state in their model and represent the same process. g§{nge> 0 for all

y € Y and everyi, j, we find that the output distribution of each state in their model will also be
positive. Along with the ergodicity of the underlying FSMC, this gives the conditions necessary
for Theorem 3.5 of [21]. Therefore, the joint Markov chain is weakly uniform ergodic. [

Now, we address the issue of CLTs for the entropy rate. For uniformly ergodic Markov chains,
we use the CLT given by Chen in Theorem I1-4.3 of [8]. This CLT is both very general and
has the most easily verifiable conditions. For FSPs which satisfy Condition 4.4.8, we use the
CLT given by Corollary 4.4.14. One could also prove this directly using the exponential decay
of correlation implied by weakly uniform ergodicity, or alternatively, by using the theory of
iterated function systems [4]. Unfortunately, all of these methods break down simultaneously if

the productM (y; )M (yi+1) - - - M(y1+r) does not become strictly positive for some

Theorem 4.4.10 (Chen).Let {Xt}t21 be a uniformly ergodic Markov chain with unique sta-
tionary distribution7(x). Let f(x) be a measurable function ars}, = > | f(X;). If we
assume that (if: [f(X)] = 0 and (i) Ex [ f*(X)] < oo, then

S/ N(0,0%),
wheres? = R(0) + 23>, R(7) < oo and

R(r) = lim E[f(X:)f(Xi—)]-

t—o0
Corollary 4.4.11. Consider the FSRY;} ., and its joint Markov chain{Q;, «"},_ . Sup-
pose (i) the process satisfies the finite variance condiiion .., F [(ln Pr(Yt\Yi‘l))Q} and
(ii) the joint Markov chain satisfies Condition 4.4.6. In this case, the sample entropy rate,
H,(Y), obeys

Vi [Ha(Y) = HO)| % N(0.0%),

whereo? is finite and given by (4.4.5).
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Proof. Using (4.4.4), it is easy to see th&-(Y;|Y/™!) = f(V;,a®) for some measurable
function, f. Now, we introduce the extended Markov cha{r@t,Yt, a(t)}t>1, since the func-

tion requires thé&; value. Since the random varialdg is conditionally indei)endent of all other
guantities giver); and@,1, it follows that the extended Markov chain inherits the ergodicity
properties of the joint Markov chain. Since (i) implies that the joint Markov chain is uniformly
ergodic and (ii) implies the finite variance condition of Theorem 4.4.10, we simply apply Theo-

rem 4.4.10 to complete the proof. O

4.4.5 Entropy Rate Bounds

It is well known [10, Chap. 4] that the entropy rate of an ergodic R3%},-,, is
sandwiched between the Markov upper and lower bounds given by

H(Yk|Yk—17Yk—27' .. 7}/17621) S H(y) S H(Ykz‘Yk‘—hYk—Q?' .. 7}/1) (449)

In fact, Birch proves that the gap between these bounds decays exponentiafty functions

of a FSMC whose transition matrices are strictly positive [5]. The mixing properties of the
underlying FSMC make it easy to believe that this gap actually decays exponentially for all
FSPs.

Since all three of the quantities in (4.4.9) can be written as integrals over a state dis-
tribution of the joint Markov chain, we show that the gap decays to zero exponentially if the
joint Markov chain is weakly uniform ergodic. Le. (i, A) be the state distribution of the joint
Markov chain. The entropy df;, can be written as a function of, (i, A) with

No-1

DEDS /| o PRV (62,

where

No—1 Ng—1Ng—1
V(i a) :/ > pijfii(y)log ( >y azplmfzm(y)> dy.
Y=o m=0 =0
The functionV (i, ) gives the entropy rate df conditioned on the true state beihgnd the
state probability vector beinge. While V' (i, o) is unbounded as; — 0, it is a continuous
function of @ as long asy; > 0. Fortunately, the probabilityPr(ozEt) = 0|Q: = 7), must be

zero because events with probability zero cannot occur.
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Letm=[m = ... m ]bethe unique stationary distribution £f;},., which
satisfiest; = > m;p;;. The lower boundH (Y} |Y,—1, Yi—2,...,Y1,Q1), is obtained by start-
ing the chain with the distribution

iy IfOélzl

w1 (i, @) = (4.4.10)

0 otherwise

and takingk steps, because this initial condition corresponds to statiofasyate probabili-
ties and perfect state knowledge. The upper bound is obtained by starting the chain with the
distribution

m fa=mw

w1 (i, @) = (4.4.11)

0 otherwise

and takingk steps because this initial condition corresponds to statioQasyate probabilities

and no state knowledge. The true entropy rate can be computed by using either initialization and
letting k — oo, because all initial conditions eventually converge to unique stationary distribu-
tion puoo (i, A).

If the joint Markov chain is (weakly) uniform ergodic, then the state distribution con-
verges tou (i, A) exponentially fast ink regardless of the initial conditions. Since the upper
and lower bounds are only functions of the state distribution, we find that both of these bounds
converge to the true entropy rate exponentially fagt.in

4.4.6 Connections with Lyapunov Exponents

Consider any stationary stochastic procgs$y,.,, equipped with a functionVi(y),
that maps eacly € Y to anr x r matrix. LetZ(Y}) = M(Y1)M(Y2)...M(Y,,) be the
cumulative product of random matrices generated by this process a{@c[bl}aygzl be a sequence
of realizations with increasing length. Now, consider the limit

o1
lim —log ||xZ(yT)]|,
n—oo n

wherex is any non-zero row vector anjd|| is any vector norm. Oseledec’s multiplicative ergodic
theorem says that this limit is deterministic for almost all realizations [23]. While the proof takes
a very different approach and is quite difficult, one way of thinking about this is that the matrix

sequence{Z(y?)}@l, can be associated witheigenvalue sequences which grow (or decay)
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exponentially inn. The normalized exponential growth rate of each eigenvalue sequence almost
surely has a deterministic limit known as the Lyapunov exponent. The Lyapunov spectrum is
the ordered set of Lyapunov exponenis, > ~v» > ... > ~s, along with their multiplicities,
di,ds, ... ,ds. An earlier ergodic theorem due to Furstenberg and Kesten [13] gives a simple
proof for the top Lyapunov exponent, and says that the limit

. 1
lim —log |Z(YY)[| =m
n—oo n

convergences almost surely, whdré is now taken to the matrix norm induced by the previous
vector norm (see [18, p. 303]).

The connection between Lyapunov exponents and the entropy rate of a FSP is given
by the following proposition.

Proposition 4.4.12. The largest Lyapunov exponemnt, of the product of the transition-observat-
ion matrices, M(y;)M(y2) ... M(y,), is almost surely equal te-H()), where H()) is the
entropy rate of the FSRY:},.,. Mathematically, we have

.1
Jim = log [[M(Y1)M(Ys) ... M(Ya)l| = 71 = —H(Y)
for almost all'YT .

Proof. Using (4.4.6), the probability’r(YT) can be written in the form
Pr(YP) =) _m Y [Z(Y])],;- (4.4.12)
i=1 j=1
Applying the matrix norm induced (see [18, p. 303]) by the vector ndfFif,,, to Z(YT) gives
1Z(YD) ]l = max D> [Z(Y)];;
7 =
because our matrix is non-negative. Now, we can sandWidtY 7)) with

minm; | Z(YY) o < Pr(YT) < [Z(YT)]s (4.4.13)

by replacing the second sum in (4.4.12) by its maximum value to get an upper bound, and then
applying the smallest; to that upper bound to get a lower bound. The ergodicity of the Markov



132

chain{Q;},., implies thatmin; m; > 0, and therefore the inequality (4.4.13) can be rewritten

as
Liog |Z(YD)ll,. < = log Pr(YT) < ~ log | Z(Y])]|, + BT
— — r — —_.
n g Plloo = g 1) =7 g 1 )lso n
Finally, this shows that
lim ~log [|Z(Y™)|l. = lim ~log Pr(Y?)
e 08 Dlleo = 100 108 5T 1)
which completes the proof. O

The following is a restatement of Theorem 7 from [9] and provides a CLT for the largest Lya-

punov exponent.

Theorem 4.4.13 (Cohn-Nermann-Peligrad).Suppose thafM(Y})}, is a strictly stationary
sequence of x r non-negative matrices satisfying: (i) there exists an integgrsuch that
M(Y:)M(Yi41) ... M(Yi40,) is positive with probability 1, (ii) the proceds’; },~ , is geomet-
rically ergodic, and (jii) £ [min"' (log [M(Yt)])z] < oo and E [max+ (log [M(Yy)])?| < o0
wheremin™ (M(Y;)) andmax™ (M(Y;)) are the minimum and maximum over the strictly pos-

itive elements oM (Y;). Then there exists @ > 0 such that

n~1/2 [log ‘[M(Y1)M(Y2) o M(Y)]

d
ij| — n’)/l} - N(Ova)v

converges in distribution angl; is the largest Lyapunov exponent.

The following Corollary provides a CLT for the entropy rate under conditions which
are implied by Condition 4.4.8 and a finite variance condition.

Corollary 4.4.14. Suppose that every observationge Y, is possible during every transition.
This implies thai;;(y) > 0 for all ¢, j such thatp;; > 0. Furthermore, suppose that condition
(i) of Theorem 4.4.13 holds. Then the sample entrdMy), is asymptotically Gaussian with
asymptotic mea/ ().

Remark 4.4.15Using (4.4.7) and the second Lyapunov exponent of the m&{¥&?'), we can
also consider the exponential rate at whieft forgets its initial condition(!). Consider the
scaled matrix productZ(Y?7)/ || Z(Y?T)
The normalized second largest eigenvallie,

, whose maximal row sum will always equal one.
1/n

[

, of this scaled matrix product will almost
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certainly be equal te”>~". This is because the normalized eigenvalueZ YT ) will almost

surely be given by the Lyapunov spectrum. Therefore, if the largest Lyapunov exponent is simple
(i.e., its multiplicity is one), ther(") forgets its initial condition almost surely at the positive
exponential rate given by, — ~1. It is important to note that this is the expected rate at which
a® forgets its initial condition. This does not necessarily imply that the probability of rare

events also decays exponentially.

4.5 Capacity Bounds
The capacity of a FSC is given by

1
C = lim — max I(X7;Y)"),
n—o00 N Pr(X7)

where the limit always exists and is independent of the initial state [14, Chap. 4]. In terms of
mutual information rates, this capacity can also be written as

Cle}l{p[H(?()—l-H(y)—H(Xay)],

where the supremum is taken over all stationary ergodic input processes. Unfortunately, the
maximization implied by either formula is over an infinite dimensional distribution and impossi-
ble to carry out in practice. The capacity can be sandwiched between two computable quantities,
however. Using upper and lower bounds on the entropy rates of the FSPs, we illustrate this in
Sections 4.5.1, 4.5.2, and 4.5.3.

45.1 Lower Bounds

Lower bounds on the capacity are actually quite straightforward to compute because
any achievable rate is a lower bound on the capacity. For example, we consider the maximum
rate achievable using Markov input distributions with memagry These distributions have a
simple representation because (X;|X{™') = Pr(X;|X;_)). Let M, be the set of all such
input distributions Then the sequen{:@n}nzo, defined by

1
C,=lim — max I(X};Y7),
n—oo N Pr(X)eMy,
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is a sequence of lower bounds on the capacity. The sequence of bounds is non-decreasing be-
cause any Markov input process i, is also in),,, ;. We also note that the information rate,
C,,, is referred to as the Markoy+ate of the channel.

Using standard optimization techniques these bounds were computed numerically for
linear ISI channels with Gaussian noise in [24] and [1]. The results given in Section 4.6, how-
ever, were generated more accurately and efficiently usingi&awelegant generalization of the
Arimoto-Blahut algorithm [19]. While no rigorous proof exists for the convergence of this al-
gorithm, theoretical and numerical results strongly imply its correctness. In particular, it always
returns a valid information rate and, in all cases tested, it gives results numerically equivalent to

standard optimization techniques.

4.5.2 The Vontobel-Arnold Upper Bound

Upper bounds on the capacity are somewhat more difficult to compute because the
maximization over all input distributions must be treated very carefully. Vontobel and Arnold
propose an upper bound on the capacity of finite state channels in [31]. The first step in this
upper bound can be seen as a generalization of the standard upper bound [14, Theorem 4.5.1]
for DMCs. Let/p(X;Y') be the mutual information between the inputs and outputs of a DMC
for some input distributiorP(z). Then, for any fixed channel (i.e., fixder(Y'| X)), the upper
bound states that

C =maxIp,(X;Y) <maxIp (X =xz;Y), (4.5.1)

Py(z)
X = x] .

The natural generalization of this upper bound to channels with memory implies that

where

Pr(Y|X)
S wex PrYIX = ) P(@)

Ip(X =z;Y) = E |log

1 1
C = lim — max Ip,(X7;Y]) < lim —maxIp (X} =x7; YY) (4.5.2)

n—00 1 Po(x}) n—oon i

for a fixed channel (i.e., fixedr(Y7|X?)) and anyP;(X?). Vontobel and Arnold start by
noting that

. PriYy|Xy)
C S lim — max F TY?)

n—oo n x?

log

X7 = x?] (4.5.3)
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holds for any distribution?(Y7). By choosing ark(Y7) which can be factored according to

n

R(y?) = Ri(y1) [] RwlyiZp).
i=L+1

they are able to make this bound computable as well. This distribdey;,Y! "} ), is generally

chosen to be the marginal distributioRy(Y;|Y'"} ), because this choice minimizes, for any
given L, the quantity

Pr(Y’f\X?)]
E|log ——=——=
s
Their method of making the bound computable is actually quite clever. Itis based upon
writing the conditional expectation of (4.5.3) in a form which makes the maximization easy. For

FSCs whose state is defined by the previouigputs (e.g., any linear ISI channel), we can write

Pr(Y?|X?) . & Pr(Y;Xi_,)
E |log V2 \yen _ n | _ g xE ) 4 B log ———ivlixn _ yn |
R(qu—b) 1 1 1 i[;y—i_l R(YJYZ_}J) 1 1
L+v

whereK(x; ") absorbs the contribution of the neglected- v initial terms of the sum. The
conditional expectation of thih term in the sum only requires knowledgexdf ; . So, using

the definition

Pr(Yi|Xi_,)

Rl = B log gty

log

Xt , = x] , (4.5.4)

we have

PrYTXT)

P lloe =R

log

Xy = X’f] = Ko(x{™)+ Y K(xi_p.,)
i=L+v+1
Computing the functiod(x}) = K0(><’f°)JrZ?:kOJrl K (x!_;,)is equivalent to com-
puting the weight of a path (labeled &) through an edge-weighted directed graph. Therefore,
the Viterbi algorithm can be used to find the maximum of the function &{eiT he quantity we
actually want, however, is the limiting value

.1
lim — max F'(x]).
n—oo n x?

In the literature, finding this quantity is known as timnimum mean cyclproblem [11]. The

connection is based on fact that the maximum (or minimum) average weight path spends most of
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its time walking the same maximum (or minimum) average weight cycle repeatedly. Therefore,
the answer is given by the maximum (or minimum) average cycle weight of the graph.

The practical problem of computing the function valug(x: ; ), for each binary
(L + v)-tuple can be solved by using a simulation to estimate the expectation in (4.5.4). The
complexity of this method linear in the simulation length and exponentiahiy because we run
one simulation for eack. In some cases, the trade off between complexity and estimation error
may also be reduced by using one long simulation and using Bayes’ rule to write the conditional
expectation as
PrXi_, , =x|Y{})  Pr(YiXi, , =x)

Pr(X[, ,=x) °  ROM[Y})

i—L—v

K(x)=F

The major drawback of the Vontobel-Arnold Bound is that it can be quite loose for
channels whose state sequence is not identifiable from a small number of samples. Consider, for
example, a dicode channel with very little noise. The Iprobability of observing either a positive
or negative transition, after observidg samples near zero, remains large enough to weaken
the bound significantly. One might think that the small probability of observing long runs of
zeroes at the output would counteract this problem. This is not the case, however, because the

maximization ovew} picks the worst-case sequence, regardless of its probability.

4.5.3 A Conjectured Upper Bound

Now, we derive a slightly different expression that we conjecture is also an upper
bound on the capacity of IFSCs. This bound also starts with (4.5.2), but uses different simpli-
fications to make the bound computable. We start by considering an IFSC channel, with state
sequences?, driven by a Markov input process with memafy< L. The channel and input
state can be combined into a single state variable, and that corresponding state segQénce is
The basic idea is that we can upper bound the mutual information by considering a genie-aided
decoder which has perfect knowledge of the st@les, and@;;+1 when it is decoding the in-
put X;. This expression remains a conjectured upper bound because of a subtle gap that remains
in our proof.

We begin by upper boundingX7; YT) using the chain rule for mutual information
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and a genie-aided decoder. The chain rule gives

n
I(X1Y]) =) I(XsYPXT)
i=1
and, neglecting edge effects, the genie-aided upper bound for each term in the sum is given by
I(Xs YPXUY) < I(X35Qimr, YT, Qi | XTH).

For any input distributionP(x7 ), we define the genie-aided mutual information to be

Jp(X1 YD) =) P(x1)Jp(XT =x1; YD), (4.5.5)

x7
n __ n
1—X1]-

The Markov nature of the input distribution and the channel allow us to write

whereJp (X} = x7; YT) is defined with

PT(Xi‘Xiilv Qi—Lv‘Y?v Qi+L+1)
Pr(X;Xi™)

log

n
Jp(X} = x5 YD) =Y B
i=1

Pr(X;| X1, Qier, YT E Qivri1)
PT(Xi|XzZ';1,)

log

71—

n
Tp(XD =X YD) = Y F
i=1

i+L _ itL
Xilp= Xi—L] ’

and this provides an upper bound BiX7; Y1) which is computed as the sum of local functions.

The obvious generalization of the Vontobel-Arnold Bound would imply that<
limy, oo maxxn Jp(X7 = x7; YT). Unfortunately, this does not follow directly from the results
thatC' < limy, o maxyn I(X] = x7; YT) and Ip(X}; YY) < Jp(XT; YT). This is because
it is possible that the the genie-aided mutual information could be larger when averaged over
all sequences, even though its largest per-sequence value is smaller. Our proof of this bound
requires that the chain of inequalities,

max Ip, (X7;YT) < max Jp (XT;YT) <maxJp, (X! =xT;Y7),
Po(x7) Pi(xy) x7

holds for all 2 (x}). The LHS inequality indeed holds becauge(X’; Y7 ) is an upper bound
onIp(XY}; YY) for all P(x}). We conjecture that the RHS inequality holds as well. Numeri-
cal results for the dicode channel are encouraging, however, because our lower bounds on the

capacity are quite close to the conjectured upper bound but do not surpass it.
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Following the Vontobel-Arnold approach, we make the conjectured upper bound com-
putable by writing it as the sum of local functions. For ISI channels whose state sequence is a

deterministic function of the input sequence, we can simplify the funcliefX} = x7; Y}) to

ZE P7“ XilQi—1, YT Qirri1)
PT(XZ‘Xifn)

i+L _ i+L
Xiﬂ7 = Xin] .

The simplification uses the facts th#t is conditionally independent of the past giv@n_; and
Qi1 is computable frond);_;, andXz 1 . Letv be the memory of the channelpe the memory
of the input, and assume that> v (W|thout loss of generality). This allows us to write

F(xy) = Z K + Ki(x5_, 1),
i=n+L+1
where
Pr(X; )
K(X) _E log ’I”( ’Q’L 17 71QZ+L+1) X,ZLJ_FL — x| .
Pr(XZ|XZ‘-_n) "

The termsK(x L*”) andK; (x;,_,_,) are asymptotically irrelevant and will be ignored. Since

F(x}) = Jp(X} = x1;Y7), the conjectured upper bound on capacity is given by

1
C < lim —max F'(xY).

n—oo 1 x¢

Once again, the functiof'(x}) can be computed as the weight of a path (labeled by
x1') through an edge-weighted directed graph. In this case, the states are Iabﬁjéﬂbﬂ/and
the edge weights are estimated by stochastic averaging of the expectaligr inAs with the
Vontobel-Arnold bound, the conjectured upper bound is given by the maximum average cycle
weight of the graph.

4.6 Monte Carlo Results

4.6.1 Partial Response Channels

We start by giving the results for the power normalized binary-input channels listed
in Table 4.1. These channels are known as partial response (PR) channels and are sometimes
used to model magnetic recording channels. First, we show the SIR of these channels along with
binary-input AWGN capacity in Figure 4.6.1. For each channel, the achievable rate is plotted
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Figure 4.6.1: The SIR for various partial response channels, estimated with)”.

versus both the SNRE;/Ny) and the SNR per information biff, /Ny). Notice that increasing
the severity of the ISI monotonically decreases the SIR in both cases.

Next, we consider the results attained by optimizing the input distributions for these
channels. The elegant generalization of the Arimoto-Blahut algorithm due téiKevused
for all of these results [19]. Figure 4.6.2 shows the results for the dicode channel and plots
the achievable rate versus;/N, and E/Ny. Figure 4.6.3 shows the results of optimizing
input distributions for the EPR4 channel. All of these results show that optimizing the input
distribution provides significant gains at low SNR.

Figure 4.6.4 compares the dicode channel lower bound with the Vontobel-Arnold
Bound and our own conjectured upper bound. We would like to acknowledge P. Vontobel for
providing the data points for the Vontobel-Arnold Bound. Both upper bounds are somewhat
loose at low rates, but the conjectured upper bound is actually quite tight at high rates. The con-
jectured upper bound has an intrinsic advantage at high rates because it is always upper bounded
entropy of the input process. We also note that this comparison is not entirely fair because
the conjectured upper bound was numerically optimized over the input distribution while the
Vontobel-Arnold Bound was not. In fact, without optimization the performance of the conjec-
tured upper bound at low rates does not surpass the Vontobel-Arnold Bound. In the future, we
plan to make a fair comparison by optimizing the Vontobel-Arnold Bound as well.

It is worth noting that at low enough SNR, all of the optimized rates actually exceed

the capacity of the binary-input AWGN channel. Depending on your perspective, this is either
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Figure 4.6.2: Monte Carlo lower bounds on the achievable information rate of the dicode channel
using optimized Markov input distributions.

an interesting phenomenon or simply a poorly chosen channel normalization. The basic problem
is that there is no single normalization which is fair. By convention, we normalize each channel
so that the power of a white input signal is unchanged by the channel. This approach seems fair
for white input signals such as equiprobable binary inputs. When the channel response is not
flat, however, optimizing the input distribution allows the source to concentrate its power around
the peaks of the channel response. Now, the signal appears to be recgvingragainfrom the
channel. One solution is to normalize all channels so that the peak of the response is unity. This is
merely a different convention, however, and regardless of the chosen normalization, optimizing
input distribution will always increase the power output of the channel.

Finally, we remark that at low rates these binary-input ISI channels exhibit a threshold
behavior similar to the-1.59 d B limit of the AWGN channel. Essentially, this means that there
is anEy /Ny threshold below which reliable communication is impossible. Conversely, it can be
shown that, at sufficiently low rates, reliable communication is also possible &g, larger
than this threshold. The threshold is known as the low-rate Shannon limit and is discussed in

[28].

4.6.2 The Finite State Z-Channel

The SIR and the Markov-1 rate of the finite state Z-channel are shown in Figure 4.6.5.

It is interesting to note that, as with the original Z-channel, one can avoid transmission errors by
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Figure 4.6.3: Monte Carlo lower bounds on the achievable information rate of the EPR4 channel
using optimized Markov input distributions.

sending a particular pattern. (e.g., 0101...01). So, while optimizing the input distribution to the
dicode channel increases the output power, optimizing the input distribution to the finite state Z-
channel decreases the noise. Therefore, the optimized input distribution chooses transitions (i.e.,
edges from state O to state 1 and vice-versa) more frequently than non-transitions (i.e., edges

corresponding to self-loops) and thereby incurs fewer channel errors.

4.7 Analytical Results

In this section, we consider analytical methods for computing achievable information
rates. We start by using the results of Section 4.4.4 to compute exact information rates for the
DEC. This analysis of the DEC is made possible by the fact that the stationary distribution of the
joint Markov chain is supported on a countably infinite set. This follows from Theorem 4.4.7
because the reception of4aor — symbol gives the observer perfect state knowledge. Next,
we describe a pseudo-analytical method based on density evolution that can be used to estimate

rates more efficiently for arbitrary two state channels.

4.7.1 The Symmetric Information Rate of the DEC

Consider a DEC with erasure probabiliéyand equiprobable inputs. L&} be the
channel input sequencS,’fJrl be the channel state sequence, &t be the channel output
sequence. The input and output alphabets of the DEC are defined s&,th@t{0,1} and
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Figure 4.6.4: Monte Carlo upper and lower bounds on the achievable information rate of the
dicode channel using optimized Markov input distributions.

Y; € {—,0,4,e}. In this section, we compute the exact SIR analytically by characterizing the

forward recursion of the APP algorithm, which computés(Y}\Yffl), in terms of the random

variableagt) = Pr(S; = i|Y}). Parts of this analysis were motivated by a method used to

compute iterative decoding thresholds for turbo codes on the binary erasure channel [30].
Since the channel has only two states, it suffices to consider the quatity a(()t) =

1 — a!”. The real simplification, however, comes from the fact that the distributiari‘dhas

finite support whenX ~ B(1/2). We can observe this fact by writing the APP recursion as

(4.4.7) wherex® = [a) 1 —a®)] and

oo 0 5
) M(O): 1 ’ M(+): ) M(_):
0 0 0

0 O
=5 0

1—¢
2

M(e)=

Nl Nl
Nl Nl

Using this, it is easy to verify that we can use instead the simpler recursion,

1/2 ifYi=e

® ify, =0
gt — ) @ t

0 ifY,=+

1 ifYy=—
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Using this, we see that, for all > min {i > 1]Y; # 0}, a® will be confined to the finite set
{0,1/2,1}.

With the results of Section 4.4.4 in mind, we proceed by finding the stationary distri-
bution of the joint Markov chain{@;,« },_ . Each state of this Markov chain can be indexed
by the pair(¢;, o)), and the stationary distribution is supported on thé@&et), (1,0), (0,1/2),
and(1,1/2). The first two states correspond to the known (K) state condition, while the second
two correspond to the unknown (U) state condition. The symmetry of the problem allows us to
write Pr(K)/2 = n(0,1) = n(1,0) andPr(U)/2 = n(0,1/2) = 7(1,1/2).

Using a two state Markov chain, we can compute the steady state probabilities of the
joint Markov chain. First, we note that the joint Markov chain transitions from the known state
condition to the unknown state condition onlyYif = e. Therefore, we havé&r(K — U) =
1 - Pr(K — K) = e. Secondly, we note that the joint Markov chain transitions from the
unknown state condition to the known state condition only £ + orY = —. This means that
we havePr(U — K) =1— Pr(U — U) = (1 — ¢€)/2. The steady state probabilitiga-(K)
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and Pr(U) can be found using the eigenvector equation,

| Pr(K) Pr(U) | ! 11;6

1€+e:| :[PT(K) PT(U)]a
2 2
whose solution iPr(U) =1 — Pr(K) = 2¢/(1 + ¢).
Now, we can compute the exact entropy rateYgf using the definitionH ()) =
limy_. oo H(Yt]Yffl). When the joint Markov chain is in a known state, the observer knows that
one of only two edges can be traversed in the next step. In this case, the conditional entropy of

the next output given the past is denotédY | K') and is given by

e ig) = (| 155 5] ) =ho+ - o

whereH ([p1, ... ,p]) = — S, pilogy p; andh(e) = —elogy € — (1 — €) logy(1 — €). When

the joint Markov chain is in an unknown state, the observer must allow the possibility of that any
of four edges may actually be traversed in the next step. In this case, the conditional entropy of
the next output given the past is denotédY’|U) and is given by

H(Y\U)_H<[e,1;€,1;€,1;€D —h(e)+3(12_6).

Since the stationary distribution of the joint Markov chain determines how often each

of these events occurs, we can write
H(Y)=Pr(K)H(Y|K)+ Pr(U)H(Y|U).

Substituting exact values into this expression and simplifying gives

Since the entropy rate oY} given X7, H(Y|X), is simply the entropy rate of the erasure
process (i.e.k(¢)), the SIR is given by

2¢2
14¢€

H(Y) - HY|X) = H(Y) = h(e) =1 -

4.7.2 The Markov-1 Rate of the DEC

In this section, we derive the achievable information rate of the DEC using a Markov-1

input distribution. Based on the symmetry of the channel, we use an input distribution which
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changes state with probability and remains in the same state with probability- p. The
combined state space of the input process and the channel still only has two states, so again it
suffices to consider onlg® 2 ) =1 — o!".

In this case, we can write the APP recursion as (4.4.7) whée= [a() 1 — o],

M(e) = (1-ple  pe M(0)= (1-p)(1—¢) 0 7
pe  (1—pe 0 (1-p)(1—¢)

M(+)! 0 p1-¢ ] , andM(—)= ! 0 0 } :
0 0 p(l—¢€) 0

A simple recursion also exists in this case and is given by

A1 —p)+(1-a®)p ifYi=e

QD — al? ifY, =0 )
0 if Y; =+
1 if Y, = —

The major complication in completing the analysis is the fact that the support sét)db
now countably infinite. For example, the?) that results from observing-a first and then ob-
serving a mixture ok erasures and any number @$ (but no more+'s and —'s) is given by
(1+(1—2p)*) /2. Likewise, if the first observation was a, then we would have
(1 —(1—2p)*) /2. These two cases, with € {0, ... ,oc}, constitute the entire support set
of oY), For simplicity, we refer to these values using the shorthand,
V= 1+ (12— 2p)k'
Now, we define the countably infinite Markov chain that will be used to help analyze

4.7.1)

the joint Markov chain. Each state in the new Markov chain is labeled by a letter (B)

and a non-negative integer. Thi, state corresponds to the event thét = 0,a() = fy,j)

or (S; = 1,al) = Y )- The symmetry of the system can be used to show these events occur
with equal probability. TheB) state corresponds to the event tli&t = 0,a® = Ve ) Or

(S; =1, = y,j). Again, symmetry forces these events to occur with equal probability. The
state probabilities, as a function of time, are defined by

AP = Pr(Si=0,0") =5f)+ Pr(s, = 1,0 = )
BY = Pr(S;=0,a" =~7)+ Pr(s; = 1,0 = 5{).
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The basic idea of the new Markov chain is to simultaneously track the true state and count the
number of erasures since the last instance of perfect knowledge. In doing this, we find that an
observed) causes the transitiond;, — A, and B, — By, an erased causes the transitions

A — Axq4 and By — Byi1, an erasedt or — causes the transitiond;, — Bjy; and

By, — Aj1, and an observeg or — causes the transition$, — Ay andB, — Ap. Using the

probabilities of these events gives the recursions

A = AP -+ (- AP)p(1 - o)
AP = AD = p)(1— )+ AD (1= pe+ BY pe
BlgtJrl) _ B](:)(l —p)(l _ 6) + B;SL(:[ — p)E + Al(lepe.

Solving for the stationary distribution of the new Markov chain gives

p(1 —¢)
Pr(4o) p(l—¢€)+e
Pr(Ay) = Pr(Aowty}
Pr(By) = Pr(Agwty,

wherew = Since the forward state probabilities must give a consistent state

I—(1-p)(1—e)"
estimate, the ei/er?%s(st :) 0,aY) = 0) and(S; = 1,a) = 1) must have probability zero. This
also implies thaB\" = Pr(S, = 0,a® = 0) + Pr(S, = 1,a® = 1) = 0. Finally, the the
new Markov chain is uniformly ergodic by Theorem 4.4.7 and converges to its unique stationary
distribution exponentially fast.

Now, we can compute the entropy rate using the liF{{Y) = lim;_. H(Yt]Y'i‘l).
When the new Markov chain is in statig, or By, the conditional entropy is denoted Bi(Y | Ax)

or H(Y |By), respectively. These two expressions are given by

H(Y|Ay) = —elogye — (1 —p)(1 =€) logy (1 = p)(1 —€)) — p(1 — €) logy (p(1 — €)7;))
and

H(Y|Bg) = —elogye — (1 = p)(1 — €)logy (1 — p)(1 —€)) — p(1 — €)logy (p(L — )y, ) -

The first term of each expression is associated with the observation probability of an erasure,
the second term with the observation probability @f @nd the third term with the observation
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probability of either a+ or a—. Combining these with the stationary distribution of the new

Markov chain gives final entropy rate

HY) = Y. PrA)H(Y|AY + Pr(B)H(Y|By)
k=0

= D—p(l—e) ) Pr(Ao)w” (v logyw +7; logay ),  (4.7.2)
k=0
where

D = —clogye — (1 —p)(1 —€)logy (1 —p)(1 —¢€)) —p(1 —€)logy (p(1 —€)).
While we could find no closed form solution for this infinite sum, we did find a rela-
tively simple approximation. Using (4.7.1), we can write
logy 7, = log, (1 +(1- 219)'“) -1,

and then use the two term Taylor expansiog, (1 + =) ~ (z — 22/2)/In 2, to get
(1-2pF (1-2p*

1 =~ 4 1.
082 2 2102
This lead us to the approximation
2k
+ + — - (1 B 2p)
Vi 10827+ 1oga vy, = “Slog2 L,

which allows the infinite sum (4.7.2) to be approximated in closed form by

> i (1 —2p)% 1 w(1l —2p)? w
g a0,00w” | —5——=— — 1| = a0 3 — .
— 2log 2 2log21 —w(l —2p) l—w
The resulting entropy rate approximation, which we believe is actually an upper bound, is

p?(1 —e€)? 1 w(l —2p)? w
p(l—e€)+e\2log21 —w(l1—-2p)2 1-w)’
We evaluated the numerical error in this approximation over the rectangle formed b, 1]

H(Y)~ D —

andp € [1/2,2/3], and found its maximum value to be rougltly)002.

The results of Sections 4.7.1 and 4.7.2 are shown in Figure 4.7.1, along with the capac-
ity of the binary erasure channel (BEC) and the ternary erasure channel (TEC). While one might
expect that the SIR and Markov-1 rate should be upper bounded by the capacity of the BEC, we
see that this is definitely not the case. This is because the output alphabet of the BEC has only
three symbols, while the output alphabet of the DEC has four symbols. Therefore, the rates of
the DEC should be upper bounded by the capacity of the TEC. Surprisingly, the achievable rates

of the DEC are quite close to the capacity of the TEC whéenclose to one.
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Figure 4.7.1: The SIR and Markov-1 rate of the DEC compared with the capacity of the binary
erasure channel (BEC) and the ternary erasure channel (TEC).

4.7.3 Density Evolution for Finite State Channels

Density evolution is a pseudo-analytical method of analyzing LDPC codes that was
introduced by Richardson and Urbanke in [25]. It analyzes a decoder by tracking the probabilis-
tic evolution of messages passed around the decoder. In general, it is implemented by quantizing
the continuous set of messages to a finite set and then tracking a probability distribution over
that set.

Now, we consider a density evolution approach to the forward recursion of the BCJR
algorithm. Since the state probability vector acts like a message in the BCJR algorithm, the
first step is quantizing these vectors. For a two state channel, the vector is defined by a single
parameter, and therefore we can use any scalar quantizer. We note that this idea was applied to
two state fading channels by Goldsmith and Varaiya in [15]. For more complicated channels, the
natural generalization amounts to using a vector quantizer rather than a scalar quantizer. We note
that density evolution on the quantized vectors can be viewed either as an approximate analysis
of the true algorithm or an exact analysis of the quantized algorithm.
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Let the quantizer)/(x), be a mapping from probability vectors of lengiy, to the
index set,{1,...,Ny}. We abuse notation slightly and define the inverse of this mapping,
V~1(i), to be some generalized centroid of thle quantization cel{x € D(Q)|V (x) = i}.

The forward variable of the quantized algorithr;, is therefore characterized by the update

equation

(4.7.3)

_ Vo A)M(Yy)
A1 =V — ,
[V=H{A)M(Y) 4
which is simply a quantized version of (4.4.7).
Now, we consider the evolution dfr(A;) while the underlying finite state Markov
process transitions from stait¢o statej. In this case, the outputy, is drawn from the distribu-
tion g;;(y). This gives rise to the transition matria,(7), defined by

[A(i’j)]kl = Pr(Ai =l|Ay =k, Qr =1, Qi11 = ).

This matrix can be constructed for channels with a finite output alphabet by evaluating (4.7.3) for
all A, € {1,... , Ny} andY; € Y and assuming the corresponding probabilities. For channels
with continuous output alphabets, one can either integrate over the appropriate regivns of
or approximate these probabilities by quantizing the output alphabet. The number of non-zero
entries in eachA (*4) matrix is also upper bounded kLY |Y|, and will therefore be sparse if
Ny > |Y|.

Next, we analyze the quantized algorithm completely by combining\té matrices
with the state transition probabilitiep;;. This allows us to define theNgNv) x (NoNy)

matrix,

pMA(Ll) pl’NQA(LNQ)

pNleA(NQvl) pNQyNQA(NQvNQ)
and point out that
(Al Ny kG- N+ = Pr(Aeer = 1, Qe = jlAr = k, Qr = 1).

While we expect that the stochastic matri, will generally have a unique stationary distribu-
tion, one can also consider the following pair of stationary distributions. Let the lower stationary
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distribution, v, be defined bylim,, x% S . A wherex is given by quantizing the distri-
bution (4.4.10). Likewise, let the upper stationary distributionbe defined by the same limit
except thatx is given by quantizing the distribution (4.4.11). These limits are always well de-
fined and can be computed using the eigenvalue decompositidn bfe note that the sparsity
of A may also be exploited to reduce complexity.

Consider the probability vectors;(¥), defined byv(tt!) = v() A, Based on the

definition of A, these vectors have the implicit definition,

(t) = = EY)
[v ](i—l)Nv—l—k: Pr(d; =k Q= 1).

Using this, we find that the entropy estimate at tifig given by

HY|Y{L W) ~ ”Zk [V(t)] (1) Ny it pi E [og [V MY, Qi = i, Q1 = 4] ,
where W is any random variable which gives rise to the initial distributief!). This same
formula can be used with the stationary distributienandv to estimate the upper and lower
entropy rate bounds.

Since we have a valid probabilistic analysis of the quantized algorithm, we can actually
show that any entropy computed in this manner is an upper bound on the same entropy computed
via an exact algorithm. For example, suppose we compute the en‘tf())ziMYi‘l, W) where
W is initialized by the vecton™). In this case, the entropy computed by the quantized algo-
rithm will always be larger because its state probability estimates are less accurate and therefore
increase the entropy.

While the approximation error of this algorithm is quite dependent on the particular
guantizer used, we can still make a few general statements. We note that all of these statements
are based on the fact that the entropy expression is continuous function on the state probability
vector. This means that one would expect the entropy approximation error from using a uniform

1/<NQfl>>

guantizer to decay lik® (N‘; . When using an optimized vector quantizer, one would

expect the error to decay like (N;l/d> , Whered is the (possibly fractal) dimension of the true
stationary distribution of the joint Markov chain. This means that this type of analysis may
actually be less efficient than Monte Carlo methods wien2.

This method has been applied successfully to the dicode channel with AWGN. In par-

ticular, we used a non-linear scalar quantizer based on the uniform quantization of log-likelihood
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ratios. This type of quantization is widely used in the density evolution analysis of LDPC codes
[25]. For the dicode channel, the Monte Carlo method can easily achieve tolerant@s?of
while the density evolution approach can achieve tolerances ardgurfdwith some effort. We

note that the density evolution results were in complete agreement with the Monte Carlo results
from Section 4.6. The practical value of achieving tolerances less tiiah is questionable,

however.

Remark 4.7.1 While this section discusses only the forward recursion of the BCJR algorithm,
the same type of analysis may be applied to the backwards recursion and the output stage. This
gives a valid probabilistic analysis of a quantized BCJR algorithm that can be used to approxi-
mate the log-likelihood density at the output of the BCJR algorithm. In particular, these densities
can be used to optimize LDPC codes and compute information rates for the multilevel coding

approach proposed in [24].

4.8 Concluding Remarks

This chapter discusses a number of issues related to entropy rates and capacity for fi-
nite state channels. All of the results which are not expressly attributed to other authors were
developed independently by us. That said, this field is currently the subject of great interest, and
many of the same ideas have recently been developed independently by other authors. For exam-
ple, the simple Monte Carlo method was published in 2001 by three separate groups [1][24][27].
The formulation of the entropy rate as a Lyapunov exponent was also discovered independently
and reported in [17]. Finally, the quantized density evolution approach for information rates is
quite natural for two state channels was introduced in [15]. The move to vector quantization is a
natural generalization and is also used in a slightly different manner in [32] to help estimate the

feedback capacity of finite state channels.

4A Formal Channel Definitions

4A.1 Discrete Input Linear Filter Channels with ANGN

The formal definition(X, Y, F(-,-)), of this finite state channel depends solely.gn
(ho,h1,...,h,), 02, andX. We start by noting that the number of channel states is given by
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Ns = |X|” and defining the output alphabet, in terms of the input alphabet and channel taps,
with

14
Y = {y€R|y:Zhixi, (20, .. 1) EX”}.

i=0
Next, we defineNx = |X]| and let¢ be any one to one mapping froild to the set
{0,1,...,Nx — 1}. Although, the channel state is clearly defined by the dast 1 inputs,
we would also like an integer representation of this quantity. Using a base conversion-frém
digits of X to the integers, we have the integer state= >7_; (Nx)”"~*¢(X;—;), and the one
step updateS;1 = |S:/Nx | + £(Xt)(Nx)”. Finally, we defingF(z,y)],; = fij(z,y) with

—womi?
folrg) = 4 vEme T W= LN+ (@) (V)"
0 otherwise

wherem;; = h, & 1(i mod Nx) + S &~ ([5/(Nx)"~'=!| mod Nx).

4A.2 Dicode Erasure Channel

The formal definition,(X, Y, F(-,-)), of this finite state channel depends only ©n
The input and output alphabets are definedtby {0,1} andY = {+,0, —, e}, andNg = 2.
The conditional transition-observation probabilities are giveriBy, y)|,; = fij(z,y) where
fij(z,y) = 0 unless defined by,(0,0) = f11(1,0) = foi(1,+) = fi0(0,—) =1 —€or
foo(0,€) = fi1(1,e) = for(1,e) = fi10(0,e) =e.

4A.3 Finite State Z-Channel

The formal definition(X, Y, F(-,-)), of this finite state channel h&s=Y = {0,1}
and Ng = 2. The conditional transition-observation probabilities are giverilyr, y)};; =
fij(z,y) where f;;(z,y) = 0 unless defined by 0(0,1) = f1,1(1,0) = p, f0,0(0,0) =
fi1(1,1) =1—p,or fo1(1,1) = f1,0(0,0) = 1.
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4A.4 The Finite State Z-Channel with Markov-1 Inputs

Consider a finite state Z-channel with a stochastic input sequence. Using the notation
above, we define the input proceé®, ®), with

This allows us to define the stochastic output sequence with the t(iplé?, G(-)), where

Y = {0, 1},
—l—q 0 q 1—-p 0
0 1 0
ol eo=

0 1—gq 1-p 0
0 I—gq | 1 0

) G(l) =
q

q

0
1—q O
0
0

0 0
0 p
0 0
0 p

ok o

0
0
0
0

o o o O
—
|
3

In this case, the transition probability mat, and therefore underlying Markov
chain, is reducible. Therefore, we simplify our description of the pro¢¥§§21by removing

any state whose stationary probability is zero. Removing states 1 and 2 results in the simplified

description
po| ' ¢ ¢ ,G(O){lpo ,G<1>{p ' ]
g l—gq I p 0 1I-p
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